光伏发电我明白,这个我了解好比
太阳能光伏效应,简称光伏(PV),又称为光生伏特效应(Photovoltaic),是指光照时不均匀半导体或半导体与金属组合的部位间产生电位差的现象。[1]人们通常不会将连接光伏组件和逆变器的布线系统视为关键部件,但是,如果未能采用太阳能应用的专用电缆,将会影响到整个系统的使用寿命。太阳能系统常常会在恶劣环境条件下使用,如高温和紫外线辐射。在欧洲,晴天时将导致太阳能系统的现场温度高达100°C。目前,我们可采用的各种材料有PVC、橡胶、TPE和高质量交叉链接材料,但遗憾的是,额定温度为90°C的橡胶电缆,还有即便是额定温度为70°C的PVC电缆也常常在户外使用,显然,这将大大影响系统的使用寿命。——2014年中国光伏市场应用浅析就光伏应用而言,户外使用的材料应根据紫外线、臭氧、剧烈温度变化和化学侵蚀情况而定。在该种环境应力下使用低档材料,将导致电缆护套易碎,甚至会分解电缆绝缘层。所有这些情况都会直接增加电缆系统损失,同时发生电缆短路的风险也会增大,从中长期看,发生火灾或人员伤害的可能性也更高。而在安装和维护期间,电缆可在屋顶结构的锐边上布线,同时电缆须承受压力、弯折、张力、交叉拉伸载荷及强力冲击。如果电缆护套强度不够,则电缆绝缘层将会受到严重损坏,从而影响整个电缆的使用寿命,或者导致短路、火灾和人员伤害危险等问题的出现。2012年,由于GDP增速放缓,并且我国的工业增速多半可能会继续保持一个适度回调。再加上由于利润越来越薄,许多企业不惜为了赚取利润生产不合格、伪劣产品。有的企业迫于市场压力,选择最低价竞标,这诸多因素更是给我国的电线电缆行业发展带来很大的瓶颈。因此,加大电线电缆产品质量提升工作可谓是迫在眉睫、刻不容缓。
目前基于光伏发电内容的教学存在知识偏难、理论过多等现状。下面是我整理了光伏发电技术论文,有兴趣的亲可以来阅读一下!
太阳能光伏发电技术应用
摘要:太阳能光伏发电固然有其独特的优势所在,但是在经济利益复杂和多重能源并存的局面下,我国的太阳能光伏产业机遇和挑战是共存的。本文主要介绍了太阳能光伏发电技术的应用进行了分析探讨。
关键词:太阳能;光伏发电技术;应用
中图分类号:TK511文献标识码: A
一、太阳能光伏发电的优缺点
1、太阳能光伏发电的优点
与火力发电系统相比,太阳能光伏发电的优点主要是:从环境效益上说,太阳能光伏发电污染排放少,不会有资源枯竭的危险,使用者心理上更容易接受,符合现代人绿色环保的能源理念。从经济效益上说,太阳能光伏发电能源质量,不需要消耗燃料、不受地域限制,设施一旦投放,即可就地发电,经济效益显著。从技术角度而言,太阳能光伏发电技术已经日趋成熟,无机械传动部件,操作、维护简单,运行稳定可靠,一套光伏发电系统只要有太阳能电池组件就能发电,加之自动控制技术的广泛采用,维护成本低。
2、太阳能光伏发电的缺点
从环境效益上来说,光伏生产最重要的一个环节就是多晶硅的生产。多晶硅行业是个重污染的行业,国内尾气回收工艺不尽完善,晶硅副产品是四化硅是高毒物质,倾倒或掩埋四氯化硅将造成寸草不生土地几百年都无法使用等巨大的环境风险。
从经济效益上来说,虽然太阳能光伏一点投入使用后便会产生巨大的经济效益,但是在前期投入上,投入成本仍然是巨大的。他能量密度低、需要占用大量的土地资源,且受气候因素和地理位置的影响较大。再者,太阳能电池组件成本高昂,目前仍然达不到将其进行民用普及的水平。
从技术角度来说,目前太阳能光伏技术已经日趋成熟,但是目前太阳能电池生产成本迟迟不能降下来也可以说是一个技术难度。为了降低成本,现在普遍采用多晶硅代替电池中的单晶硅。多晶硅材料制备的新技术、快速掺杂表面处理技术、提高硅片质量等是当前的主要技术问题。
二、太阳能光伏发电产业存在的一些问题
1、太阳能光伏发电并网问题
未来太阳能能源肯定是重要的能源供应来源,当光伏发电在电网电源中的比例达到一定规模时,必须考虑其对电网电压频率控制的影响,必须对光伏电站进行科学合理的调度运行控制。光伏发电的大规模接入增加了电网的安全稳定控制难度,如何利用光伏发电并网智能化技术提高电网安全稳定水平是突破的重点之一。
2、光伏产业盲目扩张,产业和市场不对等,不利于行业健康发展
过去几年内,我国光伏产业界抓住欧美国家光伏市场的快速增长的机遇,利用国内人力和资源成本较低的比较优势,实现了迅速起步与发展壮大。但受全球光伏产业的产能迅速扩张以及金融危机影响,未来世界光伏市场将呈现供过于求的趋势,使光伏产业面临大规模洗牌。最近我国光伏企业已普遍停止扩产、削减产量。在这个洗牌过程中,利润率最高的环节也将逐渐转向下游的光伏发电运营业,使得出售光伏电力比出售光伏组件和系统具有更长远稳定的回报,这也是传统光伏产业界(光伏设备制造业)日益重视、极力呼吁启动国内光伏市场的根本原因。光伏产业没有形成一个权威机构管制,缺少长远发展规划实践,相关技术人才匮乏,研究力量薄弱,高端实验设施落后。
三、太阳能光伏发电技术的具体应用
1、独立光伏发电系统的建立
独立光伏发电系统由于不与公共电网相连接,因此其建设地点一般选在与电网隔离的偏远地区,比如海岛、移动通讯站及边防哨所等。储能元件是独立光伏发电系统中不可缺少的,这是由于太阳能发电一般选择在白天,然而负荷用电是全天24h实施,这就需要在光伏系统中设置必要的储能元件。在气象环境影响下,其供电可靠性很难得到保障,然而对于偏远无电地区而言这一系统的建立已然产生十分重要的社会价值。
2、光伏建筑一体化应用
关于光伏建筑的一体化应用主要表现为两个方面:通过在建筑物屋顶安装光伏器件的方式实现电网与光伏阵列的并联,进而构成光伏建筑一体化系统;通过建筑和光伏器件集成化的方式于屋顶位置设置光伏电池板,利用光伏玻璃幕墙替代原有幕墙,提高墙面积屋顶的太阳能吸收量,这就同时实现了建材功能与发电功能,是对光伏发电成本的有效控制。与此同时,在墙体外饰材料研究方面也出现了全新的彩色光伏模块,这在充分利用太阳能光伏发电原理的同时也使得建筑物外观更具美学欣赏价值。
3、混合型光伏发电系统的构建
所谓的混合型光伏发电系统是将多种发电方式相互融合并应用于光伏发电系统的过程,混合型光伏发电系统的构建旨在发挥不同发电模式的技术优势,扬长避短,从而更加有效地提高电能的利用率。例如光伏发电经常会受到天气状况的影响,在冬季风力较大地区,就可通过光伏发电和风力发电的混合模式,尽可能减少天气变化对发电系统的影响,进而达到控制负载发电率的目的。
4、光伏发电在LED照明中的应用
作为半导体材料制作而成的组件,LED与光伏发电的结合可实现电能至光能的转化。这一半导体照明技术不仅有着环保、节能、高效的技术优势,并且照明周期较长,且易于维护。光伏发电在LED照明系统中的应用突出了光生伏特效应的技术原理,通过太阳能电池实现对太阳能至电能的转化,再借助LED照明系统将其转化为最终的光能。由于LED照明和光伏发电技术同是直流电,因此转化过程并不需要借助变频器,这明显提高了整个过程的执行效率。除此之外,在可充放蓄电池的辅助下,光伏发电在LED照明中的技术优势必将更加突出。
四、太阳能光伏发电产业未来发展方向
1、未来太阳能光伏发电产业一定会成本,使之普及开来
太阳作为一种高效环保的绿色能在未来一定会得到光伏的应用。通过加大资金投入和政策扶持力度和企业的创新研发力度,一定能够降低光伏发电系统成本。现阶段光伏技术最关键的问题,就是要提高电池效率和降低成本。通过采用更先进的电子器件及高效模块降低特定系统平衡成本;通过高效的生产方案、通用型材料的增用以及新蓄电池的观念等手段降低电池成本;通过引进先进封装技术及提高电池工作效率来降低特定模块的生产成本。最后,通过降低电池成本一定会降低太阳能光伏发电的整体成本。
2、未来民用太阳能光伏发电将大行其道
当太阳能光伏生产的整体成本降低之后,未来的民用太阳能产业一定会大行其道,将在通信和工业应用、农村和偏远地区得到广泛应用。太阳能光伏建筑一体化亦是未来的一个发展趋势,对于城市而言可以有效节约土地资源,提升高层建筑利用率。西部地区太阳能资源丰富地区农村光伏发电站的建设可以与风能发电系统互补满足农村基本用电要求。另外太阳能庭院灯,太阳能路灯等都将为家庭和市政建设节约能源。
太阳能光伏发电是一种清洁能源,零排放、无污染,且其技术日趋成熟、成本不断下降,已经适合规模应用,今后,太阳能光伏发电必将在公共建筑或民用建筑中广泛应用,光伏发电也将成为我国的一种常规能源。
结束语
综上所述,在现有技术的基础上,生产企业必须深入的加快研发节奏,降低生产成本,提高产品质量。政府方面更加需要推进绿色能源普及使用的进程,制定强有力的产业政策和法规条文,保障光伏产业的发展。伴随着人民环保意识的增强,我们相信在市场改革和政府政策的联动作用下,我国的光伏发产业必定能稳步健康发展。
参考文献
[1]柴亚盼.光伏发电系统发电效率研究[D].北京交通大学,2014.
[2]熊静.光伏并网发电系统的研究[D].南京理工大学,2014.
[3]胡云岩,张瑞英,王军.中国太阳能光伏发电的发展现状及前景[J].河北科技大学学报,2014,01:69-72.
[4]许志军.太阳能光伏发电技术在交通运输业的应用[J].青海交通科技,2014,01:10-11.
点击下页还有更多>>>光伏发电技术论文
一、项目概括项目简介及选址本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。 图1-1 选址地卫星图 图1-2 选址平面图 项目位置及气象情况经过百度地图的计算,得出了此地经纬度为:北纬,东经为,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,最高气温为夏季的度,最低气温为冬季的度,年均气温17度。该项目所在地最高海拔为793米,最低海拔达米,总的平均海拔为米。该地年总辐射量经过PVsyst软件的计算后,得出了的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。 图1-3湘潭市地理位置 图1-4年均总辐射值项目设计依据本项目设计依据如下:《光伏发电站设计规范》GB50794-2012《电力工程电缆设计规范》GB50217-1994《光伏系统并网技术要求》GB/T19939-2005《建筑太阳能光伏系统设计与安装》10J908-5《光伏发电站接入电力系统技术规范》GB/T19964-2012《光伏发电站接入电力系统设计规范》GB/T5086-2013《光伏(PV)系统电网接口特性》GB/T20046-2006《电能质量公用电网谐波》GB/T14549-19933《电能质量三相电压允许不平衡度》GB/T15543-1995《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000二、电站系统设计组件选型组件是电站中造价最高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持最佳,这样才不会亏本。组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。表2-1伏组件对比表组件品牌及型号 晶科Swan Bifacial 400 72H 晶科Swan Bifacial 405 72H 晶澳JAM72S10 400MR最大功率(Pmax) 400Wp 405Wp 400Wp最佳工作电压(Vmp) 41V 组件转换效率(%) 最佳工作电流(Imp) 开路电压(Voc) 49V 短路电流(Isc) 工作温度范围(℃) -40℃~+85℃ -40℃~+85℃ -40℃~+85℃最大系统电压 1000/1500V DC(IEC/UL) 1000/1500VDC(IEC/UL) 1000/1500VDC (IEC)最大额定熔丝电流 20A 20A 20A输出功率公差 0~+5W 0~+5W 0~+3%最大功率(Pmax)的温度系数 ℃ ℃ ℃开路电压(Voc)的温度系数 ℃ ℃ ℃短路电流(Isc)的温度系数 ℃ ℃ ℃名义电池工作温度(NOCT) 45±2℃ 45±2℃ 45±2℃组件尺寸:长*宽*厚(mm) 2031*1008*30mm 2031*1008*30mm 2015*996*40mm电池片数 72 72 72第一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。第三款组件晶澳JAM72S10 400MR是3款组件里效率最高的组件,比第一款和第二款分别高了和,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中最高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。 图2-1 组件图最佳倾斜角和方位角设计本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到最高,因此最佳倾角这个概念便被引出了。对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭最佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到最高。PVsyst最佳方位角、倾斜角模拟图如图2-2所示。图2-2 PVsyst最佳方位角、倾斜角模拟图组件排布方式本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。 图2-3 组件排列方式组件间距设计 太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。 图2-4间距图在公式2-1中:L是阵列倾斜面长度(4050mm)D是阵列之间间距β是阵列倾斜角(18°)为当地纬度(°)把以上数值代入公式后计算得:2-5组件计算图根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。 图2-6方阵间距图逆变器选型逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器最佳,因此本项目选择了3款市场上热卖的组串式逆变器。表2-2 逆变器参数对比表逆变器品牌及型号 华为SUN2000-100KTL-C1 华为SUN2000-110KTL-C1 固德威HT 100K最大输入功率 100Kw 110Kw 150Kw中国效率 最大直流输入电压(V) 1100V 1100V 1100V各MPPT最大输入电流(A) 26A 26A 电压范围(V) 200 V ~ 1000 V 200 V ~ 1000 V 200V ~ 1000V额定输入电压(V) 600V 600V 600VMPPT数量/输入路数 10/20 10/20 10/2额定输出功率(KW) 100K W 110K W 100K W最大视在功率 110000 VA 121000 VA 110000 VA最大有功功率 (cosφ=1) 110KW 121K W 110KW额定输出电压 3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE380, 3L/N/PE 或 3L/PE输出电压频率 50 Hz,60Hz 50 Hz,60Hz 50 Hz最大输出电流(A) A 167A功率因数 超前— 滞后 超前—滞后 (超前—滞后)最大总谐波失真 <3% <3% <3%输入直流开关 支持 支持 支持防孤岛保护 支持 支持 支持输出过流保护 支持 支持 支持输入反接保护 支持 支持 支持组串故障检测 支持 支持 支持直流浪涌保护 Type II Class II 具备交流浪涌保护 Type II Class II 具备绝缘阻抗检测 支持 支持 支持残余电流监测 支持 支持 支持尺寸(宽 x 高 x 厚) 1,035 x 700 x 365 mm 1,035 x 700 x 365 mm 1005*676*340重量(kg) 85kg 85kg 工作温度(°C) -25°C~60°C -25°C~60°C -25~60℃3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。第一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比第一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用第一款逆变器不仅省钱而且还不会造成功率闲置无处使用,最大发挥逆变器的作用,因此第1款比第2款逆变器好。第三款逆变器是固德威HT 100K,它的最大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然最大输入功率很恐怖,但其他参数正常,对比第一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。光伏阵列布置设计串并联设计图2-7串并联计算公式2-3、2-4中:Kv——光伏组件的开路电压温度系数——光伏组件的工作电压系数——光伏组件工作环境极限高温(℃)60Vpm——光伏组件的工作电压(V)——逆变器MPPT电压最大值(V)1000VMPPTmin——逆变器MPPT电压最小值(V)200Voc——光伏组件开路电压(V)——光伏组件串联数(取整)t——光伏组件工作环境极端低温(℃)——逆变器允许的最大直流输入电压(V)1100把以上数值代入公式中计算可得:≤N≤21 经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。 图2-8组件串并联设计图项目方阵排布据的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。 图2-9项目方阵排布图 基础与支架设计水泥墩设计本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。 图2-10水泥墩设计图2-11电站整体水泥墩设计图支架设计都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。 图2-12支架设计图配电箱选型配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。表2-3配电箱参数项目名称 昌松100kw光伏交流配电箱项目型号 100kw交流配电箱额定功率 100KW额定电流 780A额定频率 50Hz海拔高度 2500m环境温度 -25~55℃环境湿度 2%~95%,无凝霜电缆选配电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆交流电缆:P:逆变器功率100KWU:交流电电压380VCOSΦ:功率因数Ω=976W线损率:976/100000=<2%,符合光伏电缆设计要求。据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。 图2-13 电缆参数图防雷接地设计防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。 图2-14防雷接地设计图电气系统设计及图纸本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。 图2-15电气系统设计图三、电站成本与收益电站项目设备清单根据当地市场的物价,预估出了一个本电站预计投资表。表3-1设备清单表序号 设备 型号 单位 数量 单价(元) 价格(万元)1 组件 晶澳JAM72S10 400MR 块 260 逆变器 固德威HT 100K 台 1 直流电缆 PV1-F-1*4mm² 米 1500 交流电缆 ZRC-YJV22 70mm2 米 100 72 支架 \ 套 39 556 水泥墩 500*500*500mm 个 78 250 配电箱 昌松100kw光伏交流配电箱 台 1 运输费 \ 总 18 1000 其他 \ \ \ \ 人工费 \ \ \ \ 7合计:万元电站年发电量计算本电站总容量为100kw,而电站选址地的年总辐射量为,首先发电量便达到了89328度电。 (式3-1)Q=100**度Q——电站首年发电量W——本项目电站总容量(85KW)T——许昌市年日照小时数()——系统综合效率()任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低,而后的每年则是降低,将至80%左右时,光伏组件也是已经运行了25年。 表3-2电站发电量发电年数 功率衰减 年末功率 年发电量(kWh) 累计发电量(kWh)第1年 第2年 第3年 第4年 第5年 第6年 第7年 第8年 第9年 第10年 第11年 第12年 第13年 第14年 第15年 第16年 第17年 第18年 第19年 第20年 第21年 第22年 第23年 第24年 第25年 电站预估收益计算根据湖南省的标准电价,我们电站发的每度电能够有元收入,持续运行25年后,将会获得*元,也就是90多万,减去我们为电站投资的万,我们25年内能够获得大约50万的纯利润收入参考文献[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子制作,2019(09):94-95+91.[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.[7]蒋飞. 光伏发电项目的投资决策方法研究[D].华东理工大学,2013.[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012.
请问你是要了解哪种太阳能电池,太阳能电池分类很多,如:单晶硅、多晶硅、薄膜电池等;你想要找关于这方面的资料的话,可以去太阳能电池论坛(光伏论坛)找,希望能帮到你。
论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献和附录和致谢。下面按论文的结构顺序依次叙述。题目(一)论文——题目科学论文都有题目,不能“无题”。论文题目一般20字左右。题目大小应与内容符合,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。署名(二)论文——署名科学论文应该署真名和真实的工作单位。主要体现责任、成果归属并便于后人追踪研究。严格意义上的论文作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答论文的有关问题者。往往把参加工作的人全部列上,那就应该以贡献大小依次排列。论文署名应征得本人同意。学术指导人根据实际情况既可以列为论文作者,也可以一般致谢。行政领导人一般不署名。引言(三)论文——引言是论文引人入胜之言,很重要,要写好。一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出论文立题依据、基础、背景、研究目的。要复习必要的文献、写明问题的发展。文字要简练。材料方法(四)论文——材料和方法按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计方法等。这些按杂志对论文投稿规定办即可。实验结果(五)论文——实验结果应高度归纳,精心分析,合乎逻辑地铺述。应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。只有在技术不熟练或仪器不稳定时期所得的数据、在技术故障或操作错误时所得的数据、不符合实验条件时所得的数据才能废弃不用。而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。废弃这类数据时应将在同样条件下、同一时期的实验数据一并废弃,不能只废弃不合己意者。实验结果的整理应紧扣主题,删繁就简,有些数据不一定适合于这一篇论文,可留作它用,不要硬行拼凑到一篇论文中。论文行文应尽量采用专业术语。能用表的不要用图,可以不用图表的最好不要用图表,以免多占篇幅,增加排版困难。文、表、图互不重复。实验中的偶然现象和意外变故等特殊情况应作必要的交代,不要随意丢弃。讨论(六)论文——讨论是论文中比较重要,也是比较难写的一部分。应统观全局,抓住主要的有争议问题,从感性认识提高到理性认识进行论说。要对实验结果作出分析、推理,而不要重复叙述实验结果。应着重对国内外相关文献中的结果与观点作出讨论,表明自己的观点,尤其不应回避相对立的观点。论文的讨论中可以提出假设,提出本题的发展设想,但分寸应该恰当,不能写成“科幻”或“畅想”。
是有的,你自己来拿吧,行不
[1-1] 师宇腾.太阳能光伏阵列模拟器综述.电源技术.[1-2] 董振利.基于DSP与dsPIC的数字式太阳能电池阵列模拟器研究[D].合肥:合肥工业大学,2007[1-3] 刘志强.10kW光伏并网逆变器的研制[D].北京:北方工业大学,2011[1-4] 赵玉文.太阳能光伏技术的发展概况.第五届全国光伏技术学术研讨会论文集.1998 [1-5] BennerJP,KazmerskiL. Photovoltaicsgaininggreatervisibility. SPeetrum,(9):34-42 [1-6] 余蜜.光伏发电并网与并联关键技术研究:[博士学位论文].武汉:华中科技大学,2009[1-7] 许颇.基于源型逆变器的光伏并网发电系统的研究:[博士学位论文].合肥:合肥工业大学,2006[1-8] 林安中,王斯成.国内外太阳电池和光伏发电的进展与前景.太阳能学报,增刊. 1999:68-74[1-9] 汪海宁.光伏并网功率调节系统及其控制的研究:[博士学位论文].合肥:合肥工业大学,2005[1-10] 周德佳.太阳能光伏发电技术现状及其发展,电气应用. 2007[1-11] 曹伟.基于DSP的数字光伏模拟器研究[D].合肥:合肥工业大学,2009.[1-12] 韩珏.太阳能电池阵列模拟器的研究和设计[D].杭州:浙江大学,2006.[1-13] OLILLA J. A medium power PV-arraysimulator with a robust control strategy. Tampere,Finland: Tampere Universityof Technology, 1995, IEEE: 40. [1-14] 韩朋乐.数字式光伏电池阵列模拟器的研究与设计[D].成都:电子科技大学,2009.[2-1] 董密.太阳能光伏并网发电系统的优化设计与控制策略研究:[博士学位论文]. 长沙:中南大学,2007.[2-2] 吴忠军,刘国海,廖志凌.硅太阳电池工程用数学模型参数的优化设计.电源技术. 2007.[2-3] 苏建徽,余世杰,赵为.硅太阳电池工程用数学模型.太阳能学报. 2001.[2-4] 裴云庆.开关稳压电源的设计和应用[M].北京:机械工业出版社,2010.[2-5] 孙孝金.太阳能电池阵列模拟器的研究与设计[D].济南:山东大学,2009.[2-6] 朱丽.一个光伏阵列模拟器的设计[D].合肥:合肥工业大学,2007.[2-7] 刘万明.数字式太阳能阵列模拟器的研究[D].成都:电子科技大学,2009.[2-8] 谢文涛.新型光伏阵列模拟器的研究与设计[D].杭州:浙江大学,2007.[2-9] 李欣.数字式光伏阵列模拟器的研制[D].杭州:浙江大学,2007.[2-10] 杜柯.基于DSP的光伏电池数字模拟系统研究[D].武汉:华中科技大学,2006.[2-11] 陈亚爱.开关变换器控制技术综述[J].电器应用,2008,27(4):4-10.[3-1] Cho J G,Sabate J A,Zero-voltageZero-current Switching Full-bridge PWM converter for High Power Applications,IEEETrans 0n Power Electronics,1996 [3-2] Cho J G,Jeong C Y,Lee FC,Zero-voltage and Zero-current switching Full—bridge PWM Convener UsingSecondary Active Clamp,IEEE Trans 0n Power Electronics,l998 [3-3] Kim E S,Joe K Y,Park S G,An ImprovedSoft Switching PWM FB DC/DC Converter Using the Modified Energy Recovery Snubber,IEEE AppliedPower Electronics Conference and exposition,2000 [3-4] Ruan XB,Yall Y G,An Improved Phaseshifted Zero-voltage Zero-current Switching PWM Converter,IEEE Applied PowerElectronics Conference and exposition,1998 [3-5] Cho J G, Back J W, Jeong C Y, NovelZero-voltage and zero-current-switching(ZVZCS) Full Bridge PWM Converter Usinga Simple Auxiliary Circuit,IEEE Applied Power Electronics Conference andexposition,l998
目前基于光伏发电内容的教学存在知识偏难、理论过多等现状。下面是我整理了光伏发电技术论文,有兴趣的亲可以来阅读一下!
太阳能光伏发电技术应用
摘要:太阳能光伏发电固然有其独特的优势所在,但是在经济利益复杂和多重能源并存的局面下,我国的太阳能光伏产业机遇和挑战是共存的。本文主要介绍了太阳能光伏发电技术的应用进行了分析探讨。
关键词:太阳能;光伏发电技术;应用
中图分类号:TK511文献标识码: A
一、太阳能光伏发电的优缺点
1、太阳能光伏发电的优点
与火力发电系统相比,太阳能光伏发电的优点主要是:从环境效益上说,太阳能光伏发电污染排放少,不会有资源枯竭的危险,使用者心理上更容易接受,符合现代人绿色环保的能源理念。从经济效益上说,太阳能光伏发电能源质量,不需要消耗燃料、不受地域限制,设施一旦投放,即可就地发电,经济效益显著。从技术角度而言,太阳能光伏发电技术已经日趋成熟,无机械传动部件,操作、维护简单,运行稳定可靠,一套光伏发电系统只要有太阳能电池组件就能发电,加之自动控制技术的广泛采用,维护成本低。
2、太阳能光伏发电的缺点
从环境效益上来说,光伏生产最重要的一个环节就是多晶硅的生产。多晶硅行业是个重污染的行业,国内尾气回收工艺不尽完善,晶硅副产品是四化硅是高毒物质,倾倒或掩埋四氯化硅将造成寸草不生土地几百年都无法使用等巨大的环境风险。
从经济效益上来说,虽然太阳能光伏一点投入使用后便会产生巨大的经济效益,但是在前期投入上,投入成本仍然是巨大的。他能量密度低、需要占用大量的土地资源,且受气候因素和地理位置的影响较大。再者,太阳能电池组件成本高昂,目前仍然达不到将其进行民用普及的水平。
从技术角度来说,目前太阳能光伏技术已经日趋成熟,但是目前太阳能电池生产成本迟迟不能降下来也可以说是一个技术难度。为了降低成本,现在普遍采用多晶硅代替电池中的单晶硅。多晶硅材料制备的新技术、快速掺杂表面处理技术、提高硅片质量等是当前的主要技术问题。
二、太阳能光伏发电产业存在的一些问题
1、太阳能光伏发电并网问题
未来太阳能能源肯定是重要的能源供应来源,当光伏发电在电网电源中的比例达到一定规模时,必须考虑其对电网电压频率控制的影响,必须对光伏电站进行科学合理的调度运行控制。光伏发电的大规模接入增加了电网的安全稳定控制难度,如何利用光伏发电并网智能化技术提高电网安全稳定水平是突破的重点之一。
2、光伏产业盲目扩张,产业和市场不对等,不利于行业健康发展
过去几年内,我国光伏产业界抓住欧美国家光伏市场的快速增长的机遇,利用国内人力和资源成本较低的比较优势,实现了迅速起步与发展壮大。但受全球光伏产业的产能迅速扩张以及金融危机影响,未来世界光伏市场将呈现供过于求的趋势,使光伏产业面临大规模洗牌。最近我国光伏企业已普遍停止扩产、削减产量。在这个洗牌过程中,利润率最高的环节也将逐渐转向下游的光伏发电运营业,使得出售光伏电力比出售光伏组件和系统具有更长远稳定的回报,这也是传统光伏产业界(光伏设备制造业)日益重视、极力呼吁启动国内光伏市场的根本原因。光伏产业没有形成一个权威机构管制,缺少长远发展规划实践,相关技术人才匮乏,研究力量薄弱,高端实验设施落后。
三、太阳能光伏发电技术的具体应用
1、独立光伏发电系统的建立
独立光伏发电系统由于不与公共电网相连接,因此其建设地点一般选在与电网隔离的偏远地区,比如海岛、移动通讯站及边防哨所等。储能元件是独立光伏发电系统中不可缺少的,这是由于太阳能发电一般选择在白天,然而负荷用电是全天24h实施,这就需要在光伏系统中设置必要的储能元件。在气象环境影响下,其供电可靠性很难得到保障,然而对于偏远无电地区而言这一系统的建立已然产生十分重要的社会价值。
2、光伏建筑一体化应用
关于光伏建筑的一体化应用主要表现为两个方面:通过在建筑物屋顶安装光伏器件的方式实现电网与光伏阵列的并联,进而构成光伏建筑一体化系统;通过建筑和光伏器件集成化的方式于屋顶位置设置光伏电池板,利用光伏玻璃幕墙替代原有幕墙,提高墙面积屋顶的太阳能吸收量,这就同时实现了建材功能与发电功能,是对光伏发电成本的有效控制。与此同时,在墙体外饰材料研究方面也出现了全新的彩色光伏模块,这在充分利用太阳能光伏发电原理的同时也使得建筑物外观更具美学欣赏价值。
3、混合型光伏发电系统的构建
所谓的混合型光伏发电系统是将多种发电方式相互融合并应用于光伏发电系统的过程,混合型光伏发电系统的构建旨在发挥不同发电模式的技术优势,扬长避短,从而更加有效地提高电能的利用率。例如光伏发电经常会受到天气状况的影响,在冬季风力较大地区,就可通过光伏发电和风力发电的混合模式,尽可能减少天气变化对发电系统的影响,进而达到控制负载发电率的目的。
4、光伏发电在LED照明中的应用
作为半导体材料制作而成的组件,LED与光伏发电的结合可实现电能至光能的转化。这一半导体照明技术不仅有着环保、节能、高效的技术优势,并且照明周期较长,且易于维护。光伏发电在LED照明系统中的应用突出了光生伏特效应的技术原理,通过太阳能电池实现对太阳能至电能的转化,再借助LED照明系统将其转化为最终的光能。由于LED照明和光伏发电技术同是直流电,因此转化过程并不需要借助变频器,这明显提高了整个过程的执行效率。除此之外,在可充放蓄电池的辅助下,光伏发电在LED照明中的技术优势必将更加突出。
四、太阳能光伏发电产业未来发展方向
1、未来太阳能光伏发电产业一定会成本,使之普及开来
太阳作为一种高效环保的绿色能在未来一定会得到光伏的应用。通过加大资金投入和政策扶持力度和企业的创新研发力度,一定能够降低光伏发电系统成本。现阶段光伏技术最关键的问题,就是要提高电池效率和降低成本。通过采用更先进的电子器件及高效模块降低特定系统平衡成本;通过高效的生产方案、通用型材料的增用以及新蓄电池的观念等手段降低电池成本;通过引进先进封装技术及提高电池工作效率来降低特定模块的生产成本。最后,通过降低电池成本一定会降低太阳能光伏发电的整体成本。
2、未来民用太阳能光伏发电将大行其道
当太阳能光伏生产的整体成本降低之后,未来的民用太阳能产业一定会大行其道,将在通信和工业应用、农村和偏远地区得到广泛应用。太阳能光伏建筑一体化亦是未来的一个发展趋势,对于城市而言可以有效节约土地资源,提升高层建筑利用率。西部地区太阳能资源丰富地区农村光伏发电站的建设可以与风能发电系统互补满足农村基本用电要求。另外太阳能庭院灯,太阳能路灯等都将为家庭和市政建设节约能源。
太阳能光伏发电是一种清洁能源,零排放、无污染,且其技术日趋成熟、成本不断下降,已经适合规模应用,今后,太阳能光伏发电必将在公共建筑或民用建筑中广泛应用,光伏发电也将成为我国的一种常规能源。
结束语
综上所述,在现有技术的基础上,生产企业必须深入的加快研发节奏,降低生产成本,提高产品质量。政府方面更加需要推进绿色能源普及使用的进程,制定强有力的产业政策和法规条文,保障光伏产业的发展。伴随着人民环保意识的增强,我们相信在市场改革和政府政策的联动作用下,我国的光伏发产业必定能稳步健康发展。
参考文献
[1]柴亚盼.光伏发电系统发电效率研究[D].北京交通大学,2014.
[2]熊静.光伏并网发电系统的研究[D].南京理工大学,2014.
[3]胡云岩,张瑞英,王军.中国太阳能光伏发电的发展现状及前景[J].河北科技大学学报,2014,01:69-72.
[4]许志军.太阳能光伏发电技术在交通运输业的应用[J].青海交通科技,2014,01:10-11.
点击下页还有更多>>>光伏发电技术论文
一、项目概括项目简介及选址本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。 图1-1 选址地卫星图 图1-2 选址平面图 项目位置及气象情况经过百度地图的计算,得出了此地经纬度为:北纬,东经为,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,最高气温为夏季的度,最低气温为冬季的度,年均气温17度。该项目所在地最高海拔为793米,最低海拔达米,总的平均海拔为米。该地年总辐射量经过PVsyst软件的计算后,得出了的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。 图1-3湘潭市地理位置 图1-4年均总辐射值项目设计依据本项目设计依据如下:《光伏发电站设计规范》GB50794-2012《电力工程电缆设计规范》GB50217-1994《光伏系统并网技术要求》GB/T19939-2005《建筑太阳能光伏系统设计与安装》10J908-5《光伏发电站接入电力系统技术规范》GB/T19964-2012《光伏发电站接入电力系统设计规范》GB/T5086-2013《光伏(PV)系统电网接口特性》GB/T20046-2006《电能质量公用电网谐波》GB/T14549-19933《电能质量三相电压允许不平衡度》GB/T15543-1995《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000二、电站系统设计组件选型组件是电站中造价最高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持最佳,这样才不会亏本。组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。表2-1伏组件对比表组件品牌及型号 晶科Swan Bifacial 400 72H 晶科Swan Bifacial 405 72H 晶澳JAM72S10 400MR最大功率(Pmax) 400Wp 405Wp 400Wp最佳工作电压(Vmp) 41V 组件转换效率(%) 最佳工作电流(Imp) 开路电压(Voc) 49V 短路电流(Isc) 工作温度范围(℃) -40℃~+85℃ -40℃~+85℃ -40℃~+85℃最大系统电压 1000/1500V DC(IEC/UL) 1000/1500VDC(IEC/UL) 1000/1500VDC (IEC)最大额定熔丝电流 20A 20A 20A输出功率公差 0~+5W 0~+5W 0~+3%最大功率(Pmax)的温度系数 ℃ ℃ ℃开路电压(Voc)的温度系数 ℃ ℃ ℃短路电流(Isc)的温度系数 ℃ ℃ ℃名义电池工作温度(NOCT) 45±2℃ 45±2℃ 45±2℃组件尺寸:长*宽*厚(mm) 2031*1008*30mm 2031*1008*30mm 2015*996*40mm电池片数 72 72 72第一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。第三款组件晶澳JAM72S10 400MR是3款组件里效率最高的组件,比第一款和第二款分别高了和,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中最高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。 图2-1 组件图最佳倾斜角和方位角设计本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到最高,因此最佳倾角这个概念便被引出了。对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭最佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到最高。PVsyst最佳方位角、倾斜角模拟图如图2-2所示。图2-2 PVsyst最佳方位角、倾斜角模拟图组件排布方式本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。 图2-3 组件排列方式组件间距设计 太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。 图2-4间距图在公式2-1中:L是阵列倾斜面长度(4050mm)D是阵列之间间距β是阵列倾斜角(18°)为当地纬度(°)把以上数值代入公式后计算得:2-5组件计算图根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。 图2-6方阵间距图逆变器选型逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器最佳,因此本项目选择了3款市场上热卖的组串式逆变器。表2-2 逆变器参数对比表逆变器品牌及型号 华为SUN2000-100KTL-C1 华为SUN2000-110KTL-C1 固德威HT 100K最大输入功率 100Kw 110Kw 150Kw中国效率 最大直流输入电压(V) 1100V 1100V 1100V各MPPT最大输入电流(A) 26A 26A 电压范围(V) 200 V ~ 1000 V 200 V ~ 1000 V 200V ~ 1000V额定输入电压(V) 600V 600V 600VMPPT数量/输入路数 10/20 10/20 10/2额定输出功率(KW) 100K W 110K W 100K W最大视在功率 110000 VA 121000 VA 110000 VA最大有功功率 (cosφ=1) 110KW 121K W 110KW额定输出电压 3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE380, 3L/N/PE 或 3L/PE输出电压频率 50 Hz,60Hz 50 Hz,60Hz 50 Hz最大输出电流(A) A 167A功率因数 超前— 滞后 超前—滞后 (超前—滞后)最大总谐波失真 <3% <3% <3%输入直流开关 支持 支持 支持防孤岛保护 支持 支持 支持输出过流保护 支持 支持 支持输入反接保护 支持 支持 支持组串故障检测 支持 支持 支持直流浪涌保护 Type II Class II 具备交流浪涌保护 Type II Class II 具备绝缘阻抗检测 支持 支持 支持残余电流监测 支持 支持 支持尺寸(宽 x 高 x 厚) 1,035 x 700 x 365 mm 1,035 x 700 x 365 mm 1005*676*340重量(kg) 85kg 85kg 工作温度(°C) -25°C~60°C -25°C~60°C -25~60℃3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。第一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比第一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用第一款逆变器不仅省钱而且还不会造成功率闲置无处使用,最大发挥逆变器的作用,因此第1款比第2款逆变器好。第三款逆变器是固德威HT 100K,它的最大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然最大输入功率很恐怖,但其他参数正常,对比第一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。光伏阵列布置设计串并联设计图2-7串并联计算公式2-3、2-4中:Kv——光伏组件的开路电压温度系数——光伏组件的工作电压系数——光伏组件工作环境极限高温(℃)60Vpm——光伏组件的工作电压(V)——逆变器MPPT电压最大值(V)1000VMPPTmin——逆变器MPPT电压最小值(V)200Voc——光伏组件开路电压(V)——光伏组件串联数(取整)t——光伏组件工作环境极端低温(℃)——逆变器允许的最大直流输入电压(V)1100把以上数值代入公式中计算可得:≤N≤21 经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。 图2-8组件串并联设计图项目方阵排布据的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。 图2-9项目方阵排布图 基础与支架设计水泥墩设计本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。 图2-10水泥墩设计图2-11电站整体水泥墩设计图支架设计都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。 图2-12支架设计图配电箱选型配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。表2-3配电箱参数项目名称 昌松100kw光伏交流配电箱项目型号 100kw交流配电箱额定功率 100KW额定电流 780A额定频率 50Hz海拔高度 2500m环境温度 -25~55℃环境湿度 2%~95%,无凝霜电缆选配电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆交流电缆:P:逆变器功率100KWU:交流电电压380VCOSΦ:功率因数Ω=976W线损率:976/100000=<2%,符合光伏电缆设计要求。据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。 图2-13 电缆参数图防雷接地设计防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。 图2-14防雷接地设计图电气系统设计及图纸本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。 图2-15电气系统设计图三、电站成本与收益电站项目设备清单根据当地市场的物价,预估出了一个本电站预计投资表。表3-1设备清单表序号 设备 型号 单位 数量 单价(元) 价格(万元)1 组件 晶澳JAM72S10 400MR 块 260 逆变器 固德威HT 100K 台 1 直流电缆 PV1-F-1*4mm² 米 1500 交流电缆 ZRC-YJV22 70mm2 米 100 72 支架 \ 套 39 556 水泥墩 500*500*500mm 个 78 250 配电箱 昌松100kw光伏交流配电箱 台 1 运输费 \ 总 18 1000 其他 \ \ \ \ 人工费 \ \ \ \ 7合计:万元电站年发电量计算本电站总容量为100kw,而电站选址地的年总辐射量为,首先发电量便达到了89328度电。 (式3-1)Q=100**度Q——电站首年发电量W——本项目电站总容量(85KW)T——许昌市年日照小时数()——系统综合效率()任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低,而后的每年则是降低,将至80%左右时,光伏组件也是已经运行了25年。 表3-2电站发电量发电年数 功率衰减 年末功率 年发电量(kWh) 累计发电量(kWh)第1年 第2年 第3年 第4年 第5年 第6年 第7年 第8年 第9年 第10年 第11年 第12年 第13年 第14年 第15年 第16年 第17年 第18年 第19年 第20年 第21年 第22年 第23年 第24年 第25年 电站预估收益计算根据湖南省的标准电价,我们电站发的每度电能够有元收入,持续运行25年后,将会获得*元,也就是90多万,减去我们为电站投资的万,我们25年内能够获得大约50万的纯利润收入参考文献[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子制作,2019(09):94-95+91.[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.[7]蒋飞. 光伏发电项目的投资决策方法研究[D].华东理工大学,2013.[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012.
是有的,你自己来拿吧,行不
看你这样子,是产线还是小作坊还是几个diy?自用还是销售?你说的白雾状是在线路的金属上吗?还是在感光板上?感觉你这个可能是助焊剂的雾化结晶哦!亲!如果在非焊接的物件上有白雾:保护纸可以保护非焊接元器件的外观,如果在焊接的物件上有白雾:可以用洗板水清洗!没有的话可以用汽油或酒精替代。(小心二次污染哦!)问题分析:你的焊接手法不过关,可能你的烙铁不好(不是恒温烙铁吧?)助焊剂选择不当(是不是用的松香?)问题解决:练习焊接手法,更换恒温烙铁,使用高级阻焊剂或膏。如果你不用这些方法,还有个没有成本的方法:用风扇对着焊接的地方吹着焊接(注意风量大小)这些都能在一定程度上改善白雾问题,请使用尽量多的方法一起使用!
一、项目概括项目简介及选址本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。 图1-1 选址地卫星图 图1-2 选址平面图 项目位置及气象情况经过百度地图的计算,得出了此地经纬度为:北纬,东经为,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,最高气温为夏季的度,最低气温为冬季的度,年均气温17度。该项目所在地最高海拔为793米,最低海拔达米,总的平均海拔为米。该地年总辐射量经过PVsyst软件的计算后,得出了的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。 图1-3湘潭市地理位置 图1-4年均总辐射值项目设计依据本项目设计依据如下:《光伏发电站设计规范》GB50794-2012《电力工程电缆设计规范》GB50217-1994《光伏系统并网技术要求》GB/T19939-2005《建筑太阳能光伏系统设计与安装》10J908-5《光伏发电站接入电力系统技术规范》GB/T19964-2012《光伏发电站接入电力系统设计规范》GB/T5086-2013《光伏(PV)系统电网接口特性》GB/T20046-2006《电能质量公用电网谐波》GB/T14549-19933《电能质量三相电压允许不平衡度》GB/T15543-1995《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000二、电站系统设计组件选型组件是电站中造价最高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持最佳,这样才不会亏本。组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。表2-1伏组件对比表组件品牌及型号 晶科Swan Bifacial 400 72H 晶科Swan Bifacial 405 72H 晶澳JAM72S10 400MR最大功率(Pmax) 400Wp 405Wp 400Wp最佳工作电压(Vmp) 41V 组件转换效率(%) 最佳工作电流(Imp) 开路电压(Voc) 49V 短路电流(Isc) 工作温度范围(℃) -40℃~+85℃ -40℃~+85℃ -40℃~+85℃最大系统电压 1000/1500V DC(IEC/UL) 1000/1500VDC(IEC/UL) 1000/1500VDC (IEC)最大额定熔丝电流 20A 20A 20A输出功率公差 0~+5W 0~+5W 0~+3%最大功率(Pmax)的温度系数 ℃ ℃ ℃开路电压(Voc)的温度系数 ℃ ℃ ℃短路电流(Isc)的温度系数 ℃ ℃ ℃名义电池工作温度(NOCT) 45±2℃ 45±2℃ 45±2℃组件尺寸:长*宽*厚(mm) 2031*1008*30mm 2031*1008*30mm 2015*996*40mm电池片数 72 72 72第一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。第三款组件晶澳JAM72S10 400MR是3款组件里效率最高的组件,比第一款和第二款分别高了和,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中最高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。 图2-1 组件图最佳倾斜角和方位角设计本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到最高,因此最佳倾角这个概念便被引出了。对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭最佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到最高。PVsyst最佳方位角、倾斜角模拟图如图2-2所示。图2-2 PVsyst最佳方位角、倾斜角模拟图组件排布方式本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。 图2-3 组件排列方式组件间距设计 太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。 图2-4间距图在公式2-1中:L是阵列倾斜面长度(4050mm)D是阵列之间间距β是阵列倾斜角(18°)为当地纬度(°)把以上数值代入公式后计算得:2-5组件计算图根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。 图2-6方阵间距图逆变器选型逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器最佳,因此本项目选择了3款市场上热卖的组串式逆变器。表2-2 逆变器参数对比表逆变器品牌及型号 华为SUN2000-100KTL-C1 华为SUN2000-110KTL-C1 固德威HT 100K最大输入功率 100Kw 110Kw 150Kw中国效率 最大直流输入电压(V) 1100V 1100V 1100V各MPPT最大输入电流(A) 26A 26A 电压范围(V) 200 V ~ 1000 V 200 V ~ 1000 V 200V ~ 1000V额定输入电压(V) 600V 600V 600VMPPT数量/输入路数 10/20 10/20 10/2额定输出功率(KW) 100K W 110K W 100K W最大视在功率 110000 VA 121000 VA 110000 VA最大有功功率 (cosφ=1) 110KW 121K W 110KW额定输出电压 3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE380, 3L/N/PE 或 3L/PE输出电压频率 50 Hz,60Hz 50 Hz,60Hz 50 Hz最大输出电流(A) A 167A功率因数 超前— 滞后 超前—滞后 (超前—滞后)最大总谐波失真 <3% <3% <3%输入直流开关 支持 支持 支持防孤岛保护 支持 支持 支持输出过流保护 支持 支持 支持输入反接保护 支持 支持 支持组串故障检测 支持 支持 支持直流浪涌保护 Type II Class II 具备交流浪涌保护 Type II Class II 具备绝缘阻抗检测 支持 支持 支持残余电流监测 支持 支持 支持尺寸(宽 x 高 x 厚) 1,035 x 700 x 365 mm 1,035 x 700 x 365 mm 1005*676*340重量(kg) 85kg 85kg 工作温度(°C) -25°C~60°C -25°C~60°C -25~60℃3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。第一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比第一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用第一款逆变器不仅省钱而且还不会造成功率闲置无处使用,最大发挥逆变器的作用,因此第1款比第2款逆变器好。第三款逆变器是固德威HT 100K,它的最大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然最大输入功率很恐怖,但其他参数正常,对比第一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。光伏阵列布置设计串并联设计图2-7串并联计算公式2-3、2-4中:Kv——光伏组件的开路电压温度系数——光伏组件的工作电压系数——光伏组件工作环境极限高温(℃)60Vpm——光伏组件的工作电压(V)——逆变器MPPT电压最大值(V)1000VMPPTmin——逆变器MPPT电压最小值(V)200Voc——光伏组件开路电压(V)——光伏组件串联数(取整)t——光伏组件工作环境极端低温(℃)——逆变器允许的最大直流输入电压(V)1100把以上数值代入公式中计算可得:≤N≤21 经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。 图2-8组件串并联设计图项目方阵排布据的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。 图2-9项目方阵排布图 基础与支架设计水泥墩设计本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。 图2-10水泥墩设计图2-11电站整体水泥墩设计图支架设计都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。 图2-12支架设计图配电箱选型配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。表2-3配电箱参数项目名称 昌松100kw光伏交流配电箱项目型号 100kw交流配电箱额定功率 100KW额定电流 780A额定频率 50Hz海拔高度 2500m环境温度 -25~55℃环境湿度 2%~95%,无凝霜电缆选配电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆交流电缆:P:逆变器功率100KWU:交流电电压380VCOSΦ:功率因数Ω=976W线损率:976/100000=<2%,符合光伏电缆设计要求。据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。 图2-13 电缆参数图防雷接地设计防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。 图2-14防雷接地设计图电气系统设计及图纸本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。 图2-15电气系统设计图三、电站成本与收益电站项目设备清单根据当地市场的物价,预估出了一个本电站预计投资表。表3-1设备清单表序号 设备 型号 单位 数量 单价(元) 价格(万元)1 组件 晶澳JAM72S10 400MR 块 260 逆变器 固德威HT 100K 台 1 直流电缆 PV1-F-1*4mm² 米 1500 交流电缆 ZRC-YJV22 70mm2 米 100 72 支架 \ 套 39 556 水泥墩 500*500*500mm 个 78 250 配电箱 昌松100kw光伏交流配电箱 台 1 运输费 \ 总 18 1000 其他 \ \ \ \ 人工费 \ \ \ \ 7合计:万元电站年发电量计算本电站总容量为100kw,而电站选址地的年总辐射量为,首先发电量便达到了89328度电。 (式3-1)Q=100**度Q——电站首年发电量W——本项目电站总容量(85KW)T——许昌市年日照小时数()——系统综合效率()任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低,而后的每年则是降低,将至80%左右时,光伏组件也是已经运行了25年。 表3-2电站发电量发电年数 功率衰减 年末功率 年发电量(kWh) 累计发电量(kWh)第1年 第2年 第3年 第4年 第5年 第6年 第7年 第8年 第9年 第10年 第11年 第12年 第13年 第14年 第15年 第16年 第17年 第18年 第19年 第20年 第21年 第22年 第23年 第24年 第25年 电站预估收益计算根据湖南省的标准电价,我们电站发的每度电能够有元收入,持续运行25年后,将会获得*元,也就是90多万,减去我们为电站投资的万,我们25年内能够获得大约50万的纯利润收入参考文献[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子制作,2019(09):94-95+91.[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.[7]蒋飞. 光伏发电项目的投资决策方法研究[D].华东理工大学,2013.[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012.
是有的,你自己来拿吧,行不
将焊好的单片正面向下,依照串联模板自右向左依次摆放,相邻左边电池片焊带放在右边电池片的背面,然后自右向左依次焊接,要求要将焊带焊接在背面银浆上。注意事项:作业时,要按照要求带好手指套;取放电池片动作规范;严格控制电烙铁温度;不同档次、不同颜色的电池片不可串联在一起;串联时,电池片要排放整齐;串联好的电池串不允许直接用手拎起来
具体有以下几种类型:M——专著C——论文集N——报纸文章J——期刊文章D——学位论文R——报告,采用字母“Z”标识。对于英文参考文献,还应注意以下两点:1、作者姓名采用“姓在前名在后”原则,具体格式是:姓,名字的首字母。2、书名、报刊名使用斜体字。
一、项目概括项目简介及选址本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。 图1-1 选址地卫星图 图1-2 选址平面图 项目位置及气象情况经过百度地图的计算,得出了此地经纬度为:北纬,东经为,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,最高气温为夏季的度,最低气温为冬季的度,年均气温17度。该项目所在地最高海拔为793米,最低海拔达米,总的平均海拔为米。该地年总辐射量经过PVsyst软件的计算后,得出了的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。 图1-3湘潭市地理位置 图1-4年均总辐射值项目设计依据本项目设计依据如下:《光伏发电站设计规范》GB50794-2012《电力工程电缆设计规范》GB50217-1994《光伏系统并网技术要求》GB/T19939-2005《建筑太阳能光伏系统设计与安装》10J908-5《光伏发电站接入电力系统技术规范》GB/T19964-2012《光伏发电站接入电力系统设计规范》GB/T5086-2013《光伏(PV)系统电网接口特性》GB/T20046-2006《电能质量公用电网谐波》GB/T14549-19933《电能质量三相电压允许不平衡度》GB/T15543-1995《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000二、电站系统设计组件选型组件是电站中造价最高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持最佳,这样才不会亏本。组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。表2-1伏组件对比表组件品牌及型号 晶科Swan Bifacial 400 72H 晶科Swan Bifacial 405 72H 晶澳JAM72S10 400MR最大功率(Pmax) 400Wp 405Wp 400Wp最佳工作电压(Vmp) 41V 组件转换效率(%) 最佳工作电流(Imp) 开路电压(Voc) 49V 短路电流(Isc) 工作温度范围(℃) -40℃~+85℃ -40℃~+85℃ -40℃~+85℃最大系统电压 1000/1500V DC(IEC/UL) 1000/1500VDC(IEC/UL) 1000/1500VDC (IEC)最大额定熔丝电流 20A 20A 20A输出功率公差 0~+5W 0~+5W 0~+3%最大功率(Pmax)的温度系数 ℃ ℃ ℃开路电压(Voc)的温度系数 ℃ ℃ ℃短路电流(Isc)的温度系数 ℃ ℃ ℃名义电池工作温度(NOCT) 45±2℃ 45±2℃ 45±2℃组件尺寸:长*宽*厚(mm) 2031*1008*30mm 2031*1008*30mm 2015*996*40mm电池片数 72 72 72第一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。第三款组件晶澳JAM72S10 400MR是3款组件里效率最高的组件,比第一款和第二款分别高了和,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中最高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。 图2-1 组件图最佳倾斜角和方位角设计本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到最高,因此最佳倾角这个概念便被引出了。对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭最佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到最高。PVsyst最佳方位角、倾斜角模拟图如图2-2所示。图2-2 PVsyst最佳方位角、倾斜角模拟图组件排布方式本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。 图2-3 组件排列方式组件间距设计 太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。 图2-4间距图在公式2-1中:L是阵列倾斜面长度(4050mm)D是阵列之间间距β是阵列倾斜角(18°)为当地纬度(°)把以上数值代入公式后计算得:2-5组件计算图根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。 图2-6方阵间距图逆变器选型逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器最佳,因此本项目选择了3款市场上热卖的组串式逆变器。表2-2 逆变器参数对比表逆变器品牌及型号 华为SUN2000-100KTL-C1 华为SUN2000-110KTL-C1 固德威HT 100K最大输入功率 100Kw 110Kw 150Kw中国效率 最大直流输入电压(V) 1100V 1100V 1100V各MPPT最大输入电流(A) 26A 26A 电压范围(V) 200 V ~ 1000 V 200 V ~ 1000 V 200V ~ 1000V额定输入电压(V) 600V 600V 600VMPPT数量/输入路数 10/20 10/20 10/2额定输出功率(KW) 100K W 110K W 100K W最大视在功率 110000 VA 121000 VA 110000 VA最大有功功率 (cosφ=1) 110KW 121K W 110KW额定输出电压 3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE380, 3L/N/PE 或 3L/PE输出电压频率 50 Hz,60Hz 50 Hz,60Hz 50 Hz最大输出电流(A) A 167A功率因数 超前— 滞后 超前—滞后 (超前—滞后)最大总谐波失真 <3% <3% <3%输入直流开关 支持 支持 支持防孤岛保护 支持 支持 支持输出过流保护 支持 支持 支持输入反接保护 支持 支持 支持组串故障检测 支持 支持 支持直流浪涌保护 Type II Class II 具备交流浪涌保护 Type II Class II 具备绝缘阻抗检测 支持 支持 支持残余电流监测 支持 支持 支持尺寸(宽 x 高 x 厚) 1,035 x 700 x 365 mm 1,035 x 700 x 365 mm 1005*676*340重量(kg) 85kg 85kg 工作温度(°C) -25°C~60°C -25°C~60°C -25~60℃3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。第一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比第一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用第一款逆变器不仅省钱而且还不会造成功率闲置无处使用,最大发挥逆变器的作用,因此第1款比第2款逆变器好。第三款逆变器是固德威HT 100K,它的最大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然最大输入功率很恐怖,但其他参数正常,对比第一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。光伏阵列布置设计串并联设计图2-7串并联计算公式2-3、2-4中:Kv——光伏组件的开路电压温度系数——光伏组件的工作电压系数——光伏组件工作环境极限高温(℃)60Vpm——光伏组件的工作电压(V)——逆变器MPPT电压最大值(V)1000VMPPTmin——逆变器MPPT电压最小值(V)200Voc——光伏组件开路电压(V)——光伏组件串联数(取整)t——光伏组件工作环境极端低温(℃)——逆变器允许的最大直流输入电压(V)1100把以上数值代入公式中计算可得:≤N≤21 经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。 图2-8组件串并联设计图项目方阵排布据的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。 图2-9项目方阵排布图 基础与支架设计水泥墩设计本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。 图2-10水泥墩设计图2-11电站整体水泥墩设计图支架设计都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。 图2-12支架设计图配电箱选型配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。表2-3配电箱参数项目名称 昌松100kw光伏交流配电箱项目型号 100kw交流配电箱额定功率 100KW额定电流 780A额定频率 50Hz海拔高度 2500m环境温度 -25~55℃环境湿度 2%~95%,无凝霜电缆选配电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆交流电缆:P:逆变器功率100KWU:交流电电压380VCOSΦ:功率因数Ω=976W线损率:976/100000=<2%,符合光伏电缆设计要求。据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。 图2-13 电缆参数图防雷接地设计防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。 图2-14防雷接地设计图电气系统设计及图纸本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。 图2-15电气系统设计图三、电站成本与收益电站项目设备清单根据当地市场的物价,预估出了一个本电站预计投资表。表3-1设备清单表序号 设备 型号 单位 数量 单价(元) 价格(万元)1 组件 晶澳JAM72S10 400MR 块 260 逆变器 固德威HT 100K 台 1 直流电缆 PV1-F-1*4mm² 米 1500 交流电缆 ZRC-YJV22 70mm2 米 100 72 支架 \ 套 39 556 水泥墩 500*500*500mm 个 78 250 配电箱 昌松100kw光伏交流配电箱 台 1 运输费 \ 总 18 1000 其他 \ \ \ \ 人工费 \ \ \ \ 7合计:万元电站年发电量计算本电站总容量为100kw,而电站选址地的年总辐射量为,首先发电量便达到了89328度电。 (式3-1)Q=100**度Q——电站首年发电量W——本项目电站总容量(85KW)T——许昌市年日照小时数()——系统综合效率()任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低,而后的每年则是降低,将至80%左右时,光伏组件也是已经运行了25年。 表3-2电站发电量发电年数 功率衰减 年末功率 年发电量(kWh) 累计发电量(kWh)第1年 第2年 第3年 第4年 第5年 第6年 第7年 第8年 第9年 第10年 第11年 第12年 第13年 第14年 第15年 第16年 第17年 第18年 第19年 第20年 第21年 第22年 第23年 第24年 第25年 电站预估收益计算根据湖南省的标准电价,我们电站发的每度电能够有元收入,持续运行25年后,将会获得*元,也就是90多万,减去我们为电站投资的万,我们25年内能够获得大约50万的纯利润收入参考文献[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子制作,2019(09):94-95+91.[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.[7]蒋飞. 光伏发电项目的投资决策方法研究[D].华东理工大学,2013.[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012.
光伏发电我明白,这个我了解好比
论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献和附录和致谢。下面按论文的结构顺序依次叙述。题目(一)论文——题目科学论文都有题目,不能“无题”。论文题目一般20字左右。题目大小应与内容符合,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。署名(二)论文——署名科学论文应该署真名和真实的工作单位。主要体现责任、成果归属并便于后人追踪研究。严格意义上的论文作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答论文的有关问题者。往往把参加工作的人全部列上,那就应该以贡献大小依次排列。论文署名应征得本人同意。学术指导人根据实际情况既可以列为论文作者,也可以一般致谢。行政领导人一般不署名。引言(三)论文——引言是论文引人入胜之言,很重要,要写好。一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出论文立题依据、基础、背景、研究目的。要复习必要的文献、写明问题的发展。文字要简练。材料方法(四)论文——材料和方法按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计方法等。这些按杂志对论文投稿规定办即可。实验结果(五)论文——实验结果应高度归纳,精心分析,合乎逻辑地铺述。应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。只有在技术不熟练或仪器不稳定时期所得的数据、在技术故障或操作错误时所得的数据、不符合实验条件时所得的数据才能废弃不用。而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。废弃这类数据时应将在同样条件下、同一时期的实验数据一并废弃,不能只废弃不合己意者。实验结果的整理应紧扣主题,删繁就简,有些数据不一定适合于这一篇论文,可留作它用,不要硬行拼凑到一篇论文中。论文行文应尽量采用专业术语。能用表的不要用图,可以不用图表的最好不要用图表,以免多占篇幅,增加排版困难。文、表、图互不重复。实验中的偶然现象和意外变故等特殊情况应作必要的交代,不要随意丢弃。讨论(六)论文——讨论是论文中比较重要,也是比较难写的一部分。应统观全局,抓住主要的有争议问题,从感性认识提高到理性认识进行论说。要对实验结果作出分析、推理,而不要重复叙述实验结果。应着重对国内外相关文献中的结果与观点作出讨论,表明自己的观点,尤其不应回避相对立的观点。论文的讨论中可以提出假设,提出本题的发展设想,但分寸应该恰当,不能写成“科幻”或“畅想”。