影响齿面接触应力和弯曲疲劳强度的因素有很多,齿轮材料、热处理,载荷的大小、形式,润滑情况,等。但是,从齿轮参数设计上来讲,影响齿面接触应力的因素是,齿廓的曲率的大小,曲率越大曲率半径越小,齿面的接触强度就越低。
在机械设计中,可采用提高接触强度的措施来提高零件的使用寿命。例如,提高表面光洁度,在两滚动体接触表面间加润滑剂,用各种热处理工艺提高滚动体接触表面的硬度等。
当两圆柱体相接触时,其最大接触应力正比于所加载荷的二分之一次方;两球体相接触时,最大接触应力是所加载荷的三分之一次方,所以接触应力的增加与载荷的增加不成线性关系。
杆件在受弯时其断面的上部是受压区,而下面是受拉区.以矩形匀质断面为例,受压、受拉区的最外沿的强度就叫做弯曲强度。它与弯矩成正比与断面模数成反比。
可由下公式表示:σ=KM/W 其中K为安全系数,M为弯矩,W就是断面模数,不同的断面就有不同的断面模数可在材料力学手册中查到。
不同的材料有不同的测试方法及国家标准。如塑料弯曲性能的测定的为GB/T 9341-2008,硬质橡胶弯曲强度的测定的为GB1696-2001,工程陶瓷高温弯曲强度的试验方法为GBT14390-1993,天然饰面石弯曲强度试验方法为等等。
参考资料来源:百度百科——接触应力
参考资料来源:百度百科——弯曲强度
应该是小齿轮。因为一、齿轮副传递的力对大小齿轮来说是一对大小相等,方向相反的力,但力臂不一样,导致支承的力不一样,小轮相对弱;第二,一般情况下小轮齿轮弯曲应力大些,小轮齿根滑动速率高些,当然可以以变位的方式改变;第三,相同时间小轮旋转的次数多些,发热、磨损、磨擦等要多些。小齿轮的耐磨等级要高一些。大齿轮的键槽和键强度要求高一些。因为大齿轮转一周,小齿轮要转好几圈,它的磨损是大齿轮的好几倍。大齿轮上作用的力矩大,相对它的键槽和键要求强度要高一些。根据齿轮传动中轮齿折断和齿面点烛疲劳破坏现象,基于齿轮啮合原理,对斜齿轮啮合过程的力学性能及疲劳寿命预测进行研究,结合实例分析计算齿轮传动过程中齿面接触应力变化规律和齿根弯曲应力变化规律;利用ANSYS建立斜齿轮副有限元模型,分析齿面接触应力和齿根弯曲应力,将其与理论计算结果比较,验证有限元分析方法的正确性,利用FE-SAFE中的名义应力分析法对斜齿轮副的危险部位进行疲劳寿命预测。齿轮是机械产品中最常用的零件,它的质量好坏、成本大小、生产效率高低,直接影响到机械产品的制造及使用。近几年来,厂、所、校等许多单位,坚持鞍钢宪法,大力协同,对齿轮的结构、材料、工艺等方面开展了广泛的研究,取得了可喜的成绩。
齿轮常用材料及许用应力为了保证齿轮工作的可靠性,提高其使用寿命,齿轮的材料及其热处理应根据工作条件和材料的特点来选取。对齿轮材料的基本要求是:应使齿面具有足够的硬度和耐磨性,齿心具有足够的韧性,以防止齿面的各种失效,同时应具有良好的冷、热加工的工艺性,以达到齿轮的各种技术要求。常用的齿轮材料为各种牌号的优质碳素结构钢、合金结构钢、铸钢、铸铁和非金属材料等。一般多采用锻件或轧制钢材。当齿轮结构尺寸较大,轮坯不易锻造时,可采用铸钢;开式低速传动时,可采用灰铸铁或球墨铸铁、低速重载的齿轮易产生齿面塑性变形,轮齿也易折断,宜选用综合性能较好的钢材;高速齿轮易产生齿面点蚀,宜选用齿面硬度高的材料;受冲击载荷的齿轮,宜选用韧性好的材料。对高速、轻载而又要求低噪声的齿轮传动,也可采用非金属材料、如夹布胶木、尼龙等。常用的齿轮材料及其力学性能列于下表。钢制齿轮的热处理方法主要有以下几种: ●表面淬火表面淬火常用于中碳钢和中碳合金钢,如 45、 40Cr钢等。表面淬火后,齿面硬度一般为40~55HRC。特点是抗疲劳点蚀、抗胶合能力高。耐磨性好;由于齿心部分未淬硬,齿轮仍有足够的韧性,能承受不大的冲击载荷。?●渗碳淬火渗碳淬火常用于低碳钢和低碳含金钢,如 20、 20Cr钢等。渗碳淬火后齿面硬度可达56~62HRC,而齿轮心部仍保持较高的韧性,轮齿的抗弯强度和齿面接触强度高,耐磨性较好,常用于受冲击载荷的重要齿轮传动。齿轮经渗碳淬火后,轮齿变形较大,应进行磨削加工。?●渗氮渗氮是一种表面化学热处理。渗氮后不需要进行其他热处理,齿面硬度可达700~900HV。由于渗氮处理后的齿轮硬度高,工艺温度低,变形小,故适用于内齿轮和难以磨削的齿轮,常用于含铅、钼、铝等合金元素的渗氮钢,如38CrMoAl等。 ●调质调质一般用于中碳钢和中碳合金钥,如45、40
8 车床主轴箱箱体右侧10-M8螺纹底孔组合钻床设计9 机油盖注塑模具设计10 机油冷却器自动装备线压紧工位装备设计11 5基于AT89C2051单片机的温度控制系统的设计12 基于普通机床的后托架及夹具设计开发13 减速器的整体设计14 搅拌器的设计15 金属粉末成型液压机PLC设计16 精密播种机17 可调速钢筋弯曲机的设计18 空气压缩机V带校核和噪声处理19 冲压拉深模设计20 螺旋管状面筋机总体及坯片导出装置设计21 落料,拉深,冲孔复合模22 膜片式离合器的设计23 内螺纹管接头注塑模具设计24 内循环式烘干机总体及卸料装置设计25 全自动洗衣机控制系统的设计26 生产线上运输升降机的自动化设计27 实验用减速器的设计28 手机充电器的模具设计29 鼠标盖的模具设计30 双齿减速器设计31 双铰接剪叉式液压升降台的设计32 水泥瓦模具设计与制造工艺分析33 四层楼电梯自动控制系统的设计34 塑料电话接线盒注射模设计35 塑料模具设计36 同轴式二级圆柱齿轮减速器的设计37 托板冲模毕业设计38 推动架设计39 椭圆盖注射模设计40 万能外圆磨床液压传动系统设计41 五寸软盘盖注射模具设计42 锡林右轴承座组件工艺及夹具设计43 心型台灯塑料注塑模具毕业设计44 机械手设计45 机械手自动控制系统的PLC实现方法研究46 汽车制动系统实验台设计47 数控多工位钻床设计48 数控车床主轴和转塔刀架毕业设计49 送布凸轮的设计和制造50 CA6140车床后托架夹具设计51 带式输送机毕业设计论文52 电火花加工论文53 机床的数控改造及发展趋势54 机械加工工艺规程毕业论文55 机械手毕业论文56 基于ANSYS的齿轮泵有限元分析57 可编程序控制器在机床数控系统中应用探讨58 矿石铲运机液压系统设计59 汽车连杆加工工艺及夹具设计论文60 数控车床半闭环控制系统设计61 数控多工位钻床设计62 数控机床体积定位精度的测量与补偿63 数控机床维修64 数控加工工艺与编程65 塑料注射模设计与制造66 新型电动执行机构67 液力传动变速箱设计与仿真论文68 轴类零件的加工工艺论文69 中型货车变速器的设计70 数控钻床横、纵两向进给系统的设计71 经济型数控车床控制系统设计72 Y210—2型电动机定子铁芯冲压模具设计73 双坐标十字滑台设计及控制74 注射器盖毕业设计75 二级减速器的毕业设计 资料来源:
我当年毕业的时候就是做的这个设计,你看看是这个吗 图纸我都有的。塑料齿轮模具设计及其型腔仿真加工摘 要:本课题来源于盐城羽佳塑业,任务是塑料齿轮模具设计及其型腔仿真加工.注射成型是塑料成型的一种重要方法,它主要适用于热塑性塑料的成型,可以一次成型形状复杂的精密塑件。本课题就是将双联齿轮作为设计模型,将注射模具的相关知识作为依据,阐述塑料注射模具的设计过程。本设计对双联齿轮进行的注塑模设计,利用proe软件对塑件进行了实体造型,对塑件结构进行了工艺分析。明确了设计思路,确定了注射成型工艺过程并对各个具体部分进行了详细的计算和校核。如此设计出的结构可确保模具工作运用可靠,保证了与其他部件的配合。 最后用mastercam仿真加工型腔。本课题通过对双联齿轮杯的注射模具设计,巩固和深化了所学知识,取得了比较满意的效果,达到了预期的设计意图。关键词:塑料模具;注射成型;模具设计;The design of gear plastic injection mold and cavity simulation processingAbstract: The subjects come from the Yujia Plastic Corporation. Task is what the design of gear plastic injection mold and cavity simulation processing. Plastic injection molding molding is an important method, which is primarily applicable to thermoplastic plastic molding, Molding can be a complex shape of precision plastic parts. To study the topic ,we make double-gear the design model, make the injection mold-related knowledge the basis for elaborate plastic injection mold design the designment we design double-gear with the injection mold design, using software proe to plastic parts to solid modeling, and making technics analysis to the structure of Plastic Parts for the definite the design,and identify the injection molding process as well as some specific details of the calculation and structure of such a design can be used to ensure reliable Die work ,to ensure cooperation with the other parts of the tie. Finally,simulation processing cavity with mastercam .we have consolidated and deepened the learning, gain a satisfied result, achieve the desired design intent through the process of double-gear mold words : Plastic mold; Injection molding; Mold design;目 录1 前言 12 模具总体设计 制品的分析 模具总体方案设计 注射机的选择 型腔数的确定 型腔的布局 分型面的确定 浇注系统设计 浇口的形式 流道、主流道衬套及定位环的设计 冷料井的设计 冷却系统的设计 模架的选择 导柱、导套的选择 导柱的选择 导套的选择 顶杆设计 复位杆 锁模力的校核 开模行程的校核 总装配图及三维造型图 总装配图 模具的三维造型图 173工艺分析及仿真加工 模具的注塑工艺分析 模具成型件制造工艺与加工工序 模具成型件制造工艺 模具成型件的加工工艺 数控仿真 204结论 25参考文献 26致谢 27附录
毕业论文 (设计)文档规范格式毕业论文(设计)的整理、装订要求统一采用A4纸打印、左面竖装;毕业论文(设计)的书写格式规范1.毕业论文正文由毕业论文(设计)题目、作者、中文摘要、中文关键词、英文摘要、英文关键词、正文、参考文献9部分组成。(1) 论文题目:一般不超过25个字,要简练准确,可分两行书写;(2) 作者:处于论文题目正下方,须写明系、专业、年级、姓名; (3) 摘要:中文摘要字数应在200字以内,英文摘要实词数应在200个实词以内;(4) 关键词:中、英文均限制在3—5个词语内,各词间用“;”间隔;(5) 正文:论文正文包括引言(或者绪论、概述等)、论文主体、结语等,正文要标题清晰,图表和公式要编号,公式应另起一行书写。字数要求:正文字数要求4000-6000字(6)参考文献:参考文献是撰写论文时围绕论题参考的著作、论文、期刊、网上资料、图片音像资料等。参考文献总数不得少于8篇,鼓励结合学科特点查阅外文参考文献。参考文献在文中出现的地方用上标予以标明,序号用加方括号的阿拉伯数字表示(如[1][2][3]),列于正文文末。毕业论文(设计)的排版格式规范1.版面尺寸:A4(210×297毫米)。2.装订位置:装订线1cm,左面竖装,页边距上下左右均为。3.页码:采用页脚方式设定,采用小4号宋体、用第×页和随后的括号内注明共×页的格式,例如“第1页(共10页)”,处于页面下方、居中、距下边界的位置。4.正文文本:宋体小4号、标准字间距、行间距为固定值26磅、所有标点符号采用宋体全角要求排版。5.论文标题:小2号黑体,居中。6.中文摘要和中文关键词:抬头用5号黑体加粗,内容用5号宋体、两端对齐方式排列,行间距固定值26磅。7.英文摘要和英文关键词:抬头用5号Times New Roman体加粗,内容用5号Times New Roman体、两端对齐方式排列,行间距固定值26磅。8. 正文内标题:见附后格式。(分文理科版本)9.文中图表:所涉及到的全部图、表,不论计算机绘制还是手工绘制,都应规范化,符号、代号标准统一,字体大小与正文协调,手工绘制的要用绘图笔,图表名称和编号准确无误。10.参考文献:位于正文结尾后下空2行,行间距单倍行距,排版见附后格式。文秘杂烩网
小模数齿轮齿形误差图像测量法权转菊 (西安东风仪表厂计量处 710065) 摘要:本文提出了一种小模数齿轮齿形误差测量的新方法,该方法在极坐标系下采集齿廓边缘 摘要 点的坐标值,通过测量模型计算获得齿形误差,符合齿形误差定义,具有较高的精度. 关键字:齿形误差 关键字 光学测量 极坐标 数学模型 引言小模数齿轮尤其是模数在 ~ 的小模数齿轮广泛应用于航天航空,国防,IT,钟 表等领域的精密仪器仪表制造中.作为关键的运动传动件,其质量直接影响到仪器仪表的运动精度, 噪音,寿命等.因此,实现对小模数齿轮的高精度测量是保证仪器仪表质量的一个关键技术问题. 小模数齿轮由于其模数小而齿数通常较多,齿槽空间很小,很难采用传统的齿轮测量技术和仪 器.目前,普遍采用的测量方法是轮廓投影比较法和分度盘展成法.轮廓投影比较法即在轮廓投影 仪上,将齿轮与标准放大图进行比较,从而判定加工齿轮的齿廓精度,这种方法显然不能实现精确 检测.分度盘展成法测量效率低,受找正误差,分度误差的影响精度并不是很高. 近年来,随着光 学坐标测量机的应用和发展,基于 CCD 技术的齿轮测量方法的研究不断增多.本文作者研究了在光 学坐标测量机上对小模数齿轮齿形误差进行精密测量的一种新方法. 1 数学模型的建立 展开角增量与展开弧长增量的关系 按渐开线形成原理,渐开线上某一点的曲率半径 ρ 等于基圆上形成渐开线的起点 A 到曲率半 径 ρ 与基圆切点 B 间的弧长,ρ 也即展开弧长, 其展开角 w 与 ρ 之间的关系为: w =ρ/ r0 (式 1) ? 式中: r0 为齿轮的基圆半径 当展开角 w1 增加w 转角时,展开弧长的增 量为ρ. 与ρ 之间有一定的比例关系, w 如当 齿轮转动一度, ρ1 应增加齿轮基圆圆周长度为 则 1/360,所以得如下关系式: ρ=2πr0w/360=π/180wr0 式中:ρ 为展开弧长增量 ( 2 B1 A1 A2 ?A 式 2) 图 (1) 渐 开 线 形 成 原 理 1 ρ=ρ2-ρ1 极坐标系下展开角与极径的关系 按照几何关系,从图中可以看出: ρ= R2 r 0 2 2 R12 r 0 2 (式 3) wx=w2-w1=B2+cos-1 r0 r -B1- cos-1 0 R2 R1 r0 r - cos-1 0 R2 R1 (式 4) 也即:wx=B2-B1+cos-1 将式 3 和式 4 代入式 2 得: 2 R2 r 0 R12 r 0 2 2 =π/180r0 2-B1+cos-1 (B r0 r - cos-1 0 ) (式 5) R2 R1 从式 5 中可以看出, 如果我们以齿轮中心为极坐标中心, 靠近渐开线起始点测量一点作为极坐 标起点,建立极坐标系,在此坐标系下齿形上各点极径与极角应满足式 5 中的关系. 2 齿形误差的测量 由于齿形误差的影响,实际齿廓上各点的坐标值与理论值有差异,即相对一展开角实际齿廓上 展开弧长与理论值有差异.变换式 5,我们可以求出实际齿轮左右齿廓上这种差异. f= Ri r 0 2 2 R12 r 0 -π/180r0 i-B1|+cos-1 (|B 2 r0 r - cos-1 0 ) Ri R1 (式 6) 这种差异也是齿廓上各点曲率半径与渐开线上相应的理论曲率半径的差异. 最小值与最大值之 差即为包容实际齿形的两条最近的理论渐开线间的法向距离,符合 GB10095-85 规定齿形误差ff 定 义(见图 2) ,则齿形误差为: ff=fmax-fmin (式 7) 齿 顶倒 棱高 度 ? 工 作部 分 设 计 齿形 齿 根 起始 工作 圆 图 1 齿形 误差 示意 图 2 3 测量实例选用有背光照明系统和 CCD 视像头的坐标测量机对一模数为 ,齿数为 50 的小模数齿轮 进行实际测量.首先以齿轮中心为坐标原点,以齿廓上大于基圆半径一点为起点建立极坐标,然后 对齿廓进行测量,求得各点的极径及极角,通过数学模型计算齿形误差.测量数据及结果见表 1. 表1 右齿 R(mm) ω(°) 360 f (mm) 0 R(mm) 齿形误差测量结果 左齿 ω(°) 0 f (mm) 0 齿形误差:0-()= 齿形误差:()= 4 结论本文结合渐开线展成原理对极坐标系下渐开线上各点坐标关系进行了分析, 并给出了数学模型, 由此得出齿形误差测量方法.通过测量实例对测量方法进行了说明. 这种方法与传统的使用分度盘 测量齿形的方法相比,同样是图像测量法,但由于少了分度盘的找正误差,分度误差等误差影响因 素,测量精度大为提高,并且可利用坐标测量机柔性定位功能,形成测量程序进行批量测量,实现 对小模数齿轮齿形误差的高精度,高效率测量. 3
力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。下文是我为大家整理的关于物理学力学论文的范文,欢迎大家阅读参考!
浅析物理力学的产生及其发展
摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。
关键词:物理力学;产生;发展
一、物理力学发展需要解决的问题分析
在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。
在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。
针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。
在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。
还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。
二、新技术不断推动物理力学的发展
物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。
人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。
本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。
参考文献:
[1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02).
[2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02).
[3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。
[4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06).
浅析力学在机械中的应用
[摘 要]力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。本文立足于力学,简要论述了力学的内涵及其发展历程,并对力学在机械中的应用进行了较为深入的探讨与分析。
[关键词]力学 弹性力学 断裂力学 工程力学 机械
力学是力与运动的科学,它的研究对象主要是物质的宏观机械运动,它既是一门基础科学,又是一门应用众多且广泛的科学。力学与天文学和微积分学几乎同时诞生,在经典物理的发展中起关键作用,推动了地球科学的发展进步,如大气物理、海洋科学等,同时力学也在机械中起着越来越重要的作用,且应用广泛。
一、力学
力学是一门独立的基础学科,主要研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系,可粗分为静力学、运动学和动力学三部分。
力学的发展历史悠久,古希腊时代力学附属于自然哲学,后来成为物理学的一个大分支,1687年,牛顿三大定律的提出标志着力学作为一门独立的学科开始形成。此后,随着资本主义生产的发展,到18世纪末,以动力学和运动学为主要特征的经典力学日益完善。19世纪,大机器生产促进了力学在工程技术和应用方面的发展,推动了结构力学、弹性固体力学和流体力学等主要分支的建立。19世纪末,力学已是一门相当发展并自成体系的独立学科。
二、力学在机械中的应用
力学在机械中的应用广泛,其典型应用主要有以下几种:
1.弹性力学在机械设计中的应用
弹性力学也称弹性理论,是固体力学的重要分支,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。机械运动当中,许多机械运转速度较高、承载很大,机械的弹性变形对系统的影响不容忽视,必须将机械系统按弹性系统进行分析和设计。由此可见,弹性力学在机械设计中应用广泛。一般情况下,弹性力学在凸轮机构设计、齿轮机构设计、轴设计中应用较为广泛。
齿轮机构在设计时运用了弹性力学的知识,渐开线作为齿廓曲线存在诸多优点,但用弹性力学知识加以分析便可得出它存在的一些固有缺陷,即当两齿轮啮合传动时,根据弹性力学中的赫兹公式分析可得,在其它条件相同的情况下,要想降低两齿轮在接触处的最大接触力,就必须增大两轮齿廓在接触点处的综合曲率半径,对于渐开线齿轮传动来说,由于要增大两轮齿廓在接触点处的综合曲率半径,就需要增大齿轮机构的尺寸,而两轮齿廓在接触点处的综合曲率半径增大的范围是有限的,所以难以进一步达到齿轮机构尺寸小、而承载能力大幅度提高的目的。同时,弹性力学在轴设计中也有众多应用。为避免共振现象,对高转速的轴,如汽轮机主轴、发动机曲轴等设计时振动计算尤其重要,此时必须运用弹性力学知识。
2.断裂力学在机械工程中的应用
断裂力学,是固体力学的一门新分支,主要研究含裂纹构件的强度与寿命,是结构损伤容限设计的理论基础。断裂力学主要可分为线弹性断裂力学与弹塑性断裂力学两大类,前者适用于裂纹尖端附近小范围屈服的情况;而后者适用于裂纹尖端附近大范围屈服的情况。断裂力学发展迅速,在机械工程中应用广泛,并占据重要地位。断裂力学在机械工程中的有效应用,不仅可以提高机械的性能与功效,更能防止工程设备发生灾难性的断裂事故,以确保机械、设备的安全可靠与良好运行。
首先,我国在采用断裂力学方法制订结构缺陷评定标准及安全设计规范方面已取得了较好的成绩,如压力容器、小型但用量大的液化石油气钢瓶及汽轮一发电机组等。
其次,概率断裂力学在可靠性设计中应用较多。概率断裂力学在可靠性设计中的广泛应用推动了可靠性设计的快速发展。运用参量的分布及安全余度来反映常规设计中不能准确反映的客观实际和常规设计安全评定中用安全系数不能准确反映的真实安全性。由于安全余度考虑了应力和强度的二阶矩,较好地反映了结构可靠度的实质,既考虑了变异特性又考虑了平均值,因而与失效分布有较直接的关系,使安全设计更可靠。国外已较完整地应用于飞机结构,如概率损伤容限分析、飞机结构可靠性和事故分析、飞机结构的耐久性分析等方面。我国在这方面开展的典型性研究则是海洋石油平台导管架焊接管节点的疲劳强度分析。
再者,可用断裂力学方法进行机械产品的失效分析。失效分析是指事故或故障发生后所进行的检侧和分析,目的在于找到失效的部位、失效原因和机理,从而掌握产品应当改进的方向及修复的方法,防止同类问题再次发生,以推进技术不断前进。因此,失效分析技术受到了社会各界的重视。断裂力学在机械产品失效分析中具有着重要作用。机械产品的主要失效模式有: 断裂、蠕变、疲劳、腐蚀、磨损及热损伤等,它们都可以借助断裂力学方法及断裂分析技术予以解决,断裂力学方法是失效分析的有力工具。
最后,运用断裂力学可以指导改进工艺及合理选材,如模具、焊接工艺等方面,可以减少工人的劳动量。
3.工程力学在机械修理中的应用
工程力学涉及众多的力学学科分支与广泛的工程技术领域,是一门理论性较强、与工程技术联系极为密切的技术基础学科,工程力学的定理、定律和结论广泛应用于各行各业的工程技术中,是解决工程实际问题的重要基础。处理机械工程出现的大量破坏问题,绝大多数是根据力学方面的知识作出判断和分析的。例如,汽车修理中汽车零部件的破坏分析与修理也是如此,其中,判断汽车半轴套管断裂的原因与确定修复方案等,全部流程无一不体现着工程力学知识在汽修中的应用。
三、结语
当今社会,科学技术迅猛发展,作为一门基础学科,力学也一定会得到进一步的发展与进步,且在机械中获得更广更深的应用。
参考文献
[1]林同骥,浦群.现代力学的发展[J].力学进展,1990,(1).
[2]李彦军.工程力学在汽修中的应用与对策[J].科技向导,2012,(32).
[3]侯岩滨.弹性力学在机械设计中的应用[J].辽宁师专学报,2005,(1).
[4]吴清可,刘元杰,张毓槐.断裂力学在机械工程中的应用[J].机械强度,1988,(6).
仅供参考一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。(2) 原始数据:滚筒圆周力F=;带速V=;滚筒直径D=220mm。运动简图二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=××××(2)电机所需的工作功率:Pd=FV/1000η总=1700××、确定电动机转速:滚筒轴的工作转速:Nw=60×1000V/πD=60×1000×π×220=根据【2】表中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×符合这一范围的同步转速有960 r/min和1420r/min。由【2】表查出有三种适用的电动机型号、如下表方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比KW 同转 满转 总传动比 带 齿轮1 Y132s-6 3 1000 960 3 Y100l2-4 3 1500 1420 3 综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。4、确定电动机型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y100l2-4。其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩。三、计算总传动比及分配各级的传动比1、总传动比:i总=n电动/n筒=1420/、分配各级传动比(1) 取i带=3(2) ∵i总=i齿×i 带π∴i齿=i总/i带=四、运动参数及动力参数计算1、计算各轴转速(r/min)nI=nm/i带=1420/3=(r/min)nII=nI/i齿=(r/min)滚筒nw=nII=(r/min)2、 计算各轴的功率(KW)PI=Pd×η带=××η轴承×η齿轮=××、 计算各轴转矩Td=×入/n1 = =入/n2=五、传动零件的设计计算1、 皮带轮传动的设计计算(1) 选择普通V带截型由课本[1]P189表10-8得:kA= P=×据PC=和n1=由课本[1]P189图10-12得:选用A型V带(2) 确定带轮基准直径,并验算带速由[1]课本P190表10-9,取dd1=95mm>dmin=75dd2=i带dd1(1-ε)=3×95×()= mm由课本[1]P190表10-9,取dd2=280带速V:V=πdd1n1/60×1000=π×95×1420/60×1000=在5~25m/s范围内,带速合适。(3) 确定带长和中心距初定中心距a0=500mmLd=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0=2×500+(95+280)+(280-95)2/4×450=根据课本[1]表(10-6)选取相近的Ld=1600mm确定中心距a≈a0+(Ld-Ld0)/2=500+()/2=497mm(4) 验算小带轮包角α1= ×(dd2-dd1)/a=×(280-95)/497=>1200(适用)(5) 确定带的根数单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=查[1]表10-3,得Kα=;查[1]表10-4得 KL= PC/[(P1+△P1)KαKL]=[() ××]= (取3根)(6) 计算轴上压力由课本[1]表10-5查得q=,由课本式(10-20)单根V带的初拉力:F0=500PC/ZV[(α)-1]+qV2=[()]+ =则作用在轴承的压力FQFQ=2ZF0sin(α1/2)=2×3×()=、齿轮传动的设计计算(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;精度等级:运输机是一般机器,速度不高,故选8级精度。(2)按齿面接触疲劳强度设计由d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3确定有关参数如下:传动比i齿=取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=取z2=78由课本表6-12取φd=(3)转矩T1T1=×106×P1/n1=×106×(4)载荷系数k : 取k=(5)许用接触应力[σH][σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:σHlim1=610Mpa σHlim2=500Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算N1=60××10×300×18= /×108查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=按一般可靠度要求选取安全系数SHmin=[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa[σH]2=σHlim2ZN2/SHmin=故得:d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3=模数:m=d1/Z1=取课本[1]P79标准模数第一数列上的值,m=(6)校核齿根弯曲疲劳强度σ bb=2KT1YFS/bmd1确定有关参数和系数分度圆直径:d1=mZ1=×20mm=50mmd2=mZ2=×78mm=195mm齿宽:b=φdd1=×50mm=55mm取b2=55mm b1=60mm(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=(8)许用弯曲应力[σbb]根据课本[1]P116:[σbb]= σbblim YN/SFmin由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1计算得弯曲疲劳许用应力为[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa校核计算σbb1=2kT1YFS1/ b1md1=< [σbb1]σbb2=2kT1YFS2/ b2md1=< [σbb2]故轮齿齿根弯曲疲劳强度足够(9)计算齿轮传动的中心矩aa=(d1+d2)/2= (50+195)/2=(10)计算齿轮的圆周速度V计算圆周速度V=πn1d1/60×1000=××50/60×1000=因为V<6m/s,故取8级精度合适.六、轴的设计计算从动轴设计1、选择轴的材料 确定许用应力选轴的材料为45号钢,调质处理。查[2]表13-1可知:σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d≥C查[2]表13-5可得,45钢取C=118则d≥118×()1/3mm=考虑键槽的影响以及联轴器孔径系列标准,取d=35mm3、齿轮上作用力的计算齿轮所受的转矩:T=×106P/n=×106× N齿轮作用力:圆周力:Ft=2T/d=2×198582/195N=2036N径向力:Fr=Fttan200=2036×tan200=741N4、轴的结构设计轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。(1)、联轴器的选择可采用弹性柱销联轴器,查[2]表可得联轴器的型号为HL3联轴器:35×82 GB5014-85(2)、确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合分别实现轴向定位和周向定位(3)、确定各段轴的直径将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.(5)确定轴各段直径和长度Ⅰ段:d1=35mm 长度取L1=50mmII段:d2=40mm初选用6209深沟球轴承,其内径为45mm,宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:L2=(2+20+19+55)=96mmIII段直径d3=45mmL3=L1-L=50-2=48mmⅣ段直径d4=50mm长度与右面的套筒相同,即L4=20mmⅤ段直径d5=52mm. 长度L5=19mm由上述轴各段长度可算得轴支承跨距L=96mm(6)按弯矩复合强度计算①求分度圆直径:已知d1=195mm②求转矩:已知T2=③求圆周力:Ft根据课本P127(6-34)式得Ft=2T2/d2=2×④求径向力Fr根据课本P127(6-35)式得Fr=Ft?tanα=×tan200=⑤因为该轴两轴承对称,所以:LA=LB=48mm(1)绘制轴受力简图(如图a)(2)绘制垂直面弯矩图(如图b)轴承支反力:FAY=FBY=Fr/2=由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为MC1=FAyL/2=×96÷2=截面C在水平面上弯矩为:MC2=FAZL/2=×96÷2=(4)绘制合弯矩图(如图d)MC=(MC12+MC22)1/2=()1/2=(5)绘制扭矩图(如图e)转矩:T=×(P2/n2)×106=(6)绘制当量弯矩图(如图f)转矩产生的扭剪文治武功力按脉动循环变化,取α=,截面C处的当量弯矩:Mec=[MC2+(αT)2]1/2=[(×)2]1/2=(7)校核危险截面C的强度由式(6-3)σe=×453=< [σ-1]b=60MPa∴该轴强度足够。主动轴的设计1、选择轴的材料 确定许用应力选轴的材料为45号钢,调质处理。查[2]表13-1可知:σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d≥C查[2]表13-5可得,45钢取C=118则d≥118×()1/3mm=考虑键槽的影响以系列标准,取d=22mm3、齿轮上作用力的计算齿轮所受的转矩:T=×106P/n=×106× N齿轮作用力:圆周力:Ft=2T/d=2×53265/50N=2130N径向力:Fr=Fttan200=2130×tan200=775N确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位,4 确定轴的各段直径和长度初选用6206深沟球轴承,其内径为30mm,宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。(2)按弯扭复合强度计算①求分度圆直径:已知d2=50mm②求转矩:已知T=③求圆周力Ft:根据课本P127(6-34)式得Ft=2T3/d2=2×④求径向力Fr根据课本P127(6-35)式得Fr=Ft?tanα=×⑤∵两轴承对称∴LA=LB=50mm(1)求支反力FAX、FBY、FAZ、FBZFAX=FBY=Fr/2=(2) 截面C在垂直面弯矩为MC1=FAxL/2=×100/2=19N?m(3)截面C在水平面弯矩为MC2=FAZL/2=×100/2=(4)计算合成弯矩MC=(MC12+MC22)1/2=(192+)1/2=(5)计算当量弯矩:根据课本P235得α=[MC2+(αT)2]1/2=[(×)2]1/2=(6)校核危险截面C的强度由式(10-3)σe=Mec/()=(×303)=<[σ-1]b=60Mpa∴此轴强度足够(7) 滚动轴承的选择及校核计算一从动轴上的轴承根据根据条件,轴承预计寿命L'h=10×300×16=48000h(1)由初选的轴承的型号为: 6209,查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=, 基本静载荷CO=,查[2]表可知极限转速9000r/min(1)已知nII=(r/min)两轴承径向反力:FR1=FR2=1083N根据课本P265(11-12)得轴承内部轴向力FS= 则FS1=FS2=(2) ∵FS1+Fa=FS2 Fa=0故任意取一端为压紧端,现取1端为压紧端FA1=FS1=682N FA2=FS2=682N(3)求系数x、yFA1/FR1=682N/1038N = =根据课本P265表(14-14)得e=
老兄:我帮你在网上找了一点你自己整理一下就行了,祝你成功!
据史料记载,远在公元前400~200年的中国古代就巳开始使用齿轮,在我国山西出土的青铜齿轮是迄今巳发现的最古老齿轮,作为反映古代科学技术成就的指南车就是以齿轮机构为核心的机械装置。17世纪末,人们才开始研究,能正确传递运动的轮齿形状。18世纪,欧洲工业革命以后,齿轮传动的应用日益广泛;先是发展摆线齿轮,而后是渐开线齿轮,一直到20世纪初,渐开线齿轮已在应用中占了优势。
早在1694年,法国学者Philippe De La Hire首先提出渐开线可作为齿形曲线。1733年,法国人提出轮齿接触点的公法线必须通过中心连线上的节点。一条辅助瞬心线分别沿大轮和小轮的瞬心线(节圆)纯滚动时,与辅助瞬心线固联的辅助齿形在大轮和小轮上所包络形成的两齿廓曲线是彼此共轭的,这就是Camus定理。它考虑了两齿面的啮合状态;明确建立了现代关于接触点轨迹的概念。1765年,瑞士的L.Euler提出渐开线齿形解析研究的数学基础,阐明了相啮合的一对齿轮,其齿形曲线的曲率半径和曲率中心位置的关系。后来,Savary进一步完成这一方法,成为现在的Eu-let-Savary方程。对渐开线齿形应用作出贡献的是Roteft WUlls,他提出中心距变化时,渐开线齿轮具有角速比不变的优点。1873年,德国工程师Hoppe提出,对不同齿数的齿轮在压力角改变时的渐开线齿形,从而奠定了现代变位齿轮的思想基础。
19世纪末,展成切齿法的原理及利用此原理切齿的专用机床与刀具的相继出现,使齿轮加工具军较完备的手段后,渐开线齿形更显示出巨大的优走性。切齿时只要将切齿工具从正常的啮合位置稍加移动,就能用标准刀具在机床上切出相应的变位齿轮。1908年,瑞士MAAG研究了变位方法并制造出展成加工插齿机,后来,英国BSS、美国AGMA、德国DIN相继对齿轮变位提出了多种计算方法。
为了提高动力传动齿轮的使用寿命并减小其尺寸,除从材料,热处理及结构等方面改进外,圆弧齿形的齿轮获得了发展。1907年,英国人Frank Humphris最早发表了圆弧齿形。1926年,瑞土人Eruest Wildhaber取得法面圆弧齿形斜齿轮的专利权。1955年,苏联的M.L.Novikov完成了圆弧齿形齿轮的实用研究并获得列宁勋章。1970年,英国Rolh—Royce公司工程师R.取得了双圆弧齿轮的美国专利。这种齿轮现已日益为人们所重视,在生产中发挥了显著效益。
齿轮是能互相啮合的有齿的机械零件,它在机械传动及整个机械领域中的应用极其广泛。现代齿轮技术已达到:齿轮模数~100毫米;齿轮直径由1毫米~150米;传递功率可达上十万千瓦;转速可达几十万转/分;最高的圆周速度达300米/秒。
齿轮在传动中的应用很早就出现了。公元前三百多年,古希腊哲学家亚里士多德在《机械问题》中,就阐述了用青铜或铸铁齿轮传递旋转运动的问题。中国古代发明的指南车中已应用了整套的轮系。不过,古代的齿轮是用木料制造或用金 属铸成的,只能传递轴间的回转运动,不能保证传动的平稳性,齿轮的承载能力也很小。
随着生产的发展,齿轮运转的平稳性受到重视。1674年丹麦天文学家罗默首次提出用外摆线作齿廓曲线,以得到运转平稳的齿轮。
18世纪工业革命时期,齿轮技术得到高速发展,人们对齿轮进行了大量的研究。1733年法国数学家卡米发表了齿廓啮合基本定律;1765年瑞士数学家欧拉建议采用渐开线作齿廓曲线。
19世纪出现的滚齿机和插齿机,解决了大量生产高精度齿轮的问题。1900年,普福特为滚齿机装上差动装置,能在滚齿机上加工出斜齿轮,从此滚齿机滚切齿轮得到普及,展成法加工齿轮占了压倒优势,渐开线齿轮成为应用最广的齿轮。
1899年,拉舍最先实施了变位齿轮的方案。变位齿轮不仅能避免轮齿根切,还可以凑配中心距和提高齿轮的承载能力。1923年美国怀尔德哈伯最先提出圆弧齿廓的齿轮,1955年苏诺维科夫对圆弧齿轮进行了深入的研究,圆弧齿轮遂得以应用于生产。这种齿轮的承载能力和效率都较高,但尚不及渐开线齿轮那样易于制造,还有待进一步改进。
齿轮的组成结构一般有轮齿、齿槽、端面、法面、齿顶圆、齿根圆、基圆、分度圆。
轮齿简称齿,是齿轮上 每一个用于啮合的凸起部分,这些凸起部分一般呈辐射状排列,配对齿轮上的轮齿互相接触,可使齿轮持续啮合运转;齿槽是齿轮上两相邻轮齿之间的空间;端面是圆柱齿轮或圆柱蜗杆上 ,垂直于齿轮或蜗杆轴线的平面;法面指的是垂直于轮齿齿线的平面;齿顶圆是指齿顶端所在的圆;齿根圆是指槽底所在的圆;基圆是形成渐开线的发生线作纯滚动的圆;分度圆 是在端面内计算齿轮几何尺寸的基准圆。
齿轮可按齿形、齿轮外形、齿线形状、轮齿所在的表面和制造方法等分类。
齿轮的齿形包括齿廓曲线、压力角、齿高和变位。渐开线齿轮比较容易制造,因此现代使用的齿轮中 ,渐开线齿轮占绝对多数,而摆线齿轮和圆弧齿轮应用较少。
在压力角方面,小压力角齿轮的承载能力较小;而大压力角齿轮,虽然承载能力较高,但在传递转矩相同的情况下轴承的负荷增大,因此仅用于特殊情况。而齿轮的齿高已标准化,一般均采用标准齿高。变位齿轮的优点较多,已遍及各类机械设备中。
另外,齿轮还可按其外形分为圆柱齿轮、锥齿轮、非圆齿轮、齿条、蜗杆蜗轮 ;按齿线形状分为直齿轮、斜齿轮、人字齿轮、曲线齿轮;按轮齿所在的表面分为外齿轮、内齿轮;按制造方法可分为铸造齿轮、切制齿轮、轧制齿轮、烧结齿轮等。
齿轮的制造材料和热处理过程对齿轮的承载能力和尺寸重量有很大的影响。20世纪50年代前,齿轮多用碳钢,60年代改用合金钢,而70年代多用表面硬化钢。按硬度 ,齿面可区分为软齿面和硬齿面两种。
软齿面的齿轮承载能力较低,但制造比较容易,跑合性好, 多用于传动尺寸和重量无严格限制,以及小量生产的一般机械中。因为配对的齿轮中,小轮负担较重,因此为使大小齿轮工作寿命大致相等,小轮齿面硬度一般要比大轮的高 。
硬齿面齿轮的承载能力高,它是在齿轮精切之后 ,再进行淬火、表面淬火或渗碳淬火处理,以提高硬度。但在热处理中,齿轮不可避免地会产生变形,因此在热处理之后须进行磨削、研磨或精切 ,以消除因变形产生的误差,提高齿轮的精度。
制造齿轮常用的钢有调质钢、淬火钢、渗碳淬火钢和渗氮钢。铸钢的强度比锻钢稍低,常用于尺寸较大的齿轮;灰铸铁的机械性能较差,可用于轻载的开式齿轮传动中;球墨铸铁可部分地代替钢制造齿轮 ;塑料齿轮多用于轻载和要求噪声低的地方,与其配对的齿轮一般用导热性好的钢齿轮。
未来齿轮正向重载、高速、高精度和高效率等方向发展,并力求尺寸小、重量轻、寿命长和经济可靠。
而齿轮理论和制造工艺的发展将是进一步研究轮齿损伤的机理,这是建立可靠的强度计算方法的依据,是提高齿轮承载能力,延长齿轮寿命的理论基础;发展以圆弧齿廓为代表的新齿形;研究新型的齿轮材料和制造齿轮的新工艺; 研究齿轮的弹性变形、制造和安装误差以及温度场的分布,进行轮齿修形,以改善齿轮运转的平稳性,并在满载时增大轮齿的接触面积,从而提高齿轮的承载能力。
摩擦、润滑理论和润滑技术是 齿轮研究中的基础性工作,研究弹性流体动压润滑理论,推广采用合成润滑油和在油中适当地加入极压添加剂,不仅可提高齿面的承载能力,而且也能提高传动效率。
齿轮机构的类型:
1、以传动比分类
定传动比 —— 圆形齿轮机构(圆柱、圆锥)
变传动比 —— 非圆齿轮机构(椭圆齿轮)
2、以轮轴相对位置分类
平面齿轮机构
直齿圆柱齿轮传动
外啮合齿轮传动
内啮合齿轮传动
齿轮齿条传动
斜齿圆柱齿轮传动
人字齿轮传动
空间齿轮机构
圆锥齿轮传动
交错轴斜齿轮传动
蜗轮蜗杆传动
齿轮的工艺:
锥形齿轮
毛坯半制品齿轮
螺旋齿轮
内齿轮
直齿轮
蜗轮蜗杆
斜齿圆柱齿轮主要参数
螺旋角:β > 0为左旋,反之为右旋
齿距:pn = ptcosβ,下标n和t分别表示法向和端面
模数:mn = mtcosβ
齿宽:
分度圆直径:d = mtz
中心距:a=1/2*m(z1+z2)
正确啮合条件:m1 = m2,α1 = α2,β1 = − β2
重合度:
当量齿数:
齿轮振动的简易诊断方法
进行简易诊断的目的是迅速判断齿轮是否处于正常工作状态,对处于异常工作状态的齿轮进一步进行精密诊断分析或采取其他措施。当然,在许多情况下,根据对振动的简单分析,也可诊断出一些明显的故障。
齿轮的简易诊断包括噪声诊断法、振平诊断法以及冲击脉冲(SPM)诊断法等,最常用的是振平诊断法。
振平诊断法是利用齿轮的振动强度来判别齿轮是否处于正常工作状态的诊断方法。根据判定指标和标准不同,又可以分为绝对值判定法和相对值判定法。
1.绝对值判定法
绝对值判定法是利用在齿轮箱上同一测点部位测得的振幅值直接作为评价运行状态的指标。
用绝对值判定法进行齿轮状态识别,必须根据不同的齿轮箱,不同的使用要求制定相应的判定标准。
制定齿轮绝对值判定标准的主要依据如下:
1)对异常振动现象的理论研究;
(2)根据实验对振动现象所做的分析;
(3)对测得数据的统计评价;
(4)参考国内外的有关标准。
实际上,并不存在可适用于一切齿轮的绝对值判定标准,当齿轮的大小、类型等不同时,其判定标准自然也就不同。
按一个测定参数对宽带的振动做出判断时,标准值一定要依频率而改变。频率在1kHz以下,振动按速度来判定;频率在1kHz以上,振动按加速度来判定。实际的标准还要根据具体情况而定。
2.相时值判定法
在实际应用中,对于尚未制定出绝对值判定标准的齿轮,可以充分利用现场测量的数据进行统计平均,制定适当的相对判定标准,采用这种标准进行判定称为相对值判定法。
相对判定标准要求将在齿轮箱同一部位测点在不同时刻测得的振幅与正常状态下的振幅相比较,当测量值和正常值相比达到一定程度时,判定为某一状态。比如,相对值判定标准规定实际值达到正常值的倍时要引起注意,达到倍时则表示危险等。至于具体使用时是按照倍进行分级还是按照2倍进行分级,则视齿轮箱的使用要求而定,比较粗糙的设备(例如矿山机械)一般使用倍数较高的分级。
实际中,为了达到最佳效果,可以同时采用上述两种方法,以便对比比较,全面评价。
[编辑本段]齿轮-主要术语
轮齿(齿)——齿轮上的每一个用于啮合的凸起部分。一般说来,这些凸起部分呈辐射状排列。配对齿轮上轮齿互相接触,导致齿轮的持续啮合运转。
齿槽——齿轮上两相邻轮齿之间的空间。
齿轮端面——在圆柱齿轮或圆柱蜗杆上垂直于齿轮或蜗杆轴线的平面。
法面——在齿轮上,法面指的是垂直于轮齿齿线的平面。
齿顶圆——齿顶端所在的圆。
齿根圆——槽底所在的圆。
基圆——形成渐开线的发生线在其上作纯滚动的圆。
分度圆——在端面内计算齿轮几何尺寸的基准圆,对于直齿轮,在分度圆上模数和压力角均为标准值。
齿面——轮齿上位于齿顶圆柱面和齿根圆柱面之间的侧表面。
齿廓——齿面被一指定曲面(对圆柱齿轮是平面)所截的截线。
齿线——齿面与分度圆柱面的交线。
端面齿距pt——相邻两同侧端面齿廓之间的分度圆弧长。
模数m——齿距除以圆周率π所得到的商,以毫米计。
径节p——模数的倒数,以英寸计。
齿厚s ——在端面上一个轮齿两侧齿廓之间的分度圆弧长。
槽宽e ——在端面上一个齿槽的两侧齿廓之间的分度圆弧长。
齿顶高hɑ——齿顶圆与分度圆之间的径向距离。
齿根高hf——分度圆与齿根圆之间的径向距离。
全齿高h——齿顶圆与齿根圆之间的径向距离。
齿宽b——轮齿沿轴向的尺寸。
端面压力角 ɑt—— 过端面齿廓与分度圆的交点的径向线与过该点的齿廓切线所夹的锐角。
基准齿条(Standard Rack):只基圆之尺寸,齿形,全齿高,齿冠高及齿厚等尺寸均合乎标准正齿轮规格之齿条,依其标准齿轮规格所切削出来之齿条称为基准齿条.
基准节圆(Standard Pitch Circle):用来决定齿轮各部尺寸基准圆.为 齿数x模数
基准节线(Standard Pitch Line):齿条上一条特定节线或沿此线测定之齿厚,为节距二分之一.
作用节圆(Action Pitch Circle):一对正齿轮咬合作用时,各有一相切做滚动圆.
基准节距(Standard Pitch):以选定标准节距做基准者,与基准齿条节距相等.
节圆(Pitch Circle):两齿轮连心线上咬合接触点各齿轮上留下轨迹称为节圆.
节径(Pitch Diameter):节圆直径.
有效齿高(Working Depth):一对正齿轮齿冠高和.又称工作齿高.
齿冠高(Addendum):齿顶圆与节圆半径差.
齿隙(Backlash):两齿咬合时,齿面与齿面间隙.
齿顶隙(Clearance):两齿咬合时,一齿轮齿顶圆与另一齿轮底间空隙.
节点(Pitch Point):一对齿轮咬合与节圆相切点.
节距(Pitch):相邻两齿间相对应点弧线距离.
法向节距(Normal Pitch):渐开线齿轮沿特定断面同一垂线所测节距.
塑料齿轮的介绍:
随着科学的发展,齿轮已经慢慢由金属齿轮转变为塑料齿轮。因为塑料齿轮更具有润滑性和耐磨性。 可以减小噪音,降低成本,降低摩擦。
随着社会的进步,工业的发展,我国机械制造业得到了巨大的发展。下文是我为大家整理的关于机械设计方面毕业论文例文参考的内容,欢迎大家阅读参考!
浅析大型机械驾驶室减振设计
摘要:本文概述了工程机械减振技术的发展概况,并以大型机械的驾驶室减振设计为背景,探讨了发动机悬置设计的基本原则,并对发动机减振的布置的力学特性进行分析,最后提出了以驾驶室模态试验为基础来检验现有类型的驾驶室的结构弱点检验和构件加强的方法。
关键词:机械 驾驶室 减振设计
1、概述
工程机械在水利工程、道路施工、矿山等场合得到大量的使用,其性能的可靠性直接影响到工程建设的正常开展。这类机械的设计时通常采用静态设计,设计理念上更多的是考虑机械的强度、耐久性等和机械的工作性质直接相关因素。但从实际使用情况来看,国产的大型工程机械普遍存在着施工过程中振动过大的问题,这将间接影响设备的抗疲劳特性和操作人员的舒适性和操作的稳定性。
由于工程机械的工作环境恶劣,车体结构的振动问题更加明显,直接影响到驾驶员的舒适性和驾驶的安全性。因此对于大型工程机械而言,控制车体振动尤其是驾驶室的振动,寻求有效的减震设计方法,对于提高驾驶员的舒适度和车体驾驶室构件的疲劳寿命都是有重要意义的。大型工程机械的振动控制问题是个非常复杂的问题,本文将这一问题缩小到驾驶室的减振设计上,主要通过发动机悬置位置的优化设计,以及基于模态分析和被动隔振理论来降低驾驶室的振动效应。
早期的汽车发动机减振方法是利用硫化橡胶,但硫化橡胶在耐油和耐高温方面表现不够理想。20世纪40年代设计出了液压悬置装置来降低发动机的振幅,并取得了较好的使用效果。但液压悬置减振装置在高频激励下会出现动态硬化的问题,已经逐渐不适应汽车发动机减振的要求。
上述几类减振方式都属于被动减振技术,在此基础上,随着发动机减振技术的进步,半主动减振技术开始应用到发动机减振中,这类减振技术的代表作是半主动控制式液压悬置装置,这类减振技术的应用最为广泛。尽管后来又出现了由被动减振器、激振器等所构成的主动减振技术,这一技术能够较好的实现降噪性能,但结构非常复杂,在恶劣工作环境下的工程车辆较少使用。
在工程车辆驾驶室的舒适度设计方面,主要所依据的是动态舒适性理论,用以评价驾驶人员在驾驶室振动的条件下对主观舒适程度。从驾驶员所承受的振动来源来看,主要是受发动机的周期性振动和来自于路面的随机激励。其传递机理较为复杂,跟发动机、驾驶室、座椅等的减振都有关系。因此为便于分析,本文中只针对驾驶室的减振问题展开研究。
2、大型工程机械驾驶室的减振设计
如前文所述,驾驶室的振源激励主要来自于路面和发动机及其传动机构。来自于路面的振源激励具有很大的随机性,要进行理论分析非常困难。加之在需要使用大型工程机械的场合机械的运动速度一般都较慢,随之产生的路面激振频率较低。因此相比之下,大型机械的发动机在运行时一直都处在高速运转状态,由此产生的激振频率很高,也更容易导致构件的疲劳损坏,实践证明发动机及其附件的疲劳损坏主要是由发动机周期激振力产生的交变应力引起的。从物理背景来看,工程机械的驾驶室所受到的振动激励主要来从车架传递到台架,驾驶室的振动行为属于被动响应。为了便于分析,将驾驶室的隔振系统进行简化,以单自由度弹簧阻尼系统来对驾驶室受到振动激励过程进行分析。
发动机的悬置设计
发动机在工作过程中的振动原因主要是不平衡力和力矩,这类振动不仅会引起车架的的振动,也会形成较强烈的噪声,不仅会影响到构件的使用寿命也会影响驾驶员的舒适度。要缓解发动机振动所造成的负面影响,采用悬置的设计方式是比较有效的途径,其实现方式是在动力总成和车架之间加入弹性支承元件。悬置设计方式的理论基础是发动机解耦理论,通过解除发动机六个自由度解耦,改变发动机的支撑位置,从而实现发动机自由度间振动耦合的解除。
此外,需要配合使用解除耦合后的各自由度方向的刚度与相应的阻尼系数,但应注意在解耦之后振动最强的自由度方向的共振控制,可应用主动隔振理论来确定减震器的刚度和阻尼系数。采用合适的刚度和阻尼系数的目的在于控制发动机悬置系统的减振区域。
具体到悬置设计的细节方面,主要是确定发动机支撑的数目和相应的布置位置。在考虑发动机动力总成悬置系统的支撑数目时,考虑的因素包括承重量和激振力两大类。在设计时通常都会依据车辆类型的不同选择三点或者四点支撑方式。对于大型机械而言,在实践中一般都会采用四点支撑的方式,本文中作为算例的发动机属于某型重型挖掘机的发动机。因此采用经典的四点支撑。其支撑位置选择在飞轮端和风扇端,上述两个位置分别设置两个对称的支撑点,采用支撑对称的目的在于后期解耦方便。从布置的方式上看,主要有平置、汇聚和斜置三种典型布置方式,具体采用哪种方式取决于发动机周围附属配件的布局方式以及车架所能提供的空间有关。本文中不重点讨论减振支撑的布置方式,因此仍然采用平置式的减振布置方式。
悬置系统的动力学分析
为减少研究成本,在支撑的材料上选用橡胶减振器。由前节所述,由于采用的是四个平置式的橡胶减震器,因此可以在进行力学分析时将其简化为三个互相垂直的弹簧阻尼系统,从而可以构建一个发动机主动隔振的力学模型。
驾驶室模态试验
在上述基本力学分析的基础上,进一步采用驾驶室模态试验的方法来检验整个驾驶室的减振效果,其目的在于掌握驾驶室的动态特性和找出驾驶室结构上的薄弱部位,同时以试验为基础还可以调整驾驶室减震器的系数匹配,减小驾驶室的整体振动响应。在试验时以快速傅里叶变换为以及,测量激振力和振动响应之间的关系,从而得到二者之间的传递函数,而模态分析的目的是通过实现来实现传递函数的曲线拟合和确定结构的模态参数。本试验中采用LMS模态测试分析软件,驾驶室所受的激振用力锤激振器来模拟。
在试验时用力锤敲击驾驶室从而制造出1-200HZ脉冲信号。通过记录下在不同激振频率下驾驶室结构的反应来确定驾驶室各个构件的强度,以及应该避免的激振频率。在得到这些基础数据后可为后续的驾驶室减振设计的选择悬置系统的减振区域的临界值,使得驾驶室所有构件的固有频率都能够位于减振器的减振区域内,从而起到抑制驾驶室结构的振动响应。
参考文献
[1]司爱国.轮式装载机行驶稳定系统开发与研究[D].北京:北京科技大学硕士学位论文.
[2]王敏.轻卡动力总成悬置系统的隔振性能[D].合肥:合肥工业大学硕士学位论文.
浅谈机械的可靠性设计
【摘要】本文主要叙述机械可靠性设计的一些基本内容,在此基础上进一步的分析了机械可靠性的优化设计,以及重点的分析了机械可靠性设计的稳健设计,希望能够对我国的机械可靠性设计发展有所帮助。
【关键词】机械可靠性设计;发展沿革;优化设计;稳健设计
引言:20世纪40年代的时候出现了可靠性设计思想,这种思想主要是将安全度作为主题所研究的可靠性理论,这项技术出现后在理论学术界以及实际工程界都有了很大的关注度,相关的理论以及方式也是不断的出现。比如:M onte C arlo 模拟法 、矩方法和以矩方法为基础的可靠性理论、响应面法、支持向量机法 、最大熵方法、随机有限元法和非概率分析方法等这些理论设计到了静强设计、疲劳强度设计、有限寿命设计的各个方面,对于结构系统、机构系统、震动系统等有这可靠性的研究。
1.机械可靠性设计的概述
在产品质量中可靠性是其最为主要的指标以及最重要的技术指标,工程界对于这一点也是越来越重视。在产品的设计、研制、装配、调试等各个环节中可靠性都有着一定的关联性,所以说在概率统计理论的基础上要加大其的推广认识,这样对于原本传统的相关问题能够很好的解决点,同时将产品质量提升上去而且使得产品成本有所降低。经过多年的发展,可靠性技术的不断发展,使得机械可靠性以及设计方式出现了很好的种类,但是就具体的实质来说,大致的分为数学模型法以及物流原因方式两种。
数学模型法就是通过某种实验数据所得概率统计为基础,逐渐的划分为两点,第一点为时间范畴中所涉及的量是可靠性质的,也是就是说因为依据某种规律在时间变动下,疲劳寿命以及耗损失都是在一定的范围之内的;第二种为,将某种偶然因素所发生结果所表现的可靠性,主要是因为不定期所出现的偶然因素所波动的,都是通过概率可靠性对于随机事件计算的,也会发展为两个方面:第一种是对模型法或者相关扩展方式,这样的方式主要是对于产品实效原因产生与产品上应力大于产品本身的强度,所以说应力概率是低于可靠度强度的,第二种为随即过程中或者是随机场不超出规定水准的概率。
2.可靠性优化设计
可靠性优化设计的基本理论
无论是什么样的机械产品,在最开始的方案构建到后期的生产制造实施,都是需要经过一个设计过程的,但是现在计算不断发展,新的知识、新的材料、新的手工艺、新的会计不断的出现,使得机械产品日益在完善,这就是所谓的知识成就了技术、技术成就了产品时间。使得研究的时间越来越短,但是结构确实越来越复杂,这样的情况下顾客对于产品功能、性能、质量、或者是相关服务都有着很大的要求。
这样的趋势下,对于设计整个过程要加大进度,设计周期要缩短。同时需要注意的是,对于设计是不是能够完善来说,产品的力学性能或者是使用价值、制造成本都是有着一定行的影响的,但是对于产品企业的工作质量或者是仅仅效果也是有着相对影响的,所以说,如何将设计质量提升上去,设计理论怎么发展下去,设计技术怎么做到更好,设计过程怎么才能加快嫉妒,都是现在机械设计中所研究的重要问题。
60年代的时候是机械优化设计发展最为迅速的时候,将数学规划以及计算机技术这两种结合在一起。所谓的数学规划理念在现在已经是不断的成熟起来,计算机技术也是高速的发展和广泛的使用中,在工程设计中为最普遍使用优化设计提供相关理论以及方式。
国家能源以及相关资源的是否被合理使用都受到了产品最佳、最可靠性的问题影响,通过使用最佳或者是最可靠性设计能够得到小体积、轻质量、节能材料的产品,同时这样产品有着一定的可靠性,机械产品所进行优化设计的主要目标就是根据一定的预期点或者是安全需要,通过一种最优化的形式将产品展示处理,在进行设计的同时需要将各种载荷随机性考虑到位,同时不能忽略的是结构参数的随机性,这两点对于产品都有着一定性能的影响。
所谓的可靠性优化设计是指质量、成本、可靠度这三方面的,将产品的总体可靠度进行一定的性能约束优化,将所出现的问题合理安全性的相结合,这样也是在结构布局或者是产品质量有保证情况,使得产品有了最大化的可靠度。
近年来可靠性优化设计发展
最近的30年内,机械设计领域中,因为科技的融入使得现代化设计方式以及相关的科学方式不断的出现,在可靠性设计或者是优化设计方面一定有着很高的水准,但是就单方面来说,无论是可靠性设计或者是优化设计,都不能很好的将其所具备的巨大潜力展示出来。一点是因为可靠性设计和优化设计是不相同的,在机械产品经过可靠性设计之后,不能将其工作性能或者是参数达到最为优秀的一点,还有一点是因为优化设计所包含的不是可靠性设计,机械产品要是在不可靠性情况下所进行的优化设计,不能保证产品在一定的条件下或者是时间内,能够将所规定的功能很好的完成,有的时候也许会出现一定的事故,这样直接都有着经济损失。
除此之外,因为机械产品有着很多的设计参数,要是对于多个设计参数进行确定的时候,单纯的可靠性设计就不是这样有地位了,所以在进行可靠性优化设计研究的前提下,要将机械产品可靠性要求先保证,同时保证所运行的环境是最佳的工作性能以及参数,将可靠性或者是优化性设计很好的结合在一起,然后在发展研究设计,才能得出最为优秀的设计方式。
关于可靠性的稳健设计
产品质量是企业赢得用户的关键因素 。任何一种产品,它的总体质量一般可分为用户质量if't-部质量)和技术质量(内部质量)。前者是指用户所能感受到、见到、触到或听到的体现产品优劣的一些质量特性 ;后者是指产品在优良的设计和制造质量下达到理想功能 的稳健性。稳健设计作为一种低成本和高质量的设计思想和方法,对产 品性能、质量和成本综合考虑,选择出最佳设计,不仅可以提高产品的质量,而且可以降低成本。在机械产 品设计中,正确地应用稳健设计的理论与方法可以使产品在制造和使用中,或是在规定的寿命期 问内当设计因素发生微小变化时都能保证产品质量的稳定 。
结束语:总而言之,对于机械的可靠性设计而言,设计人员应该根据实际,做出最优的设计,只有这样的设计才能将可靠性或者是优化设计巨大潜力发挥出来,将两点所具有的优势已近特长全部发挥出来,才能达到产品最佳以及最可靠点,这样的设计有着最为先进和最实用的设计特点,才能最好的达到预定的目标,和保证在设计中的机械产品的质量以及经济效益。
【参考文献】
[1]杨为民,盛~兴.系统可靠性数字仿真[M ].北京:北京航空航天大学出版社,1990.
[2]谢里阳,何雪法,李佳.机电系统可靠性与安全性设计[M].哈尔滨:哈尔滨工业大学出版社,2006.
[3]阎楚良,杨方飞.机械数字化设计新技术[M ].北京:机械工业 出版.2007.
[4]张义民,刘巧伶.多随机参数结构可靠性分析的随机有限元法[J] 东北工学院学报,2012,13(增刊):
[5] 金雅娟,张义民,张艳林,等.任意分布参数的涡轮盘裂纹扩展寿命可靠性分析[J].工程设计学报,2009,l6(3):196-199 .
一般渐开线的描述,按照齿形的不同,齿轮分为直齿轮、斜齿轮;齿轮的主要特征参数包括模数、压力角、齿数、宽度;材质、热处理方法对齿轮性能影响较大;加工精度影响齿轮传动的噪声大小。
幼儿美术教育活动是幼儿教育的重要组成部分,对于培养幼儿的创造性具有重要的作用。下文是我为大家搜集整理的关于幼儿园美术教育方面的论文的内容,欢迎大家阅读参考!
浅谈幼儿园美术教育方法
摘要:幼儿时期的美术教育,对幼儿身心的健康成长及全面发展有着重要意义,越来越多地受到人们的关注和重视。幼儿美术教育有其自身的特点。在学习美术技巧的同时,注重幼儿智力的开发,艺术灵魂的培养,审美情趣的提高,是幼儿美术教育的使命。基于幼儿活泼好动、富于好奇心、模仿力强以及思维具有发散性的特点,幼儿美术教育必须坚持兴趣性原则、直观性原则、循序渐进原则和因材施教原则。针对幼儿的美术教育应该采取灵活多样的方法,观察法、讲解法、示范法、范例法、游戏法、练习法、熏陶法等都是幼儿美术教育的常用方法。充分利用美术教育的形式,帮助幼儿开发智力,提高能力,培养素质,全面发展。符合素质教育的发展方向。
关键词:幼儿美术 美术教育原则 美术教育常用方法
美术是指运用一定的物质材料,通过线条、形体、色彩等造型手段,塑造出的具有可视的平面或立体的形象,反映自然和社会生活,表达思想观念和感情的一种艺术活动。
幼儿时期的美术教育,对幼儿身心的健康成长及全面发展有着重要意义,越来越多地受到人们的关注和重视。尤其在当前,随着中国素质教育的不断深入,以人为本,注重素质,注重德智体美全面发展的教育理念深入人心,幼儿时期的美术教育,以其独特的教育功能为家长所重视和接受;事实上在日常生活当中,在孩子们的成长过程当中,我们已经不知不觉地涉及到这个领域,例如,教孩子认识色彩、图形,带孩子到大自然中欣赏山光水色、鸟语花香等,但真正从教育的高度了解美术的手段,有意识地引导、教育孩子,对家长仍是一个十分偏颇、模糊的概念。本文将以此为视角,就幼儿时期美术教育作粗步的探讨。
对幼儿进行美术教育并不神秘。当婴儿呱呱落地时,家长就已经开始了美的教育,如悬挂彩球、玩具、图片等。这种家庭美育就是美术教育的萌芽期。随着孩子的成长,接触社会和大自然的机会越来越多,接受美的教育的机会也越来越多。观看五彩缤纷的节日彩灯和焰火,聆听下雨时有节奏的滴答声,在景色迷人的公园里游玩,在碧绿清澈的水池里嬉戏,都可以使幼儿感受和理解自然中、社会生活中、艺术作品中的美。从而引起幼儿的注意,激发审美情感,受到美的陶冶。可以说这都是对幼儿进行美术教育。
由此可见,幼儿美术教育有其自身的特点:其一,对孩子思想品德的影响。审美活动对孩子进行自然美、社会美、艺术美的肩上。发展孩子的审美能力,陶界情操,树立崇高理想,形成道德观念,丰富精神生活。其二,对孩子智力思维方面的影响。用艺术的手段反映现实世界,可使人的认识更加生动、丰富,从而提高观察力、想象力、创造力。因此,幼儿美术教育的方法和任务就应围绕上述范畴来确立。也就是说,在学习美术技巧的同时,更应注重幼儿智力的开发,艺术灵魂的培养,审美情趣的提高,这才是幼儿美术教育的使命。
一、幼儿园美术教育的原则
教育学、心理学的研究表明:幼儿期既是人的智力开发的关键时期,又是思维发育的基础阶段,活泼好动,富有好奇心,模仿力强,思维具有发散性特点。而美术以形象性、生动性、色彩性、趣味性等特点正是吸引幼儿容易接受、乐于接受的极好方式,更是开发幼儿智力、训练思维的极好途径。因此对幼儿美术教育的目标应确立在开发智能、训练思维、陶冶情操、培养审美情趣以及初步掌握实用美术工具及材料的技能等基点上。
1.兴趣性原则。
美术教育内容的选择要具有兴趣,教师在选择教学内容是要选择形式新颖、富有情趣、新奇易动的内容,这样可以激发幼儿的积极性和参与性。使幼儿在情趣盎然地投入美术活动。例如,《猫头鹰》这个教材,就是在已给的猫头鹰轮廓基础上给猫头鹰涂色,并安装上眼睛(两只眼是睁开的,两只眼是闭着的),幼儿给猫头鹰涂上自己喜欢的颜色后,就可以玩游戏了。这样的内容和表现形式激发了幼儿美术活动的兴趣。
2.直观性原则。
美术活动本身就具有直观性,因为它是从鲜明的视觉形象来反映和接受客观事物的。幼儿在实物、图片、模型、范画、黑板等各种教具的使用下,能够训练幼儿的感受力,和逐步认识事物本质与特点的能力。
3.循序渐进的原则。
这是指给幼儿所选的教学内容要由浅入深,由易到难。幼儿的年龄和身心发展的特点要求我们进行美术教育时要有目的、有系统、循序渐进地不断提出新的教学要求,从而使幼儿的美术水平逐渐发展。例如,小班幼儿绘画是从画线团、画糖葫芦开始,到了大班就是可以想象画和意愿画。
4.因材施教原则。
幼儿园教育大纲一直是这样要求教育者要因材施教,在美术活动中也是要遵循这个原则进行教学。要从实际出发,面向大部分幼儿,提出统一的教学要求,在教学过程正确对待个别差异,根据幼儿的具体情况对幼儿进行正确的引导和培养。
二、幼儿园美术教育常用的方法
在遵循教育原则的基础上,根据幼儿年龄特点及美术教育本身的规律,对幼儿实施美术教育,常用的方法有:
1.观察法:
是指让幼儿有目的、有计划、比较持久地通过感官感知事物的一种方法。观察看似简单,其实,它包含了很大的学问。瓦特通过观察壶盖的跳动,发明了蒸汽机;人们从蜻蜓身上受到启迪,制造出直升飞机等,无不始于观察,在美术活动中观察是重要的学习手段。教给幼儿正确的观察方法可以为美术活动提供大量而丰富的内容和感性知识。教幼儿观察,首先,要明确目的;其次要有秩序,或有整体到局部,或由上及下,由外及内的观察方法。
例如,目的:通过观察金鱼画一幅金鱼的画;方法:可从整体到局部的观察方法,即先看鱼身体与尾巴在水中游动时的形态,在看眼、口、鳞、鱼鳍各在的位置及形态,在他们之间反复比较,经过这样的观察过程,找出鱼与鱼之间的异同。在动笔之前,最好用语言叙述出来,这样既锻炼了观察能力又提高了语言表达能力。当然,观察的方法也很多,观察实物之外,可以观察图片、作品等。
2.讲解法:
也叫运用语言。讲解即是口授法,在美术活动中可以运用语言对幼儿进行启发、讲解、描述等,让幼儿明确要求和表现方法,使幼儿有目的进行造型活动。随着幼儿想象力的发展,教师还可以运用语言艺术――讲故事,念儿歌、诗歌或者播放乐曲等启发幼儿的想象力,引起幼儿美好的情感。也可以结合实物、范例等进行讲解。例如,可以启发幼儿用连环画的方式,创造性的画出幼儿熟悉的“兔龟赛跑”、“一把红雨伞”等故事中的几个主要情节。
3.示范法(演示法):
示范是美术教学中的基本方法之一。什么是示范?是指教师用正确的动作、直观可视的造型活动,把美术活动的操作过程一步一步地做给幼儿看,教给幼儿美术活动的方法和顺序,使他们通过模仿,更好地掌握各种美术活动的技能,在示范的过程中必须伴随语言的讲解。例如:《画小鸡》教师可以边示范边讲解,第一步:鸡妈妈生了个大鸡蛋(画小鸡的身体)。第二步:小鸡用尖嘴啄破蛋壳,伸出小脑袋,用圆眼睛看周围(画头、嘴和眼睛)。第三步:小鸡学着站起来(画腿与爪子)。第四步:拍拍翅膀向前跑(画翅膀)。这样生动而形象地讲解加上缓慢、清晰、准确的演示,幼儿能够快速掌握画小鸡的基本要领,很容易的画出各种形态的小鸡。示范法在手工活动中应用更为有效。例如,手工《小拖把》,在讲解的同时操作制作步骤,在长条纸一边剪直条,在长条纸的另一边涂上浆糊,绕在小木棍上粘牢,将剪开处四处散开,这样一个小拖把就完成了。
4.范例法:
通常是教师在上课之前事先画好或制作好的范样或者实物、图片。在上课时正确出示给幼儿欣赏。使幼儿对所学的内容有一个印象和兴趣。例如,《夜空》这节课,要求幼儿学画背面人物,教师出示范例《看星星》。 幼儿通过看范例,知道背面人物的特点,很容易就掌握了基本的画法。 例如,泥工《养殖场》,教师出示范例(各种动物)后,幼儿通过观察直观范例,引发塑动物的兴趣,从而认真学习塑动物的方法。
5.游戏法:
游戏法就是让幼儿在游戏的情境中运用美术工具和材料进行美术活动。运用这种方法,幼儿学习起来毫无思想负担,能轻松自然愉快地获得知识和技能。例如,《小花被》要求幼儿做个“小娃娃盖被子” 。幼儿将各种色纸粘贴在白纸的反面坐被面,将纸剪娃娃粘贴在正面中间,然后学爸爸妈妈的样子,给娃娃盖上小花被,哄娃娃睡觉。这样,幼儿在不知不觉中就学习了撕纸和粘贴。在整个美术活动中,幼儿很喜欢用手去操作各种工具、材料,把活动过程作为游戏,把活动的成果当做玩具。例如,幼儿很认真的折叠飞机,把折叠本身当做游戏,折成后就玩飞机等等。游戏法是一种很好的教育方法,即运用游戏方法达到美术教学的要求,又用美术活动的成果开展游戏,调动了幼儿学习的积极性,使幼儿由被动学习变成主动学习,在轻松愉快的气氛中学习知识,从而使幼儿提高对美术的兴趣,发展幼儿的想象力等。
6.熏陶法:
萌发孩子感受美和表现美的情趣和能力,塑造孩子美好的心灵。(1)带孩子到大自然中去,引导幼儿感受大自然的美、陶冶情操。(2)多带孩子参观各种类型的展览馆、博物馆、风景名胜等,开阔幼儿眼界,培养美好情感。(3)引导孩子欣赏音乐、美术与可理解的文艺作品,培养初步的审美能力。(4)鼓励孩子用唱歌、舞蹈、绘画、手工等各种形式表达自己的感受与情感,发展孩子的想象力、创造力。
综上所述,美术教育不是简单的模仿教育,而是审美、艺术思维、开发智能的立体教育。因此,对当前的美术教育我们应该树立一个崭新的概念。评价幼儿绘画、手工、欣赏的标准,不是技能的高低,而是想象力丰富不丰富,创新思维活跃不活跃。当前素质教育已给我们指明了方向,我们要充分利用美术教育这一形式,帮助幼儿发展智力,提高能力,培养素质,全面发展,为未来社会的需要打下坚实的基础。
>>>下页带来更多的幼儿园美术教育方面的论文
[提要] 美术是一种造型艺术,是以线条、色彩、结构塑造形象的视觉艺术。幼儿美术活动的价值在于它不仅培养了幼儿的审美能力,同时也赋予了幼儿主动学习和发展创造能力的机会,培养了幼儿的创新意识。 就儿童而言,每个幼儿都有创造的潜力,学前儿童美术创作中的创造力是指创造出对其个人来说是全新的前所未有的想法或作品的能力,这种能力不仅在作品中反映出来,还从其创作的过程中显示出来,孩子的偶发奇想常常孕育着创造的火花,在孩子美术活动的过程中,创造是永恒的主旋律。 那么如何有效地促进幼儿创造力的培养呢?笔者认为: 一、观察了解幼儿,满足幼儿的表现需要。 1、了解幼儿活动开始时的兴趣,满足幼儿的表现需要。 2、了解幼儿活动过程中的状况,给予幼儿适时的指导。 二、充分尊重幼儿,还给幼儿自由、自主的活动空间。 1、信任幼儿,坚持艺术表现无对错。 2、减少规定,还给幼儿自由、自主的活动空间。 3、尊重幼儿,给儿童的活动提供一段不受评价的时期,使其自由想像不受阻碍。 三、帮助幼儿成为美术活动的真正主人。 1、通过各种途径丰富幼儿的经验。 2、引导幼儿掌握美术基本技能。 3、帮助幼儿进行创造性的画面表达。 [正 文] 美术是一种造型艺术,是以线条、色彩、 结构塑造形象的视觉艺术。美术以它的直观性、可视性、 形象生动对幼儿有很大的感染力, 幼儿美术活动的价值在于它不仅培养了幼儿的审美能力, 同时也赋予了幼儿主动学习和发展创造能力的机会,培养了幼儿的创新意识。 社会生活中,每个人都有表现自我和与人交流的需要, 对孩子来说,美术首先是孩子自我表现的一种方式, 在幼儿尚不能自如地运用语言文字这种成人约定俗成的文字符号系统与人交流时,美术成了他们表达思想、 宣泄情境、想象和创造他们自己世界的一种有效途径。 就儿童而言,每个幼儿都有创造的潜力,儿童的创造力是指创造出对其个人来说是全新的、前所未有的想法或作品的能力,在学前儿童美术发展过程中,从涂鸦期开始的乱涂,逐渐画出什么东西,并给它命名,到象征期为事物象征性地创造一个多半是不完整的、粗略的轮廊的形象,再到图画期用画来表达多种概念都显示出他们独特的创造力,这种能力不仅在作品中反映出来,还从其创作的过程中显示出来。在幼儿美术作品中,他们可以打破成人美术的条条框框,出现一些在成人看来既可笑又非常可爱的现象。这种超常规独特的现象,正体现出幼儿大胆的想象和神奇的创造力。在幼儿美术创作过程中,他们先是通过感官对外部世界审美客体有情感的感知,伴随审美经验在记忆中的储存,再经过手的技能运作活动,创造性地用作品来传达内心的活动。这一过程带有明显的个人色彩,概括地说,幼儿美术活动中的创造包括两方面:一类创造是实在的可视形象的创造。这就是我们常看到的儿童的绘画作品,手工作品中那些不合逻辑的构思、不合比例的造型、主观想像的色彩、随意安排的空间构图等。另一类创造是幼儿审美心理意象的创造,这是幼儿基于自身的审美需要和审美能力在特定具体的审美理解活动中的一种创造。《纲要》中的艺术领域对两类艺术创造都做了说明,并且特别强调审美心理意象的创造。指导要点里第二条指出“幼儿创作过程和作品是他们表达自己的认识和情感的重要方式,应支持幼儿富有个性和创造性的表达,克服过分强调技巧和标准要求的偏向”。内容与要求第三条也强调“尊重每个幼儿的想法和创造,肯定和接纳他们独特的审美感受和表现方式”。 综上所述,创造是幼儿美术活动的核心,是永恒不变的主旋律,那在美术活动中如何有效地促进幼儿创造力的培养呢?笔者以为: 一、观察了解幼儿,满足幼儿的创作需要。 实施教育,观察先行。作为活动的设计者和组织者,教师只有通过观察才能判断幼儿学得是否主动、 积极,才能真正了解幼儿的兴趣和需要。 1、了解幼儿活动开始时的兴趣, 满足幼儿的表现需要。 在美术活动中, 教师应运用有效的手段去了解幼儿的创作兴趣,灵活实施活动方案, 以适应幼儿的创作需要。如结合“三八”妇女节, 我们开展了《我爱妈妈》的命题画创作活动。多多(系化名)小朋友的爸爸、 妈妈都在美国, 多多根本没有和妈妈在一起的生活体验,所以他对这次的命题画毫无兴趣。我通过和他交谈, 发现他对星期天和奶奶游儿童乐园的场景津津乐道, 我就建议多多把它画下来,多多欣然接受, 在我的辅导下,一幅《快乐的星期天》跃然纸上, 画面上的多多神采飞扬。由此可见, 当幼儿认为老师的命题妨碍了他的表达方式,或是幼儿近日的生活体验中有他更感兴趣的、 更愿意表达的内容时, 老师可以通过和幼儿交谈或个别辅导,临时改变活动内容,去顺应幼儿的表现需要, 调动幼儿创作的积极性, 尽可能为每个幼儿提供从自己的兴趣出发进行学习的机会。 因为“兴趣”往往是孩子主动创造学习的源动力。 2、了解幼儿活动过程中的状况, 给予幼儿适时的指导。 在美术活动过程中,幼儿会遇到这样或那样的问题,产生这样或那样的需要,有的需要具体的指导, 有的需要的只是鼓励和支持。例如绘画《马路上的汽车》, 有一位小朋友在宽阔的马路上画上了公共汽车、 大卡车,后来,他很想再画一辆洒水车,可尝试了几次都画不好,反而使画面更加凌乱,最后他决定放弃。这时, 我及时引导他把洒水车和其它汽车进行比较, 找出其共同点和不同点,鼓励他再试一试, 由于我的及时鼓励和指导,这位小朋友再一次有了创作热情,最后他成功了。 因此,教师只有仔细观察幼儿的创作过程, 才能了解幼儿何时需要何种支持、鼓励和帮助, 以避免幼儿产生畏难情绪,进而对美术创作失去兴趣, 影响幼儿的发展。 二、充分尊重幼儿,还给幼儿自由、 自主的活动空间。 心理学家罗杰期认为“有利于创造活动的一般条件是心理的安全和心理的自由”。这就是说,宽松的心理环境是人们发挥创造性的前提。一些研究也表明,在心情良好的状态下人的思路开阔、思维敏捷,解决问题迅速,而心情低沉或郁闷时,则思路堵塞、操作迟缓,无创造性可言,对于幼儿来说,一个宽松的心理环境来自于教师的信任尊重。 1、信任幼儿,坚持艺术表现无对错。 幼儿在进行美术活动时,要把他们的所见、 所想、所感通过视觉媒介转化成为自己的作品, 他们不是按照事物的原型如实地复制, 而是创造出与他们想要表现的事物具有相同特征或结构的形象, 这其间有幼儿自己对事物的理解、经验,也有在经验之上的想象、 创造的参与。 《幼儿园教育指导纲要》艺术领域内容与要求第三条指出“提供自由表现的机会,鼓励幼儿用不同艺术形式大胆地表达自己的情感、理解和想像,尊重每个幼儿的的想法和创造, 肯定和接纳他们独特的审美感受和表现方式, 分享他们创造的快乐。 ”所以在美术活动中教师应鼓励幼儿毫无拘束地表现自己的内心情感, 尊重每个幼儿的个性表现及艺术创作,让每个幼儿都能享受成功的欢乐, 始终坚持艺术表现没有对错之分, 因为孩子绘画的表现方式本来就没有外在的标准,即使最简单的线条, 也能被用来表现很复杂的事物,例如:一次秋游结束, 我组织幼儿用笔把自己途中看到的美丽景色画下来, 有的小朋友画了秋天美丽的菊花,有的画了秋天丰收的水果, 有的画了秋天的公园、小朋友在拾落叶等等, 这些幼儿的绘画作品构图合理,色彩明快,线条运用得也较流畅, 基本上能反映秋天的特征,也符合活动的目标。 于是在布置画展时,我将这些作品挂在醒目的地方,并组织幼儿评价, 给予了充分的肯定。 岂料,这时, 贝贝(系化名)小朋友说:“老师,你为什么不表扬我呢?”其实, 最初我已经考虑尽量把全班小朋友的画都展示出来, 只因为贝贝的画实在看不出内容,乱七八糟的线,有的红、有的黄、有的灰, 依稀可辨几片树叶。所以这次就没有把他的画拿出去。 听他这么一说,我把他的画拿出来。“贝贝, 没有展示你的画是老师的疏忽,不过你能不能跟小朋友讲一讲, 你画的是什么? ”贝贝拿着他的绘画作品大声地说:“我画的是秋天的风,秋天的风是金黄色的, 它把树叶吹黄了;秋天的风是灰色的,因为它吹在身上有点儿冷; 秋天的风还是红色的,因为它把苹果吹红了。 ”听了他的介绍,我瞠目结舌, 原来“乱七八糟”里面还有这么丰富的内容,秋天的风竟然也能画得这么精彩! 不拘一格的表现方式正是幼儿创造性的表现呀! 又如:一次写生活动《电视机》, 在引导幼儿观察了电视机的外形特征之后,幼儿开始作画,只见玲玲(系化名)小朋友画的电视机上还装上了两个轮子, 当我问她为什么给汽车装上轮子时, 玲玲回答说:“电视机太重了,奶奶想搬搬不动,装上轮子就省劲多了, 连我也能推动哩!”听了她的一番解释,我不禁咋舌, 孩子的想象真是我们大人无法企及呀! 我及时鼓励了她的大胆想象,而没有以成人的眼光去看待她的作品, 因为创造力正是萌芽于孩子天真浪漫的幻想之中, 他们的偶发奇想常常孕育着创造的火花, 对于孩子来说绘画最重要的价值是使孩子蕴藏的创造力能够得到充分的发挥, 说不定哪天电视机就真的给装上轮子哩! 2、减少规定 ,还给幼儿自由、自主的活动空间。 人人生而具有创造性,但不一定都能表现出来, 它需要自由的空气、激励的土壤。过多、过细、过于整齐划一的限制必会阻碍创造力的发挥。在美术活动中,教师应尽可能减少规定让 幼儿根据自己的兴趣、需要决择并有创造的自由, 才能尽情地抒发自己的感受,进行大胆的创作。 譬如在以“金色的秋天”为主题的美术活动中,我先带领幼儿秋游, 丰富幼儿的感性经验, 然后引导幼儿想象秋天丰收的景色,最后与幼儿一起讨论创作计划, 如“你打算表现秋天的什么”、“你准备选择什么样的材料”、 “你想运用什么方法”等等,让幼儿自己设定创作内容, 自由选择创作材料,有的幼儿选择了多彩的橡皮泥, 说要用橡皮泥制作秋天的各种水果,有的对绘画情有独钟, 有的是多管齐下,又是折又是剪又是贴。在我们的鼓励下, 幼儿不断创新,一幅幅集画、折、剪、贴为一体的错落有致、生动活泼的秋天呈现在我们的面前。纵观整个创作过程,幼儿极其投入,注入了满腔热情。由此可知, 教师应帮助幼儿考虑自己的计划, 并让幼儿按自己的方式和意愿去尝试创作,并给予充分的创作时间, 这将对幼儿的发展产生积极的影响,有助于幼儿创新意识的形成。 3、尊重幼儿, 给儿童的活动提供一段不受评价的时期,使其自由想像不受阻碍。 即不轻易评价幼儿的创新成果,这样会给他们的创造心理带来安全感,消除其怕受评判的紧张情绪,以使他们无所顾忌地自由创造。在教育活动中常有这样一种做法:教师在巡回指导时,觉得某一位幼儿创作的作品不错,于是就将他的作品拿起给其他儿童看,其实这是一种不适宜的教育行为。它既打断了创作者的思路,又为其它的幼儿提供了模仿的对象,阻碍了幼儿创造力的发挥。因此,给幼儿提供一段不受评价的时期,这是儿童发挥创造力不可缺少的条件。在尊重、信任、容许、赞美的环境中,幼儿消除胆怯和依赖心理,从而能够积极主动地参与到活动中,进行积极的探索,发挥出创造的潜能。 三、帮助幼儿真正成为美术活动的主人。 1、通过各种途径丰富幼儿的经验。 丰富的经验是从事艺术创作的原材料。美术心理学的研究表明 ,来自现实生活本身并且经过创作者亲身体验过的知觉材料远比间接的知觉刺激重要得多。因此,教师可以通过多种途径丰富幼儿的日常生活经验,扩大他们的知识面。教师可以经常带幼儿走出幼儿园,通过参观、散步、郊游等方式去亲近自然、了解社会,平时可以为幼儿选择一些适合他们年龄特点、有趣的、另被他们理解的美术作品,引导他们去欣赏,丰富幼儿的审美经验。 2、引导幼儿掌握美术基本技能。 美术是一种符号系统,幼儿在借助于这一符号系统进行情感表达时,必然受制于他们所使用的美术媒介。在美术活动中,有的孩子会因为美术技能的限制,不善于或是不能将自己想要描绘的事物表现出来,这时孩子可能因不会画而变得不愿画,他的创作欲望就会爱到压抑。 《幼儿园教育指导纲要》艺术领域内容与要求第四条提出“在支持鼓励幼儿积极参加各种艺术活动并大胆地表现的同时,帮助他们提高表现的技能和能力”,指导要点第三条也提出“根据幼儿的发展状况和需要,对表现方式和技能技巧给予适时适当的指导。”所以帮助幼儿掌握美术基本技能,并创造性地运用于自己的创作中,显然是必须的。 教师在引导幼儿学习美术基本技能时要注意教学方法的使用。可多运用启发式教学,侧重运用观察、体验、联想、欣赏等方式进行,重在帮助幼儿掌握运用各种美术工具、材料的方法。 3、帮助幼儿进行创造性的画面表达。 画面表达是指儿童通过美术的工具和材料,把知觉和体验到的东西用造型、色彩和构图等艺术语言表达出来。教师应遵循幼儿身心发展的特点,引导幼儿从表现对象的整体结构出发,着重于事物的神韵。例如,创作“放风筝”,需要学习画动态的侧面人物,表现小朋友放风筝的快乐场景。我没有直接去说教怎样画,而是先带幼儿去放风筝,引导幼儿观察同伴放风筝时的神态、动作,并与静态的侧面人物作比较,找出其不同点。让幼儿体验放风筝的乐趣,在此基础上再指导他们创作“放风筝”,鼓励多样化、个性化的表现形式,发现幼儿新颖、独特、富有情趣的想法,随时加以肯定,促使他们进一步完善,这样有利于幼儿主动性、创造性的发挥。 参考文献: 1、《幼儿园教育指导纲要(试行)》,艺术 2、《学前儿童音乐与美术教育》,苏州大学出版社,2001 3、《学前儿童艺术综合教育研究》,北京师范大学出版社,1997 4、《学前儿童美术教育》,北京师范大学出版社,1999 06学前教育网版权所有,采集或转载请注明出处,文章来源: