首页

> 学术期刊知识库

首页 学术期刊知识库 问题

物体识别技术论文

发布时间:

物体识别技术论文

之前也是为论文苦恼了半天,网上的范文和能搜到的资料,大都不全面,一般能有个正文就不错了,而且抄袭的东西肯定不行的,关键是没有数据和分析部分,我好不容易搞出来一篇,结果还过不了审。 还好后来找到文方网,直接让专业人士帮忙,效率很高,核心的部分帮我搞定了,也给了很多参考文献资料。哎,专业的事还是要找专业的人来做啊,建议有问题参考下文方网吧 下面是之前文方网王老师发给我的题目,分享给大家: 基于深度学习的无人机地面小目标算法研究 基于视觉的智能汽车面向前方车辆的运动轨迹预测技术研究 模拟射击训练弹着点检测定位技术研究 基于深度卷积神经网络的空中目标识别算法的研究 基于可见光图像的飞行器多目标识别及位置估计 无人驾驶车辆手势指令识别研究与实现 车载毫米波雷达目标检测技术研究 基于多传感融合的四足机器人建图方法 中老年人群跌倒风险评估的数据采集系统 基于深度学习的视觉SLAM闭环检测方法研究 真实图片比较视觉搜索任务的年龄效应及对策研究 室内复杂场景下的视觉SLAM系统构建与研究 基于双目内窥镜的软组织图像三维重建 学习资源画面色彩表征影响学习注意的研究 毫米波雷达与机器视觉双模探测关键技术的研究 语义地图及其关键技术研究 多重影响因素下的语音识别系统研究 基于卷积神经网络的自主空中加油识别测量技术研究 基于视觉语义的深度估计、实例分割与重建 重复视觉危险刺激——本能恐惧反应的“二态型”调控机制研究 低成本视觉下的三维物体识别与位姿估计 面向非规则目标的3D视觉引导抓取方法及系统研究 基于物体识别地理配准的跨视频行人检测定位技术研究 基于结构光的非刚体目标快速三维重建关键技术研究 基于机器视觉的动物交互行为与认知状态分析系统 关于单目视觉实时定位与建图中的优化算法研究 动态场景下无人机SLAM在智慧城市中的关键技术研究 面向视觉SLAM的联合特征匹配和跟踪算法研究 基于深度学习的显著物体检测 基于平面波的三维超声成像方法与灵长类动物脑成像应用研究 基于物体检测和地理匹配的室内融合定位技术研究 基于多模态信息融合的人体动作识别方法研究 基于视觉惯性里程计的SLAM系统研究 基于语义信息的图像/点云配准与三维重建 基于种子点选取的点云分割算法研究 基于深度学习的场景文字检测与识别方法研究 基于运动上下文信息学习的室内视频烟雾预警算法研究 基于深度学习的垃圾分类系统设计与实现 面向手机部件的目标区域检测算法的设计与实现 电路板自动光照检测系统的设计与实现 基于机器视觉的工件识别与定位系统的设计与实现 基于深度学习的物件识别定位系统的设计与实现 基于视觉四旋翼无人机编队系统设计及实现 基于视觉惯导融合的四旋翼自主导航系统设计与实现 面向城市智能汽车的认知地图车道层生成系统 基于深度学习的智能化无人机视觉系统的设计与仿真 基于知识库的视觉问答技术研究 基于深度学习的火灾视频实时智能检测研究 结构化道路车道线检测方法研究 基于机器视觉的带式输送机动态煤量计量研究 基于深度学习的小目标检测算法研究 基于三维激光与视觉信息融合的地点检索算法研究 动态环境下仿人机器人视觉定位与运动规划方法研究 瓷砖铺贴机器人瓷砖空间定位系统研究 城市街景影像中行人车辆检测实现 基于无线信号的身份识别技术研究 基于移动机器人的目标检测方法研究 基于深度学习的机器人三维环境对象感知 基于特征表示的扩展目标跟踪技术研究 基于深度学习的目标检测方法研究 基于深度学习的复杂背景下目标检测与跟踪 动态扩展目标的高精度特征定位跟踪技术研究 掩模缺陷检测仪的图像处理系统设计 复杂场景下相关滤波跟踪算法研究 基于多层级联网络的多光谱图像显著性检测研究 基于深度结构特征表示学习的视觉跟踪研究 基于深度网络的显著目标检测方法研究 基于深度学习的电气设备检测方法研究 复杂交通场景下的视频目标检测 基于多图学习的多模态图像显著性检测算法研究 基于面部视频的非接触式心率检测研究 单幅图像协同显著性检测方法研究 轻量级人脸关键点检测算法研究 基于决策树和最佳特征选择的神经网络钓鱼网站检测研究 基于深度学习的场景文本检测方法研究 RGB-D图像显著及协同显著区域检测算法研究 多模态融合的RGB-D图像显著目标检测研究 基于协同排序模型的RGBT显著性检测研究 基于最小障碍距离的视觉跟踪研究 基于协同图学习的RGB-T图像显著性检测研究 基于图学习与标签传播优化模型的图像协同显著性目标检测 姿态和遮挡鲁棒的人脸关键点检测算法研究 基于多模态和多任务学习的显著目标检测方法研究 基于深度学习的交通场景视觉显著性区域目标检测 基于生物视觉机制的视频显著目标检测算法研究 基于场景结构的视觉显著性计算方法研究 精神分裂症患者初级视觉网络的磁共振研究 基于fMRI与TMS技术研究腹侧视觉通路中结构优势效应的加工 脑机接口游戏神经可塑性研究 基于YOLOV3算法的FL-YOLO多目标检测系统 基于深度与宽度神经网络显著性检测方法研究 基于深度学习的零件识别系统设计与研究 基于对抗神经网络的图像超分辨算法研究 基于深度学习复杂场景下停车管理视觉算法的研究与实现 镍电解状态视觉检测与分析方法研究 跨界训练对提升舞者静态平衡能力的理论与方法研究 施工现场人员类型识别方法的研究与实现 基于深度学习的自然场景文字检测方法研究 基于嵌入式的交通标志识别器的设计 基于视觉感知特性与图像特征的图像质量评价

这两天在公司做PM实习,主要是自学一些CV的知识,以了解产品在解决一些在图像识别、图像搜索方面的问题,学习的主要方式是在知网检索了篇国内近3年计算机视觉和物体识别的硕博士论文。由于时间关系,后面还会继续更新图片相似度计算(以图搜图)等方面的学习成果    将这两天的学习成果在这里总结一下。你将会看到计算机视觉在解决特定物体识别问题(主要是卷积神经网络CNNs)的基础过程和原理,但这里不会深入到技术的实现层面。

计算机视觉(Computer vision)是一门研究如何使机器“看”的科学,更进一步的说,就是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成为更适合人眼观察或传送给仪器检测的图像。                                          ————维基百科   通常而言,计算机视觉的研究包括三个层次: (1)底层特征的研究:   这一层次的研究主要聚焦如何高效提取出图像对象具有判别性能的特征,具体的研究内容通常包括:物体识别、字符识别等 (2)中层语义特征的研究:    该层次的研究在于在识别出对象的基础上,对其位置、边缘等信息能够准确区分。现在比较热门的:图像分割;语义分割;场景标注等,都属于该领域的范畴 (3)高层语义理解:   这一层次建立在前两层的基础上,其核心在于“理解”一词。 目标在于对复杂图像中的各个对象完成语义级别的理解。这一层次的研究常常应用于:场景识别、图像摘要生成及图像语义回答等。   而我研究的问题主要隶属于底层特征和中层语义特征研究中的物体识别和场景标注问题。

人类的视觉工作模式是这样的:    首先,我们大脑中的神经元接收到大量的信息微粒,但我们的大脑还并不能处理它们。    于是接着神经元与神经元之间交互将大量的微粒信息整合成一条又一条的线。    接着,无数条线又整合成一个个轮廓。    最后多个轮廓累加终于聚合我们现在眼前看到的样子。   计算机科学受到神经科学的启发,也采用了类似的工作方式。具体而言,图像识别问题一般都遵循下面几个流程

(1)获取底层信息。获取充分且清洁的高质量数据往往是图像识别工作能否成功的关键所在   (2)数据预处理工作,在图像识别领域主要包括四个方面的技术:去噪处理(提升信噪比)、图像增强和图像修复(主要针对不够清晰或有破损缺失的图像);归一化处理(一方面是为了减少开销、提高算法的性能,另一方面则是为了能成功使用深度学习等算法,这类算法必须使用归一化数据)。   (3)特征提取,这一点是该领域的核心,也是本文的核心。图像识别的基础是能够提取出足够高质量,能体现图像独特性和区分度的特征。   过去在10年代之前我们主要还是更多的使用传统的人工特征提取方法,如PCA\LCA等来提取一些人工设计的特征,主要的方法有(HOG、LBP以及十分著名的SIFT算法)。但是这些方法普遍存在(a)一般基于图像的一些提层特征信息(如色彩、纹理等)难以表达复杂的图像高层语义,故泛化能力普遍比较弱。(b)这些方法一般都针对特定领域的特定应用设计,泛化能力和迁移的能力大多比较弱。   另外一种思路是使用BP方法,但是毕竟BP方法是一个全连接的神经网络。这以为这我们非常容易发生过拟合问题(每个元素都要负责底层的所有参数),另外也不能根据样本对训练过程进行优化,实在是费时又费力。   因此,一些研究者开始尝试把诸如神经网络、深度学习等方法运用到特征提取的过程中,以十几年前深度学习方法在业界最重要的比赛ImageNet中第一次战胜了SIFT算法为分界线,由于其使用权重共享和特征降采样,充分利用了数据的特征。几乎每次比赛的冠军和主流都被深度学习算法及其各自改进型所占领。其中,目前使用较多又最为主流的是CNN算法,在第四部分主要也研究CNN方法的机理。

上图是一个简易的神经网络,只有一层隐含层,而且是全连接的(如图,上一层的每个节点都要对下一层的每个节点负责。)具体神经元与神经元的作用过程可见下图。

在诸多传统的神经网络中,BP算法可能是性能最好、应用最广泛的算法之一了。其核心思想是:导入训练样本、计算期望值和实际值之间的差值,不断地调整权重,使得误差减少的规定值的范围内。其具体过程如下图:

一般来说,机器学习又分成浅层学习和深度学习。传统的机器学习算法,如SVM、贝叶斯、神经网络等都属于浅层模型,其特点是只有一个隐含层。逻辑简单易懂、但是其存在理论上缺乏深度、训练时间较长、参数很大程度上依赖经验和运气等问题。   如果是有多个隐含层的多层神经网络(一般定义为大于5层),那么我们将把这个模型称为深度学习,其往往也和分层训练配套使用。这也是目前AI最火的领域之一了。如果是浅层模型的问题在于对一个复杂函数的表示能力不够,特别是在复杂问题分类情况上容易出现分类不足的弊端,深度网络的优势则在于其多层的架构可以分层表示逻辑,这样就可以用简单的方法表示出复杂的问题,一个简单的例子是:   如果我们想计算sin(cos(log(exp(x)))),   那么深度学习则可分层表示为exp(x)—>log(x)—>cos(x)—>sin(x)

图像识别问题是物体识别的一个子问题,其鲁棒性往往是解决该类问题一个非常重要的指标,该指标是指分类结果对于传入数据中的一些转化和扭曲具有保持不变的特性。这些转化和扭曲具体主要包括了: (1)噪音(2)尺度变化(3)旋转(4)光线变化(5)位移

该部分具体的内容,想要快速理解原理的话推荐看[知乎相关文章] ( ),   特别是其中有些高赞回答中都有很多动图和动画,非常有助于理解。   但核心而言,CNN的核心优势在于 共享权重 以及 感受野 ,减少了网络的参数,实现了更快的训练速度和同样预测结果下更少的训练样本,而且相对于人工方法,一般使用深度学习实现的CNN算法使用无监督学习,其也不需要手工提取特征。

CNN算法的过程给我的感觉,个人很像一个“擦玻璃”的过程。其技术主要包括了三个特性:局部感知、权重共享和池化。

CNN中的神经元主要分成了两种: (a)用于特征提取的S元,它们一起组成了卷积层,用于对于图片中的每一个特征首先局部感知。其又包含很关键的阈值参数(控制输出对输入的反映敏感度)和感受野参数(决定了从输入层中提取多大的空间进行输入,可以简单理解为擦玻璃的抹布有多大) (b)抗形变的C元,它们一起组成了池化层,也被称为欠采样或下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的容错性。 (c*)激活函数,及卷积层输出的结果要经过一次激励函数才会映射到池化层中,主要的激活函数有Sigmoid函数、Tanh函数、ReLU、Leaky ReLU、ELU、Maxout等。

也许你会抱有疑问,CNN算法和传统的BP算法等究竟有什么区别呢。这就会引出区域感受野的概念。在前面我们提到,一个全连接中,较高一层的每个神经元要对低层的每一个神经元负责,从而导致了过拟合和维度灾难的问题。但是有了区域感受野和,每个神经元只需要记录一个小区域,而高层会把这些信息综合起来,从而解决了全连接的问题。

了解区域感受野后,你也许会想,区域感受野的底层神经元具体是怎么聚合信息映射到上一层的神经元呢,这就要提到重要的卷积核的概念。这个过程非常像上面曾提到的“神经元与神经元的联系”一图,下面给大家一个很直观的理解。

上面的这个过程就被称为一个卷积核。在实际应用中,单特征不足以被系统学习分类,因此我们往往会使用多个滤波器,每个滤波器对应1个卷积核,也对应了一个不同的特征。比如:我们现在有一个人脸识别应用,我们使用一个卷积核提取出眼睛的特征,然后使用另一个卷积核提取出鼻子的特征,再用一个卷积核提取出嘴巴的特征,最后高层把这些信息聚合起来,就形成了分辨一个人与另一个人不同的判断特征。

现在我们已经有了区域感受野,也已经了解了卷积核的概念。但你会发现在实际应用中还是有问题:   给一个100 100的参数空间,假设我们的感受野大小是10 10,那么一共有squar(1000-10+1)个,即10的六次方个感受野。每个感受野中就有100个参数特征,及时每个感受野只对应一个卷积核,那么空间内也会有10的八次方个次数,,更何况我们常常使用很多个卷积核。巨大的参数要求我们还需要进一步减少权重参数,这就引出了权重共享的概念。    用一句话概括就是,对同一个特征图,每个感受野的卷积核是一样的,如这样操作后上例只需要100个参数。

池化是CNN技术的最后一个特性,其基本思想是: 一块区域有用的图像特征,在另一块相似的区域中很可能仍然有用。即我们通过卷积得到了大量的边缘EDGE数据,但往往相邻的边缘具有相似的特性,就好像我们已经得到了一个强边缘,再拥有大量相似的次边缘特征其实是没有太大增量价值的,因为这样会使得系统里充斥大量冗余信息消耗计算资源。 具体而言,池化层把语义上相似的特征合并起来,通过池化操作减少卷积层输出的特征向量,减少了参数,缓解了过拟合问题。常见的池化操作主要包括3种: 分别是最大值池化(保留了图像的纹理特征)、均值池化(保留了图像的整体特征)和随机值池化。该技术的弊端是容易过快减小数据尺寸,目前趋势是用其他方法代替池化的作用,比如胶囊网络推荐采用动态路由来代替传统池化方法,原因是池化会带来一定程度上表征的位移不变性,传统观点认为这是一个优势,但是胶囊网络的作者Hinton et al.认为图像中位置信息是应该保留的有价值信息,利用特别的聚类评分算法和动态路由的方式可以学习到更高级且灵活的表征,有望冲破目前卷积网络构架的瓶颈。

CNN总体来说是一种结构,其包含了多种网络模型结构,数目繁多的的网络模型结构决定了数据拟合能力和泛化能力的差异。其中的复杂性对用户的技术能力有较高的要求。此外,CNN仍然没有很好的解决过拟合问题和计算速度较慢的问题。

该部分的核心参考文献: 《深度学习在图像识别中的应用研究综述》郑远攀,李广阳,李晔.[J].计算机工程与应用,2019,55(12):20-36.   深度学习技术在计算机图像识别方面的领域应用研究是目前以及可预见的未来的主流趋势,在这里首先对深度学习的基本概念作一简介,其次对深度学习常用的结构模型进行概述说明,主要简述了深度信念网络(DBN)、卷积神经网络(CNN)、循环神经网络(RNN)、生成式对抗网络(GAN)、胶囊网络(CapsNet)以及对各个深度模型的改进模型做一对比分析。

深度学习按照学习架构可分为生成架构、判别架构及混合架构。 其生成架构模型主要包括:   受限波尔兹曼机、自编码器、深层信念网络等。判别架构模型主要包括:深层前馈网络、卷积神经网络等。混合架构模型则是这两种架构的集合。深度学习按数据是否具有标签可分为非监督学习与监督学习。非监督学习方法主要包括:受限玻尔兹曼机、自动编码器、深层信念网络、深层玻尔兹曼机等。   监督学习方法主要包括:深层感知器、深层前馈网络、卷积神经网络、深层堆叠网络、循环神经网络等。大量实验研究表明,监督学习与非监督学习之间无明确的界限,如:深度信念网络在训练过程中既用到监督学习方法又涉及非监督学习方法。

[1]周彬. 多视图视觉检测关键技术及其应用研究[D].浙江大学,2019. [2]郑远攀,李广阳,李晔.深度学习在图像识别中的应用研究综述[J].计算机工程与应用,2019,55(12):20-36. [3]逄淑超. 深度学习在计算机视觉领域的若干关键技术研究[D].吉林大学,2017. [4]段萌. 基于卷积神经网络的图像识别方法研究[D].郑州大学,2017. [5]李彦冬. 基于卷积神经网络的计算机视觉关键技术研究[D].电子科技大学,2017. [6]李卫. 深度学习在图像识别中的研究及应用[D].武汉理工大学,2014. [7]许可. 卷积神经网络在图像识别上的应用的研究[D].浙江大学,2012. [8]CSDN、知乎、机器之心、维基百科

物体识别与检测论文

这两天在公司做PM实习,主要是自学一些CV的知识,以了解产品在解决一些在图像识别、图像搜索方面的问题,学习的主要方式是在知网检索了篇国内近3年计算机视觉和物体识别的硕博士论文。由于时间关系,后面还会继续更新图片相似度计算(以图搜图)等方面的学习成果    将这两天的学习成果在这里总结一下。你将会看到计算机视觉在解决特定物体识别问题(主要是卷积神经网络CNNs)的基础过程和原理,但这里不会深入到技术的实现层面。

计算机视觉(Computer vision)是一门研究如何使机器“看”的科学,更进一步的说,就是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成为更适合人眼观察或传送给仪器检测的图像。                                          ————维基百科   通常而言,计算机视觉的研究包括三个层次: (1)底层特征的研究:   这一层次的研究主要聚焦如何高效提取出图像对象具有判别性能的特征,具体的研究内容通常包括:物体识别、字符识别等 (2)中层语义特征的研究:    该层次的研究在于在识别出对象的基础上,对其位置、边缘等信息能够准确区分。现在比较热门的:图像分割;语义分割;场景标注等,都属于该领域的范畴 (3)高层语义理解:   这一层次建立在前两层的基础上,其核心在于“理解”一词。 目标在于对复杂图像中的各个对象完成语义级别的理解。这一层次的研究常常应用于:场景识别、图像摘要生成及图像语义回答等。   而我研究的问题主要隶属于底层特征和中层语义特征研究中的物体识别和场景标注问题。

人类的视觉工作模式是这样的:    首先,我们大脑中的神经元接收到大量的信息微粒,但我们的大脑还并不能处理它们。    于是接着神经元与神经元之间交互将大量的微粒信息整合成一条又一条的线。    接着,无数条线又整合成一个个轮廓。    最后多个轮廓累加终于聚合我们现在眼前看到的样子。   计算机科学受到神经科学的启发,也采用了类似的工作方式。具体而言,图像识别问题一般都遵循下面几个流程

(1)获取底层信息。获取充分且清洁的高质量数据往往是图像识别工作能否成功的关键所在   (2)数据预处理工作,在图像识别领域主要包括四个方面的技术:去噪处理(提升信噪比)、图像增强和图像修复(主要针对不够清晰或有破损缺失的图像);归一化处理(一方面是为了减少开销、提高算法的性能,另一方面则是为了能成功使用深度学习等算法,这类算法必须使用归一化数据)。   (3)特征提取,这一点是该领域的核心,也是本文的核心。图像识别的基础是能够提取出足够高质量,能体现图像独特性和区分度的特征。   过去在10年代之前我们主要还是更多的使用传统的人工特征提取方法,如PCA\LCA等来提取一些人工设计的特征,主要的方法有(HOG、LBP以及十分著名的SIFT算法)。但是这些方法普遍存在(a)一般基于图像的一些提层特征信息(如色彩、纹理等)难以表达复杂的图像高层语义,故泛化能力普遍比较弱。(b)这些方法一般都针对特定领域的特定应用设计,泛化能力和迁移的能力大多比较弱。   另外一种思路是使用BP方法,但是毕竟BP方法是一个全连接的神经网络。这以为这我们非常容易发生过拟合问题(每个元素都要负责底层的所有参数),另外也不能根据样本对训练过程进行优化,实在是费时又费力。   因此,一些研究者开始尝试把诸如神经网络、深度学习等方法运用到特征提取的过程中,以十几年前深度学习方法在业界最重要的比赛ImageNet中第一次战胜了SIFT算法为分界线,由于其使用权重共享和特征降采样,充分利用了数据的特征。几乎每次比赛的冠军和主流都被深度学习算法及其各自改进型所占领。其中,目前使用较多又最为主流的是CNN算法,在第四部分主要也研究CNN方法的机理。

上图是一个简易的神经网络,只有一层隐含层,而且是全连接的(如图,上一层的每个节点都要对下一层的每个节点负责。)具体神经元与神经元的作用过程可见下图。

在诸多传统的神经网络中,BP算法可能是性能最好、应用最广泛的算法之一了。其核心思想是:导入训练样本、计算期望值和实际值之间的差值,不断地调整权重,使得误差减少的规定值的范围内。其具体过程如下图:

一般来说,机器学习又分成浅层学习和深度学习。传统的机器学习算法,如SVM、贝叶斯、神经网络等都属于浅层模型,其特点是只有一个隐含层。逻辑简单易懂、但是其存在理论上缺乏深度、训练时间较长、参数很大程度上依赖经验和运气等问题。   如果是有多个隐含层的多层神经网络(一般定义为大于5层),那么我们将把这个模型称为深度学习,其往往也和分层训练配套使用。这也是目前AI最火的领域之一了。如果是浅层模型的问题在于对一个复杂函数的表示能力不够,特别是在复杂问题分类情况上容易出现分类不足的弊端,深度网络的优势则在于其多层的架构可以分层表示逻辑,这样就可以用简单的方法表示出复杂的问题,一个简单的例子是:   如果我们想计算sin(cos(log(exp(x)))),   那么深度学习则可分层表示为exp(x)—>log(x)—>cos(x)—>sin(x)

图像识别问题是物体识别的一个子问题,其鲁棒性往往是解决该类问题一个非常重要的指标,该指标是指分类结果对于传入数据中的一些转化和扭曲具有保持不变的特性。这些转化和扭曲具体主要包括了: (1)噪音(2)尺度变化(3)旋转(4)光线变化(5)位移

该部分具体的内容,想要快速理解原理的话推荐看[知乎相关文章] ( ),   特别是其中有些高赞回答中都有很多动图和动画,非常有助于理解。   但核心而言,CNN的核心优势在于 共享权重 以及 感受野 ,减少了网络的参数,实现了更快的训练速度和同样预测结果下更少的训练样本,而且相对于人工方法,一般使用深度学习实现的CNN算法使用无监督学习,其也不需要手工提取特征。

CNN算法的过程给我的感觉,个人很像一个“擦玻璃”的过程。其技术主要包括了三个特性:局部感知、权重共享和池化。

CNN中的神经元主要分成了两种: (a)用于特征提取的S元,它们一起组成了卷积层,用于对于图片中的每一个特征首先局部感知。其又包含很关键的阈值参数(控制输出对输入的反映敏感度)和感受野参数(决定了从输入层中提取多大的空间进行输入,可以简单理解为擦玻璃的抹布有多大) (b)抗形变的C元,它们一起组成了池化层,也被称为欠采样或下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的容错性。 (c*)激活函数,及卷积层输出的结果要经过一次激励函数才会映射到池化层中,主要的激活函数有Sigmoid函数、Tanh函数、ReLU、Leaky ReLU、ELU、Maxout等。

也许你会抱有疑问,CNN算法和传统的BP算法等究竟有什么区别呢。这就会引出区域感受野的概念。在前面我们提到,一个全连接中,较高一层的每个神经元要对低层的每一个神经元负责,从而导致了过拟合和维度灾难的问题。但是有了区域感受野和,每个神经元只需要记录一个小区域,而高层会把这些信息综合起来,从而解决了全连接的问题。

了解区域感受野后,你也许会想,区域感受野的底层神经元具体是怎么聚合信息映射到上一层的神经元呢,这就要提到重要的卷积核的概念。这个过程非常像上面曾提到的“神经元与神经元的联系”一图,下面给大家一个很直观的理解。

上面的这个过程就被称为一个卷积核。在实际应用中,单特征不足以被系统学习分类,因此我们往往会使用多个滤波器,每个滤波器对应1个卷积核,也对应了一个不同的特征。比如:我们现在有一个人脸识别应用,我们使用一个卷积核提取出眼睛的特征,然后使用另一个卷积核提取出鼻子的特征,再用一个卷积核提取出嘴巴的特征,最后高层把这些信息聚合起来,就形成了分辨一个人与另一个人不同的判断特征。

现在我们已经有了区域感受野,也已经了解了卷积核的概念。但你会发现在实际应用中还是有问题:   给一个100 100的参数空间,假设我们的感受野大小是10 10,那么一共有squar(1000-10+1)个,即10的六次方个感受野。每个感受野中就有100个参数特征,及时每个感受野只对应一个卷积核,那么空间内也会有10的八次方个次数,,更何况我们常常使用很多个卷积核。巨大的参数要求我们还需要进一步减少权重参数,这就引出了权重共享的概念。    用一句话概括就是,对同一个特征图,每个感受野的卷积核是一样的,如这样操作后上例只需要100个参数。

池化是CNN技术的最后一个特性,其基本思想是: 一块区域有用的图像特征,在另一块相似的区域中很可能仍然有用。即我们通过卷积得到了大量的边缘EDGE数据,但往往相邻的边缘具有相似的特性,就好像我们已经得到了一个强边缘,再拥有大量相似的次边缘特征其实是没有太大增量价值的,因为这样会使得系统里充斥大量冗余信息消耗计算资源。 具体而言,池化层把语义上相似的特征合并起来,通过池化操作减少卷积层输出的特征向量,减少了参数,缓解了过拟合问题。常见的池化操作主要包括3种: 分别是最大值池化(保留了图像的纹理特征)、均值池化(保留了图像的整体特征)和随机值池化。该技术的弊端是容易过快减小数据尺寸,目前趋势是用其他方法代替池化的作用,比如胶囊网络推荐采用动态路由来代替传统池化方法,原因是池化会带来一定程度上表征的位移不变性,传统观点认为这是一个优势,但是胶囊网络的作者Hinton et al.认为图像中位置信息是应该保留的有价值信息,利用特别的聚类评分算法和动态路由的方式可以学习到更高级且灵活的表征,有望冲破目前卷积网络构架的瓶颈。

CNN总体来说是一种结构,其包含了多种网络模型结构,数目繁多的的网络模型结构决定了数据拟合能力和泛化能力的差异。其中的复杂性对用户的技术能力有较高的要求。此外,CNN仍然没有很好的解决过拟合问题和计算速度较慢的问题。

该部分的核心参考文献: 《深度学习在图像识别中的应用研究综述》郑远攀,李广阳,李晔.[J].计算机工程与应用,2019,55(12):20-36.   深度学习技术在计算机图像识别方面的领域应用研究是目前以及可预见的未来的主流趋势,在这里首先对深度学习的基本概念作一简介,其次对深度学习常用的结构模型进行概述说明,主要简述了深度信念网络(DBN)、卷积神经网络(CNN)、循环神经网络(RNN)、生成式对抗网络(GAN)、胶囊网络(CapsNet)以及对各个深度模型的改进模型做一对比分析。

深度学习按照学习架构可分为生成架构、判别架构及混合架构。 其生成架构模型主要包括:   受限波尔兹曼机、自编码器、深层信念网络等。判别架构模型主要包括:深层前馈网络、卷积神经网络等。混合架构模型则是这两种架构的集合。深度学习按数据是否具有标签可分为非监督学习与监督学习。非监督学习方法主要包括:受限玻尔兹曼机、自动编码器、深层信念网络、深层玻尔兹曼机等。   监督学习方法主要包括:深层感知器、深层前馈网络、卷积神经网络、深层堆叠网络、循环神经网络等。大量实验研究表明,监督学习与非监督学习之间无明确的界限,如:深度信念网络在训练过程中既用到监督学习方法又涉及非监督学习方法。

[1]周彬. 多视图视觉检测关键技术及其应用研究[D].浙江大学,2019. [2]郑远攀,李广阳,李晔.深度学习在图像识别中的应用研究综述[J].计算机工程与应用,2019,55(12):20-36. [3]逄淑超. 深度学习在计算机视觉领域的若干关键技术研究[D].吉林大学,2017. [4]段萌. 基于卷积神经网络的图像识别方法研究[D].郑州大学,2017. [5]李彦冬. 基于卷积神经网络的计算机视觉关键技术研究[D].电子科技大学,2017. [6]李卫. 深度学习在图像识别中的研究及应用[D].武汉理工大学,2014. [7]许可. 卷积神经网络在图像识别上的应用的研究[D].浙江大学,2012. [8]CSDN、知乎、机器之心、维基百科

钢结构无损检测 摘要:通过对应用于建筑钢结构行业中的几种常规无损检测方法的简述,归纳了被检对象所适用的不同无 损检测方法。为广大工程技术人员和管理人员了解、学习、应用无损检测技术提供参考。 关键词:建筑钢结构;无损检测 1 前言 建筑钢结构由于其强度高、工业化程度高以及综合经济效益好等优点,自上世纪 90 年代,特别是近年来得 到了迅猛发展,广泛应用于工业和民用等领域。由于一些重点工程,建筑钢结构发生了严重的质量事故, 如郑州中原博览中心网架曾发生了崩塌事故,所以建筑钢结构的安全性和可靠性越来越受到重视。 建筑钢结构的安全性和可靠性源于设计,其自身质量则源于原材料、加工制作和现场安装等因素。评价建 筑钢结构的安全性和可靠性一般有三种方式:⑴模拟实验;⑵破坏性实验;⑶无损检测。模拟实验是按一 定比例模拟建筑钢结构的规格、材质、结构形式等,模拟在其运行环境中的工作状态,测试、评价建筑钢 结构的安全性和可靠性。模拟实验能对建筑钢结构的整体性能作出定量评价,但其成本高,周期长,工艺 复杂。破坏性实验是采用破坏的方式对抽样试件的性能指标进行测试和观察。破坏性实验具有检测结果精 确、直观、误差和争议性比较小等优点,但破坏性实验只适用于抽样,而不能对全部工件进行实验,所以 不能得出全面、综合的结论。无损检测则能对原材料和工件进行 100%检测,且经济成本相对较低。 上世纪 50 年代初,无损检测技术通过前苏联进入我国。作为工艺过程控制和产品质量控制的手段,如今在 核电、航空、航天、船舶、电力、建筑钢结构等行业中得到广泛的应用,创造了巨大的经济效益和社会效 益。无损检测技术是建立在众多学科之上的一门新兴的、综合性技术。无损检测技术是以不损伤被检对象 的结构完整性和使用性能为前提,应用物理原理和化学现象,借助先进的设备器材,对各种原材料,零部 件和结构件进行有效的检验和测试,借以评价它们的完整性、连续性、致密性、安全性、可靠性及某些物 理性能。无损检测经历了三个阶段,即无损探伤(Non-destructive Inspection,简称 NDI)、无损检测 (Non-destructive testing,简称 NDT)、无损评价(Non-destructive Evaluation,简称 NDE)、无损 探伤的含义是探测和发现缺陷。无损检测不仅仅要探测和发现缺陷,而且要发现缺陷的大小、位置、当量、 性质和状态。无损评价的含义则更广泛、更深刻, 它不仅要求发现缺陷,探测被检对象的结构、性质、状 态,还要求获得更全面、更准确的,综合的信息,从而评价被检对象的运行状态和使用寿命。应用于钢结 构行业中的常规无损检测方法有磁粉检测(Magnetic Testing 简称 MT)、渗透检测(Penetrate Testing, 简称 PT)、涡流检测(Eddy current Testing 简称 ET)、声发射检测(Acoustic Emission Testing 简称 AET)、超声波检测(Ultrasonic Testing,简称 UT)、射线检测(Radiography Testing,简称 RT)。在 建筑钢结构行业中,按检测缺陷产生的时机,无损检测方法可以按下图分类。 2 检测方法的简述 磁粉检测(MT) 原理 铁磁性材料被磁化后,产生在被检对象上的磁力线均匀分布。由于不连续性的存在,使工件表面和近表面 的磁力线发生了局部畸变而产生了漏磁场,漏磁场吸附施加在被检对象表面的磁粉,形成在合适光照下可 见的磁痕,从而达到检测缺陷的目的。 适用范围 可以对铁磁性原材料,如钢板、钢管、铸钢件等进行检测,也可以对铁磁性结构件进行检测。 局限性 仅适用铁磁性材料及其合金的表面和近表面的缺陷检测,对检测人员的视力、工作场所、被检对象的规格、 形状等有一定的要求。 优点 经济、方便、效率高、灵敏度高、检测结果直观。 渗透检测(PT) 原理 在被检对象表面施加含有荧光染料或着色染料的渗透液,渗透液在毛细血管的作用下,经过一定时间 后,渗透液可以渗透到表面开口的缺陷中去。经过去除被检对象表面多余的渗透液,干燥后,再在被检对 象表面施加吸附介质(显象剂)。同样在毛细血管的作用下,显象剂吸附缺陷中的渗透液,使渗透液回渗 到显象剂中,在一定的光照下,缺陷中的渗透液被显示。从而达到检测缺陷的目的。 适用范围 适用于非多孔状固体表面开口缺陷。 局限性 仅适用于表面开口缺陷的检测,而且对被检对象的表面光洁度要求较高,涂料、铁锈、氧化皮会覆盖表面 缺陷而造成漏检。对检测人员的视力有一定要求,成本相对较高。 优点 设备轻便、操作简单,检测灵敏度高,结果直观、准确。 涡流检测(ET) 原理 金属材料在交变磁场的作用下产生了涡流,根据涡流的分布和大小可以检测出铁磁性材料和非铁磁性材料 的缺陷。 适用范围 适用于各种导电材料的表面和近表面的缺陷检测。 局限性 不适用不导电材料检测,对形状复杂的试件很难应用,比较适合钢管、钢板等形状规则的轧制型材的检测, 而且设备较贵;无法判定缺陷的性质。 优点 检测速度快,生产效率高,自动化程度高。 声发射检测(AET) 原理 材料或结构件受到内力或外力的作用产生形变或断裂时, 以弹性波的形式释放出应变能的现象称为声发射, 也称为应力波发射。声发射检测是通过受力时材料内部释放的应力波判断被检对象内部结构损伤程度的一 种新兴动态无损检测技术。 适用对象 适用于被检对象的动态监测,如对大型桥梁、核电设备的实时动态监测。 局限性 无法监测静态缺陷、干扰检测的因素较多;设备复杂、价格较贵、检测技术不太成熟。 优点 可以远距离监控设备的运行情况和缺陷的扩展情况,对结构的安全性和可靠性评价提供依据。 超声波检测(UT) 原理 超声波是指频率大于 20 千兆赫兹的机械波。根据波动传播时介质的振动方向相对于波的传播方向不同,可 将波动分为纵波、横波、表面波和板波等。用于钢结构检测的主要是纵波和横波。 超声波探伤仪激励探头产生的超声波在被检对象的介质中按一定速度传播,当遇到异面介质(如气孔、夹 渣)时,一部分超声波反射回来,经仪器处理后,放大进入示波屏,显示缺陷的回波。 适用对象 适用于各类焊逢、板材、管材、棒材、锻件、铸件以及复合材料的检测,特别适合厚度较大的工件。 局限性 检测结果可追溯性较差;定性困难,定量不精确,人为因素较多;对被检工件的材质规格,几何形状有一 定要求。 优点 检测成本低、速度快、周期短、效率高;仪器小、操作方便;能对缺陷进行精确定位;对面积型缺陷的检 出率较高(如裂纹、未熔合等) 射线检测(RT) 原理 射线是一种波长短、频率高的电磁波。 射线检测,常规使用×射线机或放射性同位素作为放射源产生射线,射线穿过被检对象,经过吸收和衰减, 由于被检试件中存在厚度差的原因,不同强度的射线到达记录介质(如射线胶片),射线胶片的不同部位 吸收了数量不等的光子,经过暗室处理后,底片上便出现了不同黑度的缺陷影象,从而判定缺陷的大小和 性质。 适用范围 适用较薄而不是较厚(如果工件的厚度超过 80mm 就要使用特殊设备进行检测,如加速器)的工件的内部体 积型缺陷的检测。 局限性 检测成本高、周期长,工作效率低;不适用角焊逢、板材、管材、棒材、锻件的检测;对面状的缺陷检出 率较低;对缺陷的高度和缺陷在被检对象中的深度较难确定;影响人体健康。 优点 检测结果直观、定性定量准确;检测结果有记录,可以长期保存,可追溯性较强。 3 小结 综上所述,每种无损检测方法的原理和特点各不相同,且适用的检测对象也不一样。在建筑钢结构的行业 中应根据结构的整体性能,检测成本及被检对象的规格、材质、缺陷的性质、缺陷产生的位置等诸多因素 合理选择无损检测方法。一般地,选择无损检测方法及合格等级,是设计人员依据相关规范而确定的。有 的工程,业主也有无损检测方法及合格等级的要求,这就需要供需双方相互协商了。 钢结构在加工制作及安装过程中无损检测方法的选择见表 1 被检对象 原材料检验 板材 锻件及棒材 管材 螺栓 焊接检验 坡口部位 清根部位 对接焊逢 角焊逢和 T 型焊逢 UT 检测方法 UT、MT(PT) UT(RT)、MT(PT) UT、MT(PT) UT、PT(MT) PT(MT) RT(UT)、MT(PT) UT(RT)、PT(MT) 被检对象所适用的无损检测方法见表 2 内部缺陷 表面缺陷和近表面 检测方法 UT ● ○ ● ● MT ● ● ● ● PT ● ○ ○ ● ET △ △ ● × AET △ △ △ △ 发生中缺陷检 测 检测方法 RT 被检对象 试 件 分 类 锻件 铸件 压延件(管、板、型材) 焊逢 × ● × ● 分层 疏松 气孔 内部 缩孔 缺陷 未焊透 未熔合 缺陷 分类 夹渣 裂纹 白点 表面裂纹 表面 缺陷 表面气孔 折叠 断口白点 × × ● ● ● △ ● ○ × △ ○ — × ● ○ ○ ○ ● ● ○ ○ ○ △ × — × — — — — — — — — — ● △ ○ ● — — — — — — — — — ● ● ○ ● — — — — — — — — — ● △ ○ — — — — — △ △ △ △ △ △ — — — 注:●很适用;○适用;△有附加条件适用;×不适用;—不相关 参 1. 考 文 献 强天鹏 射线检测 [M] 云南科技出版社 2001 2. 3. 4. 5. 周在杞等 张俊哲等 无损检测技术及其应用 [M] 科学出版社 王小雷 锅炉压力容器无损检测相关知识 [M] 李家伟等 无损检测 冉启芳 2001 1993 [M] 机械工业出版社 2002 无损检测方法的分类及其特征的介绍 [J] 无损检测 1999 2 钢网架结构超声波检测及其质量的分 [J] 无损检测 2001 6 磁粉检测(MT) 磁粉检测(MT) 原理 铁磁性材料被磁化后,产生在被检对象上的磁力线均匀分布。由于不连续性的存在,使工件表面和近表面 的磁力线发生了局部畸变而产生了漏磁场,漏磁场吸附施加在被检对象表面的磁粉,形成在合适光照下可 见的磁痕,从而达到检测缺陷的目的。 磁粉探伤的原理及概述 磁粉探伤的原理 磁粉探伤又称 MT 或者 MPT(Magnetic Particle Testing),适用于钢铁等磁性材料的表面附近进行探伤 的检测方法。利用铁受磁石吸引的原理进行检查。在进行磁粉探伤检测时,使被测物收到磁力的作用,将 磁粉(磁性微型粉末)散布在其表面。然后,缺陷的部分表面所泄漏出来泄露磁力会将磁粉吸住,形成指 示图案。指示图案比实际缺陷要大数十倍,因此很容易便能找出缺陷。 磁粉探伤方法 磁粉探伤检测的顺序分为前期处理、磁化、磁粉使用、观察,以及后期处理。 前期处理→磁化→磁粉使用→观察→后期处理 以下分别说明各个步骤的概要。 (1)前期处理 探探伤面如果有油脂、涂料、锈、或其他异物附着的情况下,不仅会妨碍磁粉吸附在伤痕上,而且还会出 现磁粉吸附在伤痕之外的部分形成疑私图像的情况。因此在磁化之前,要采用物理或者化学处理,进行去 除污垢异物的步骤。 (2)磁化 将检测物适当磁化是非常重要的。通常,采用与伤痕方向与磁力线方向垂直的磁化方式。另外为了适当磁 化,根据检测物的形状可以采用多种方法。日本工业规格(JIS G 0565-1992)中规定了以下 7 种磁化方法。 ①轴通电法……在检测物轴方向直接通过电流。 ②直角通电法……在检测物垂直于轴的方向直接通过电流。 ③Prod 法……在检测物局部安置 2 个电极(称为 Prod)通过电流。 ④电流贯通法……在检测物的孔穴中穿过的导电体中通过电流。 ⑤线圈法……在检测物中放入线圈,在线圈中通过电流。 ⑥极间法……把检测物或者要检测的部位放入电磁石或永磁石的磁极间。 ⑦磁力线贯通法……对通过检测物的孔穴的强磁性物体施加交流磁力线,使感应电流通过检测物。 (3)磁粉使用磁粉探伤的原理 ① 磁粉的种类 为了让磁粉吸附在伤痕部的磁极间形成检出图像,使用的磁粉必须容易被伤痕部的微弱磁场磁化,吸附在 磁极上,也就是说需要优秀的吸附性能。另外,要求形成的磁粉图像必须有很高的识别性。 一般,磁粉探伤中使用的磁粉有在可见光下使用的白色、黑色、红色等不同磁粉,以及利用荧光发光的荧 光磁粉。另外,根据磁粉使用的场合,有粉状的干性磁粉以及在水或油中分散使用的湿性磁粉。 ② 磁粉的使用时间 磁粉使用时间分为一边通过磁化电流一边使用磁粉的连续法,以及在切断磁化电流的状态即利用检测物的 残留磁力的残留法两种。 (4)观察 为了便于观察附着在伤痕部位的磁粉图像,必须创造容易观察的环境。普通磁粉需要在尽可能明亮的环境 下观察,荧光磁粉则要使用紫外线照射灯将周围尽量变暗才容易观察。 (5)后期处理 磁粉探伤结束,检测物有可能仍作为产品或是需要送往下一个加工步骤接受机械加工等。这时就需要进行 退磁、去除磁粉、防锈处理等后期处理。 适用范围 可以对铁磁性原材料,如钢板、钢管、铸钢件等进行检测,也可以对铁磁性结构件进行检测。 局限性 仅适用铁磁性材料及其合金的表面和近表面的缺陷检测,对检测人员的视力、工作场所、被检对象的规格、 形状等有一定的要求。 优点 经济、方便、效率高、灵敏度高、检测结果直观。 生产厂家: 生产厂家:济宁联永超声电子有限公司 仪器设备名称: 仪器设备名称:CDX-Ⅲ该机型磁粉探伤仪 Ⅲ 仪器概况:CDX-Ⅲ该机型磁粉探伤仪是具有多种磁化方式的磁粉探 伤仪设备。仪器采用可控硅作无触点开关,噪音小、寿命长、操作简 单、方便、适应性强、工作稳定。是最近推出新产品,它除具有便携 式机种的一切优点,还具有移动机种的某些长处,扩展了用途,简化 了操作,还具有退磁功能。 该设备有四种探头: 1、旋转探头: 型)能对各种焊缝、各种几何形状的曲面、平面、 (E 管道、锅炉、球罐等压力容器进行一次性全方位显示缺陷和伤痕。 2、电磁轭探头: 型)它配有活关节,可以对平面、曲面工件进行 (D 探伤。 3、马蹄探头: 型)它可以对各种角焊缝,大型工件的内外角进行 (A 局部探伤。 4、磁环: 型)它能满足所有能放入工件的周向裂纹的探伤,用它 (O 来检测工件的疲劳痕(疲劳裂痕均垂于轴向)及为方便,用它还可以 对工件进行远离法退磁。 总之,该仪器是多种探伤仪的给合体,功能与适用范围广,尤其应用 于不允许通电起弧破表面零件的探伤。 无损检测概论及新技术应用 无损检测概论及新技术应用 概论 摘要: 摘要:综述了无损检测的定义、方法、特点、要求等基本知识,以及无损检测在 现今社会中的应用实例,其中包括混凝土超声波无损检测技术、涡流无损检测技 术、渗透探伤技术。 关键词: 关键词:无损检测;混凝土缺陷;涡流检测;渗透探伤。 引言: 引言:随着现代工业的发展,对产品的质量和结构的安全性、使用的可靠性提出 了越来越高的要求,无损检测技术由于具有不破坏试件、检测灵敏度高等优点, 所以其应用日益广泛。无损检测是工业发展必不可少的有效工具,在一定程度上 反映了一个国家的工业发展水平,其重要性已得到公认。 1、 无损检测概论 、 无损检测 检测概论 无损检测就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用 性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位 置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿 命等)的所有技术手段的总称。 常用的无损检测方法有射线照相检验(RT)、超声检测(UT)、磁粉检测(MT)和 液体渗透检测(PT) 四种。 其他无损检测方法: 涡流检测(ET)、 声发射检测 (AT) 、 (TIR) 泄漏试验 、 (LT) 交流场测量技术 、 (ACFMT) 漏磁检验 、 (MFL)、 热像/红外 远场测试检测方法(RFT)等。 基于以上方法,无损检测具有一下应用特点: 1>不损坏试件材质、结构 无损检测的最大特点就是能在不损坏试件材质、 结构的前提下进行检测, 所以实施无损检测后,产品的检查率可以达到 100%。但是,并不是所有需要测 试的项目和指标都能进行无损检测,无损检测技术也有自身的局限性。某些试验 只能采用破坏性试验, 因此, 在目前无损检测还不能代替破坏性检测。 也就是说, 对一个工件、材料、机器设备的评价,必须把无损检测的结果与破坏性试验的结 果互相对比和配合,才能作出准确的评定。 2>正确选用实施无损检测的时机 在无损检测时, 必须根据无损检测的目的,正确选择无损检测的时机,从而顺利 地完成检测预定目的,正确评价产品质量。 3>正确选用最适当的无损检测方法 由于各种检测方法都具有一定的特点,为提高检测结果可靠性,应根据设备 材质、制造方法、工作介质、使用条件和失效模式,预计可能产生的缺陷种类、 形状、部位和取向,选择合适的无损检测方法。 4>综合应用各种无损检测方法 任何一种无损检测方法都不是万能的,每种方法都有自己的优点和缺点。应 尽可能多用几种检测方法,互相取长补短,以保障承压设备安全运行。此外在无 损检测的应用中,还应充分认识到,检测的目的不是片面追求过高要求的“高质 量”,而是应在充分保证安全性和合适风险率的前提下,着重考虑其经济性。只 有这样,无损检测在承压设备的应用才能达到预期目的。[1] 通过各种检测方法,最终对于无损检测的要求是:不仅要发现缺陷,探测试 件的结构、状态、性质,还要获取更全面、准确和综合的信息,辅以成象技术、 自动化技术、计算机数据分析和处理技术等,与材料力学、断裂力学等学科综合 应用,以期对试件和产品的质量和性能作出全面、准确的评价。 2、 无损检测在各领域的应用 、 无损检测基于以上优点,在现今社会受到广泛关注和应用,为实际生产工作减 少了废料成本,提供了极大的方便。其中超声波检测技术、涡流检测、渗透探伤 技术、霍尔效应无损探伤技术应用极为出色。 混凝土超声无损检测 混凝土是我国建筑结构工程最为重要的材料之一,它的质量直接关系到结构 的安全。多年来,结构混凝土质量的传统检测方法是以按规定的取样方法,制作 立方体试件,在规定的温度环境下,养护 28d 时按标准实验方法测得的试件抗压 强度来评定结构构件的混凝土强度。用试件实验测得的混凝土性能指标,往往是 与结构物中的混凝土性能有一定差别。因此,直接在结构物上检测混凝土质量的 现场检测技术,已成为混凝土质量管理的重要手段。 所谓混凝土“无损检测”技术,就是要在不破坏结构构件的情况下,利用测 试仪器获取有关混凝土质量等受力功能的物理量。 因该物理量与混凝土质量之间 有较好的相互关系,可采用获取的物理量去推定混凝土质量。[2] 混凝土超声检测是用超声波探头中的压电陶瓷或其他类型的压电晶体加载某 频率的交流电压后激发出固定频率的弹性波, 在材料或结构内部传播后再由超声 波换能器接收,通过对采集的超声波信号的声速、振幅、频率以及波形等声学参 数进行分析,以此推断混凝土结构的力学特性、内部结构及其组成情况。超声波 检测可用于混凝土结构的测厚、探伤、混凝土的弹性模量测定以及混凝土力学强 度评定等方面. [3] 涡流无损检测 涡流检测的基本原理:将通有交流电的线圈置于待测的金属板上或套在待测 的金属管外。这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感 应交变电流,称为涡流。涡流的分布和大小,除与线圈的形状和尺寸、交流电流 的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈 的距离以及表面有无裂纹缺陷等。因而,在保持其他因素相对不变的条件下,用 一探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化, 进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或 缺陷存在等信息。但由于涡流是交变电流,具有集肤效应,所检测到的信息仅能 反映试件表面或近表面处的情况。[4] 应用:按试件的形状和检测目的的不同,可采用不同形式的线圈,通常有穿过 式、探头式和插入式线圈 3 种。穿过式线圈用来检测管材、棒材和线材,它的内 径略大于被检物件, 使用时使被检物体以一定的速度在线圈内通过, 可发现裂纹、 夹杂、凹坑等缺陷。探头式线圈适用于对试件进行局部探测。应用时线圈置于金 属板、管或其他零件上,可检查飞机起落撑杆内筒上和涡轮发动机叶片上的疲劳 裂纹等。插入式线圈也称内部探头,放在管子或零件的孔内用来作内壁检测,可 用于检查各种管道内壁的腐蚀程度等。为了提高检测灵敏度,探头式和插入式线 圈大多装有磁芯。涡流法主要用于生产线上的金属管、棒、线的快速检测以及大 批量零件如轴承钢球、汽门等的探伤(这时除涡流仪器外尚须配备自动装卸和传 送的机械装置) 、材质分选和硬度测量,也可用来测量镀层和涂膜的厚度。[5] 优缺点:涡流检测时线圈不需与被测物直接接触,可进行高速检测,易于实现 自动化,但不适用于形状复杂的零件,而且只能检测导电材料的表面和近表面缺陷, 检测结果也易于受到材料本身及其他因素的干扰。 渗透探伤技术 液体渗透检测的基本原理:零件表面被施涂含有荧光染料或着色染料的渗透 剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经 去除零件表面多余的渗透液后,再在零件表面施涂显像剂,同样,在毛细管的作 用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光 源下 (紫外线光或白光) 缺陷处的渗透液痕迹被现实, 黄绿色荧光或鲜艳红色) , ( , 从而探测出缺陷的形貌及分布状态。[6] 渗透检测适用于具有非吸收的光洁表面的金属、非金属,特别是无法采用磁 性检测的材料,例如铝合金、镁合金、钛合金、铜合金、奥氏体钢等的制品,可 检验锻件、铸件、焊缝、陶瓷、玻璃、塑料以及机械零件等的表面开口型缺陷。 渗透检测的优点是灵敏度较高(已能达到检测开口宽度达 的裂缝) ,检测 成本低,使用设备与材料简单,操作轻便简易,显示结果直观并可进一步作直观 验证(例如使用放大镜或显微镜观察) ,其结果也容易判断和解释,检测效率较 高。缺点是受试件表面状态影响很大并只能适用于检查表面开口型缺陷,如果缺 陷中填塞有较多杂质时将影响其检出的灵敏度。[7] 3、 结语 、 随着现代科学技术的发展,激光、红外、微波、液晶等技术都被应用于无损 检测领域,而传统的常规无损检测技术也因为现代科技的发展,大大丰富了应用 方法,如射线照相就可细分为 X 射线、γ射线、中子射线、高能 X 射线、射线 实时照相、层析照相……等多种方法。 无损检测作为一种综合性应用技术,无损检测技术经历了从无损探伤,到无 损检测,再到无损评价,并且向自动无损评价、定量无损评价发展。相信在不远 的将来, 新生的纳米材料、 微机电器件等行业的无损检测技术将会得到迅速发展。 参考文献【1】李喜孟.无损检测.机械工业出版社.2011 】 【2】父新漩. 混凝土无损检测手册.人民交通出版社.2003 】 【 3】 冯子蒙.超声波无损检测于评价的关键技术问题及其解决方案.煤矿机 】 械.2009(9) 【4】唐继强.无损检测实验.机械工业出版社.2011 】 【5】李丽茹.表面检测.机械工业出版社.2009 】 【6】国防科技工业无损检测人员资格鉴定与认证培训教材编审委员会.机械工业 出版社.2004 【7】胡学知主编. 中国劳动社会保障出版社.2007 】

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

生物识别领域技术论文参考文献

浅谈蛋白质折叠的有关问题 [关键字]生物 大分子 分子伴侣 蛋白质的折叠 识别 结合 生物大分子的结构与功能的研究是了解分子水平的先象的基础。没有对生物大分子的结构与功能的认识,就没有分子生物学。正如没有DNA双螺旋结构的发现,就没有遗传传达传递的中心法则,也就没有今天的分子生物学。结构分子以由第一分子进入对复和物乃至多亚基,多分子复和体结构研究。同时,过去难以研究的分子水平上的生命运动情况也随着研究的深入和技术手段的发展而逐渐由难点变为热点。蛋白质晶体学研究已从生物大分子静态(时间统计)的结构分析开始进入动态(时间分辨)的结构分析及动力学分析。第十三届国际生物物理大会的25个专题讨论会中有一半以上涉及蛋白质的结构与功能,而“结构与功能”又强调“动力学(Dynamics)”,即动态的结构或结构的运动与蛋白质分子功能的关系,以及对大分子相互作用的贡献。 蛋白质折叠问题被列为“21世纪的生物物理学”的重要课题,它是分子生物学中心法则尚未解决的一个重大生物学问题。从一级序列预测蛋白质分子的三级结构并进一步预测其功能,是极富挑战性的工作。研究蛋白质折叠,尤其是折叠早期过程,即新生肽段的折叠过程是全面的最终阐明中心法则的一个根本问题,在这一领域中,近年来的新发现对新生肽段能够自发进行折叠的传统概念做了根本的修正。这其中,X射线晶体衍射和各种波谱技术以及电子显微镜技术等发挥了极其重要的作用。第十三届国际生物物理大会上,Nobel奖获得者Ernst在报告中强调指出,NMR用于研究蛋白质的一个主要优点在于它能极为详细的研究蛋白质分子的动力学,即动态的结构或结构的运动与蛋白质分子功能的关系。目前的NMR技术已经能够在秒到皮秒的时间域上观察蛋白质结构的运动过程,其中包括主链和侧链的运动,以及在各种不同的温度和压力下蛋白质的折叠和去折叠过程。蛋白质大分子的结构分析也不仅仅只是解出某个具体的结构,而是更加关注结构的涨落和运动。例如,运输小分子的酶和蛋白质通常存在着两种构象,结合配体的和未结合配体的。一种构象内的结构涨落是构象转变所必需的前奏,因此需要把光谱学,波谱学和X射线结构分析结合起来研究结构涨落的平衡,构象改变和改变过程中形成的多种中间态,又如,为了了解蛋白质是如何折叠的,就必须知道折叠时几个基本过程的时间尺度和机制,包括二级结构(螺旋和折叠)的形成,卷曲,长程相互作用以及未折叠肽段的全面崩溃。多种技术用于研究次过程,如快速核磁共振,快速光谱技术(荧光,远紫外和近紫外圆二色)。 一、新生肽段折叠研究中的新观点 长期以来关于蛋白质折叠,形成了自组装(self-assembly)的主导学说,因此,在研究新生肽段的折叠时,就很自然的把在体外蛋白质折叠研究中得到的规律推广到体内,用变性蛋白的复性作为新生肽段折叠的模型,并认为细胞中新合成的多肽链,不需要别的分子的帮助,不需要额外能量的补充,就应该能够自发的折叠而形成它的功能状态。 1988年,邹承鲁明确指出,新生肽段的折叠在合成早期业已开始,而不是合成完后才开始进行,随着肽段的延伸同时折叠,又不断进行构象的调整,先形成的结构会作用于后合成的肽段的折叠,而后合成的结构又会影响前面已形成的结构的调整。因此,在肽段延伸过程中形成的结构往往不一定是最终功能蛋白中的结构。这样,三维结构的形成是一个同时进行着的,协调的动态过程。九十年代一类具有新的生物功能的蛋白,分子伴侣(Molecularchaperone)的发现,以及在更广泛意义上说的帮助蛋白质折叠的辅助蛋白(Accessoryprotein)的提出,说明细胞内新生肽段的折叠一般意义上说是需要帮助的,而不是自发进行的。 二、蛋白质分子的折叠和分子伴侣的作用 蛋白质分子的三维结构,除了共价的肽键和二硫键,还靠大量极其复杂的弱次级键共同作用。因此新生肽段在一边合成一边折叠过程中有可能暂时形成在最终成熟蛋白中不存在不该有的结构,他们常常是一些疏水表面,它们之间很可能发生本不应该有的错误的相互作用而形成的非功能的分子,甚至造成分子的聚集和沉淀。按照自组装学说,每一步折叠都是正确的,充分的,必要的。实际上折叠过程是一个正确途径和错误途径相互竞争的过程,为了提高蛋白质生物合成的效率的,应该有帮助正确途径的竞争机制,分子伴侣就是这样通过进化应运而生的。它们的功能是识别新生肽段折叠过程中暂时暴露的错误结构的,与之结合,生成复和物,从而防止这些表面之间过早的相互作用,阻止不正确的非功能的折叠途径,抑制不可逆聚合物产生,这样必然促进折叠向正确方向进行。(从哲学的观点说,似乎很容易驳斥自组装学说,它违背了矛盾的普遍性原理,试想,如果蛋白质的每一步折叠均是正确的,充分的,必要的,岂不是在无任何矛盾的前提下,完成了复杂的最稳定构象的形成,即完成了由量变到质变的伟大飞跃,从无活性的肽链变成有活性的功能蛋白,这显然是违背哲学基本原理的。换一个角度想,生物进化的过程本来就充满着不定向的变异,这些变异中有适应环境的,也有不适应环境的,“物竞天择”,自然的选择淘汰了那些不适应的,保留了那些适应的。蛋白质分子的折叠不也与此类似吗?我想,蛋白质的一级结构只是肽链折叠并形成功能蛋白的特定三维结构的内因,实际上,多肽链在形成活性蛋白的每一步,都有潜在的可能形成“不正确”的折叠,如果没有象分子伴侣或其它帮助蛋白等外部因素的作用,多肽链也永远不能折叠成为活性蛋百。) 三,分子伴侣的作用机制 分子伴侣的作用机制实际上就是它如何与靶蛋白识别,结合,又解离的机制。有的分子伴侣具高度专一性,如一些分子内分子伴侣,还有细菌Pseudomonascepacia的酯酶,有它自己的“私有分子伴侣”。它是由基因limA编码的,与酯酶的基因LipA只隔3个碱基,可能是进化过程中发生的基因分裂造成的。而一般的分子伴侣识别特异性不高,它是怎样识别需要它帮助的对象的呢?现在只能说分子伴侣识别非天然构象,而不去理会天然的构象。由于在天然分子中,疏水残基多半位于分子的内部而形成疏水核,去折叠后就可能暴露出来,或者在新生肽段的折叠过程中,会暂时形成在天然构象中本应该存在于分子内部的疏水表面,因此认为分子伴侣最有可能是与疏水表面相结合,如硫氰酸酶(Rhodanese)分子α-helix的疏水侧面。但是只有β-sheet结构的蛋白质才可为分子伴侣识别。 最近关于识别机制有较大的进展。Bip是内质网管腔内的分子伴侣,用一种affinitypanning的方法检查Bip与有随机序列的十二肽结合的特异性,结果发现,Hy-(W/X)-Hy-X-Hy-X-Hymotif与Bipj结合最强,Hy最多的是Trp、Leu、Phe,即较大的疏水残基。一般来说,2-4个疏水残基就足够进行结合。还有一种较普遍的说法是分子伴侣识别所谓熔球体结构(moltenglobule)。另一方面,分子伴侣本身与肽结合部位的结构分析最近也有些进展。譬如,PapD的晶体结构表明,多肽结合在它的β-sheet区。GroEL中,约40kD的153-531结构域是核苷酸的结合区。 分子伴侣作用的第二步是与靶蛋白形成复合物。非常盛行的一种模型认为分子伴侣常常以多聚`体形式而形成中心空洞的结构,用电子显微镜已经观察到由二圈层圆面包圈形组成的十四体GroEL分子和一个一层圆面包圈的七体GroES分子协同作用形成中空的非对称笼状结构(cagemodel),推测靶蛋白可以在与周围环境隔离的中间空腔内不受干扰的进一步折叠。但是不久前一个日本实验室发现GroEL的一个亚基,甚至其N端去除78个氨基酸残基的50kD片段,已经不能再组装成十四体结构,都有确定的分子伴侣功能。由此,我想:也许环状分子伴侣并非每个部位都是有效的结合部位,也就是说,该二层圆面包圈组成的十四体GroEL分子只有一个或若干个部位能够与疏水残基或所谓的熔球体结构结合,而其余部位起识别作用,就像一个探测器一样,整个十四体GroEL分子以圈层或笼状结构”包裹”在多肽链的主链上,以旋进方式再多肽链的链体上运动,一旦环状多聚体的某一识别部位发现疏水结构或所谓的熔球体结构等新生肽链折叠过程中暂时暴露的错误结构,经信号转导,多聚体的结合部位便与之结合,生成复合物,抑制不正确的折叠。以上完全是我个人的猜想,是基于上述两个试验现象的矛盾而试图作一番解释。至于为什么假设以旋进方式在多肽链上运动,我并没有相应的根据,只是觉得这应该是一个动态过程,因此作了一番狂妄的假想,另外,我觉得也许可以用X射线衍射来探测一下分子伴侣GroEL和GroES组成的笼状结构,看看它的a×b×c是否足以容纳多肽链的某一段,或者它的内部和外部的疏水性质和其他一些物化性质如何,也许可以找到支持或驳斥上述假设的证据。 以上谈的都是蛋白质的分子伴侣。不久前又出现了一个新名词“DNAchaperones”,DNA分子伴侣,这种分子伴侣是与DNA相结合并帮助DNA折叠的。在这种复合物中,DNA分子包围在蛋白质分子的表面,既是高度有序的,又是在一定程度上结构已有所改变的。DNA与蛋白的这种相互作用对DNA的转录,复制以及重组都十分重要;或如在核小体中,对DNA的包装是必须的。DNA在溶液中的结构有相当的刚性,必须克服一个能障才能转变成它的蛋白复合物中的结构,分子伴侣的作用就是帮助DNA分子进行折叠和扭曲,从而把DNA稳定在一个适合于和蛋白结构的特定构型中。这种结合是协同的,可逆的在形成复合物之后便解离下来。因此,不论是DNA分子伴侣还是蛋白分子伴侣,都与DNA和蛋白的相互作用有关,与基因调控有关,看来,分子伴侣确实与最终阐明中心法则当前主要问题有密切关系。 四、分子伴侣和酶的区别 与分子伴侣不同,以确定为帮助蛋白质折叠的酶目前只有两个,一个是蛋白质二硫键异构酶(proteindisulfideisomerase,PDI);另一个是肽基脯氨酸顺反异构酶(peptidylprolylcis-transisomerase,PPI)。以PDI为例,众所周知,蛋白质分子中的二硫键与新生肽段的折叠密切相关,对维系蛋白质分子的结构稳定性和功能发挥也有重要作用。PDI定位在内质网管腔内,含量丰富,催化蛋白质分子内巯基与二硫键之间的交换反应。同时,它是目前发现的最为突出的多功能蛋白,除了二硫键的异构酶的基本功能外,它还是脯氨酸-4-羟化酶的α亚基;又是微粒体内甘油三酯转移蛋白复合物的小亚基,还是一种糖基化位点结合蛋白(gkycisylationsitebindingprotein)等。其中,最引人注目的还是它有与多肽结合的能力,可以结合具有不同序列,长度和电荷分布的肽,特异性较低,主要是与肽的主链相作用,但对巯基尚有一些偏爱。按照分子伴侣的定义,一般认为PDI和分子伴侣是两类不同的帮助蛋白,但是我国上海生物物理研究所最近提出不同的看法,认为蛋白质二硫键异构酶也具有分子伴侣的功能。 蛋白质分子中天然二硫键的形成要求这些在肽链上往往处于不相邻位置的巯基,首先通过肽链一定程度的折叠,才能相互接近到可以正确形成二硫键的位置。肽链的自身折叠是一个慢过程,而蛋白质二硫键异构酶催化蛋白质天然二硫键的形成却是一个快过程。另一方面,蛋白质二硫键异构酶具有低特异性的与各种不同肽链相结合的能力,在内质网中以极高的浓度存在,又是是一个钙结合蛋白,是一个能被磷酸化的蛋白,这些都已经符合了分子伴侣的条件。因此他们推测蛋白质二硫键异构酶很可能首先通过它与伸展的,或部分折叠的肽段的结合,阻止错误的折叠途径,促进正确的中间物生成,帮助肽链折叠是相应的巯基配对,从而是正确的二硫键得以形成;然后催化巯基的氧化或二硫键的异构而形成天然二硫键。他们认为蛋白质二硫键异构酶的酶活性与它的分子伴侣功能不是相互排斥,而是密切相关,协调统一的。分子伴侣与帮助新生肽链折叠的酶之间,大概不应该,也不能够划一条绝对的分界线。我想:酶的最主要特性就是催化生化反应,分子伴侣的主要作用是与新生肽段的错误构象结合,从而阻止肽链不正确的非功能的折叠途径,促使其向正确的折叠方向反应,这难道不可以理解成间接的催化肽链的折叠吗?从表观上看,抑制不正确的折叠途径等于加快了正确反应的速度。所以,我本人也很赞成他们的观点。最近的试验已经为这一假说提供了很好的证据。PDI明显抑制变性的甘油醛-3-磷酸脱氢酶在复性股过程中的严重聚合,有效的提高它的复性效率,与典型的分子伴侣GroE系统对甘油醛3-磷酸脱氢酶复性的效应极其相似。 五、分子伴侣的结构 目前唯一解出晶体结构的分子伴侣是的PapD,帮助鞭毛蛋白折叠的分子伴侣。还有HSP70的N端结构域,即ATP结合域也以有晶体结构。用电子显微镜已经清楚的看到了GroEL的十四聚体和GroEL的七聚体的四级结构,象两个圆形中空的面包圈叠在一起,用NMR以及各种溶液构象变化是研究分子伴侣作用机制的有效手段。 六、分子伴侣研究的实际应用 分子伴侣的研究成果必然会大大加深我们对生命现象的认识,同时也一定会增加我们与自然斗争的能力和自身生存的能力。由于分子伴侣在生命活动的各个层次都具有重要作用,它的突变和损伤也必定会引起疾病,因此可以期望运用分子伴侣的知识来治疗所谓的”分子伴侣病”。另一方面,利用对分子伴侣的研究成果从根本上提高基因工程和蛋白工程的成功率,也必将对大幅度提高人类生活水平起重要作用。 [参考书目] 1.李宝健主编,面向21世纪生命科学发展前沿,广东科技出版社,1996年11月第一版:93-104页 2.郝柏林刘寄星主编,理论物理与生命科学,上海科学技术出版社,1997年12月第一版:29-58页 3.中国生物物理代表团,从第十三届国际生物物理大会看生物物理学研究的现状和趋势,生物物理学报,1999年第十五卷第四期:826-827页

各种生物识别技术发展概况 所有生物识别设备都需要进行不断地完善才能更加精确和可靠,由于生物识别技术已经被广泛接受,因此它将进入到我们生活的更多领域中。 生物识别技术和智能卡的结合,使得这两项技术的发展有了长足进步,希望在不久的将来,人们能够在生物识别技术标准上达成共识,使得众多厂家的录入技术能够在同样的系统配置下得到运用。手指扫描技术 手指扫描技术大体可分为两类:确认(identification)系统,例如afis(自动指纹确认系统)和核对(verification)系统。手指扫描系统都是以人类指纹的唯一性特征为基础的。手指的唯一性特征包括涡、拱、环、脊断点和脊分岔的特征。 核对系统是拾取一个手指的平面图象来完成一对一的核对,核对能够在几秒中之内完成。 afis的运用主要有两个方面:刑侦和民用。刑侦afis拾取十个手指的一组图象。这组图象能够为刑侦调查提供更多的数据。此系统是在一些罪犯尽量避免留下指纹的情况下用来获得罪犯指纹信息的专门设备。民用afis的应用是拾取一些手指的平面图象,afis能在几秒中之内完成一对多的检索。实际检索的时间因指纹数据库的大小而不同。 手指扫描录入设备有三类。现有afis仅使用光学录入头。在核对系统中三类设备都有应用。光学录入技术 光学录入技术是最成熟也是最古老的指纹录入技术,只要将手指放在一个台板(通常是用加膜的玻璃制成)上,就能完成手指图象的录入。在过去几年中,这种设备已经变地越来越小,价格也越来越便宜了。光学录入设备的生产厂家大约有50家·超声波录入技术 虽然超声波技术已经存在多年,但它的应用范围始终不是十分广泛。手指在放在玻璃台板上,超声波扫描开始时会听到蜂鸣声并感觉到震动。由于使用了声波,因此,在录入图象时,手指不必直接接触台板。·基于芯片的录入技术 基于芯片的传感器,它的面积只有一枚邮票那么大,使用者直接将手指放在硅芯片的表面来完成指纹图象的录入。生产商 大约有50家手指扫描系统生产厂家,大多数厂家的产品是采用光学录入技术的。主要的光学指纹录入系统生产商有:北京北大高科指纹技术有限公司,american biometric company, identix, identicator, bac, sas, crossmatch 和digital persona.。ultrascan 是唯一生产超声波指纹录入技术的厂家(主要部件有kodak公司生产)。基于芯片的指纹录入生产厂家主要有:thomson-csf, infineon, st microelectronics, authentec, veridicom和who vison。afis软件生产商afis软件生产商主要有 北京北大高科指纹技术有限公司,printrak, sagem, nec, cogent, trw。afis硬件生产商 刑侦用afis硬件生产商主要有 北京北大高科指纹技术有限公司,printrak,identix和digital biometrics。民用afis硬件生产商主要有 北京北大高科指纹技术有限公司,identix,digital biometrics,crossmatch, identicator和trw。应用 民用afis在纽约、洛杉机和西班牙的福利发放以及在牙买加的选民注册登记中都得到了广泛应用。例如,在洛杉机,当地政府使用afis来确认享受福利人员的身份。每次在一个福利享受者申领抚恤金时,它的手指都要经过扫描并同数据库中上百万的指纹进行比对以确定申领抚恤金的人没有以别人的身份冒领抚恤金。美国联邦调查局,州、市警察局都利用afis来帮助抓捕嫌疑犯。 在金融领域,核对系统的应用更加普遍。包括在atm,银行保险箱中都有应用。pc安全方面,包括在网络登陆、数据库访问权限的方面的广泛应用,都给核对系统提供了相当广阔的市场前景。compaq公司已经将identicator公司的指纹录入设备同它所生产的计算机结合起来。手指扫描在物理访问(如门禁等方面)和考勤方面应用也十分普遍。在澳大利亚,woolworth百货公司利用identix公司的手指录入设备对其80,000名员工进行考勤管理。大众接受度 手指扫描技术同其他生物识别技术相比,它所引发的大众接受度的讨论比其他生物识别技术要多的多。尽管手指扫描设备工作耗时短,易操作,但仍然许多人不愿提供他们的指纹,因为在他们的心目中,只有罪犯才提供自己的指纹。这样不接受手指扫描技术的事例便相当多了。成本 核对系统手指扫描设备的成本在100美元到几千美元不等。这些成本还包括硬件和软件成本。随着sony,motorola和infineon公司相继进入芯片录入技术市场,相信不久的将来手指扫描设备的价格肯定会进一步降低。 afis系统,主要是完成一对多的确认检索,它的价格比较昂贵。成本主要和每天需要完成的检索数量、检索时间的长短、是民用还是刑侦用等因素有关。刑侦用afis由于存储的指纹数据多,因而它的价格比民用afis高许多。一个刑侦用afis,假设数据库中有三百万个指纹资料,并且需要每天执行5000个检索,检索需在5分钟内完成,这样一套afis需要耗资数百万美元。嵌入式系统(embedded system)与连接pc的桌面应用 利用指纹识别技术的应用系统常见有两种方法,即嵌入式系统和连接pc的桌面应用系统。嵌入式系统是一个相对独立的完整系统,它不需要连接其他设备或计算机就可以独立完成其设计的功能,象指纹门锁、指纹考勤终端就是嵌入式系统。其功能较为单一,应用于完成特定的功能。而连接pc的桌面应用系统具有灵活的系统结构,并且可以多个系统共享指纹识别设备,可以建立大型的数据库应用。当然,由于需要连接计算机才能完成指纹识别的功能,限制了这种系统在许多方面的应用。 当今市场上的指纹识别系统厂商,除了提供完整的指纹识别应用系统及其解决方案外,可以提供从指纹取像设备的oem产品到完整的指纹识别软件开发包,从而使得无论是系统集成商还是应用系统开发商都可以自行开发自己的增值产品,包括嵌入式的系统和其他应用指纹验证的计算机软件。 指纹识别技术应用实例 指纹识别技术可以通过几种方法应用到许多方面。本文在上面已经介绍的通过使用指纹验证来取代各个计算机应用程序的密码就是最为典型的实例。可以想象如果计算机上的所有系统和应用程序都可以使用指纹验证的话,人们使用计算机就会非常方便和安全,用户不再讨厌必要的安全性检查,而it开发商的售后服务工作也会减轻许多。ibm公司已经开发成功并广泛应用的global sign on软件通过定义唯一的口令,或者使用指纹,就可以在公司整个网络上畅行无阻。 把指纹识别技术同ic卡结合起来,是目前最有前景的一个方向之一。该技术把卡的主人的指纹(加密后)存储在ic卡上,并在ic卡的读卡机上加装指纹识别系统,当读卡机阅读卡上的信息时,一并读入持卡者的指纹,通过比对卡上的指纹与持卡者的指纹,就可以确认持卡者是否是卡的真正主人,从而进行下一步的交易。在更加严格的场合,还可以进一步同后端主机系统数据库上的指纹作比较。指纹ic卡可以广泛地运用于许多行业中,例如取代现行的atm卡、制造防伪证件(签证或护照、公费医疗卡、会员卡、借书卡等)。目前atm提款机加装指纹识别功能在美国已经开始使用。持卡人可以取消密码 (避免老人和孩子记忆密码的困难)或者仍旧保留密码,在操作上按指纹与密码的时间差不多。 近年来,自动发送信息的互联网络,带给人们的方便与利益,正在快速增长之中,但也因此产生了很多的问题,尤其在信息安全方面。无论是团体或者个人的信息,都害怕在四通八达的网络上传送而发生有损权益或隐私的事情。由于指纹特征数据可以通过电子邮件或其他传输方法在计算机网络上进行传输和验证,通过指纹识别技术,限定只有指定的人才能访问相关信息,可以极大地提高网上信息的安全性,这样,包括网上银行、网上贸易、电子商务的一系列网络商业行为,就有了安全性保障。在sfnb(security first network bank安全第一网络银行),就是通过互联网络来进行资金划算的,他们目前正在实施以指纹识别技术为基础的保障安全性的项目,以增强交易的安全性。 在医院里,指纹识别技术可以验证病人身份,例如输血管理。指纹识别技术也有助于证实寻求公共救援、医疗及其他政府福利或者保险金的人的身份确认。在这些应用中,指纹识别系统将会取代或者补充许多大量使用照片和id的系统。 总之,随着许多指纹识别产品已经开发和生产,指纹识别技术的应用已经开始进入民用市场,并且发展迅猛,相信这一技术的普及应用已经指日可待。下面是电脑的指纹识别基于Nios II的自动指纹识别系统设计摘要: 介绍基于Nios II处理器的嵌入式自动指纹识别系统的实现方法;具体说明自动指纹识别系统的基本原理、系统总体结构、硬件结构设计、用户自定义指令的设计,以及指纹识别算法的处理流程和实现方法。 关键词: 嵌入式 指纹识别 Nios II 定制指令 引 言 指纹识别作为生物特征识别的一种,在身份识别上有着其他手段不可比拟的优越性:人的指纹具有唯一性和稳定性的特点;随着指纹传感器性能的提高和价格的降低,指纹的采集相对容易;指纹的识别算法已经较为成熟。由于指纹识别的诸多优点,指纹识别技术已经逐渐走入民用市场,并应用到许多嵌入式设备中。 目前的嵌入式处理器种类繁多。Altera公司的Nios II处理器是用于可编程逻辑器件的可配置的软核处理器,与Altera的低成本的Cyclone FPGA组合,具有很高的性能价格比。本系统采用Nios II和Cyclone EP1C20嵌入式系统开发板,以及Veridicom公司的FPS200指纹传感器芯片,实现了一个嵌入式自动指纹识别系统。 1 总体设计及系统架构 本系统有两大功能:指纹登记和指纹比对。指纹登记主要包括指纹采集、指纹图像预处理、特征点提取、特征模板存储和输出显示;指纹比对的前三步与指纹登记相同,但在特征点提取后,是将生成的特征模板与存储在指纹特征模板库中的特征模板进行特征匹配,最后输出显示匹配结果。自动指纹识别系统的基本原理框图如图1所示。 本系统在结构上分为三层:系统硬件平台、操作系统和指纹识别算法。系统层次结构如图2所示。图1自动指纹识别的基本原理框图 图2系统层次 最底层——系统硬件平台,是系统的物理基础,提供软件的运行平台和通信接口。系统的硬件平台在Altera的Nios II Cyclone嵌入式系统开发板上实现,指纹传感器采用美国Veridicom公司的FPS200。FPS200可输出大小为256×300像素、分辨率为500 dpi的灰度图像。 第二层是操作系统,采用μC/OSII。μC/OSII是一个基于抢占式的实时多任务内核,可固化、可剪裁、具有高稳定性和可靠性。这一层提供任务调度以及接口驱动,同时,通过硬件中断来实现系统对外界的通信请求的实时响应,如对指纹采集的控制、对串口通信的控制等。这种方式可以提高系统的运行效率。 最上层是指纹识别核心算法的实现。该算法高效地对采集到的指纹进行处理和匹配。采用C语言在Nios II的集成开发环境(IDE)中实现。 2 系统硬件的设计与实现 Nios II嵌入式软核处理器简介 Nios II嵌入式处理器是Altera公司于2004年6月推出的第二代用于可编程逻辑器件的可配置的软核处理器,性能超过200 DMIPS。Nios II是基于哈佛结构的RISC通用嵌入式处理器软核,能与用户逻辑相结合,编程至Altera的FPGA中。处理器具有32位指令集,32位数据通道和可配置的指令以及数据缓冲。它特别为可编程逻辑进行了优化设计,也为可编程单芯片系统(SoPC)设计了一套综合解决方案。Nios II处理器系列包括三种内核:一种是高性能的内核(Nios II/f);一种是低成本内核(Nios II/e);一种是性能/成本折中的标准内核(Nios II/s),是前两种的平衡。本系统采用标准内核。 Nios II 处理器支持256 个具有固定或可变时钟周期操作的定制指令;允许Nios II设计人员利用扩展CPU指令集,通过提升那些对时间敏感的应用软件的运行速度,来提高系统性能。 硬件平台结构 系统的硬件平台结构如图3所示。 图3系统硬件平台结构 本系统使用FPS200指纹传感器获取指纹图像。FPS200是电容式固态指纹传感器,采用CMOS技术,获取的图像为256×300像素,分辨率为500 dpi。该传感器提供三种接口方式:8位微机总线接口、集成USB全速接口和集成SPI接口。本系统采用集成SPI接口。指纹采集的程序流程是:首先初始化FPS200的各个寄存器,主要是放电电流寄存器(DCR)、放电时间寄存器(DTR)和增益控制寄存器(PGC)的设置;然后查询等待,指纹被FPS200采集进入数据寄存器后,通过DMA存入内存。 由于从指纹传感器采集到的指纹图像数据在80 KB左右,以DMA方式存入片内RAM。Nios II对指纹图像数据进行处理后,生成指纹特征模板,在指纹登记模式下,存入片外Flash中;在指纹比对模式下,与存储在Flash中的特征模板进行匹配,处理结果通过LCD和七段LED显示器输出显示。 本系统的硬件平台主要是在Altera的Nios II Cyclone嵌入式开发板上实现,选用Altera的Cyclone版本的Nios II开发套件,包括Nios II处理器、标准外围设备库、集成了SoPC Builder系统设计工具的QuartusII开发软件等。系统的主要组件Nios II的标准内核、片内存储器、SPI、UART、DMA控制器、并行I/O接口、Avalon总线、定时器等都集成在一块Altera的Cyclone FPGA芯片上,使用SoPC Builder来配置生成片上系统。 SoPC Builder是功能强大的基于图形界面的片上系统定义和定制工具。SoPC Builder库中包括处理器和大量的IP核及外设。根据应用的需要,本系统选用Nios II Processor、On�Chip�Memory、Flash Memory(Common Flash Interface)、SPI、JTAG UART、DMA、Interval timer、LCD PIO、Seven Segment PIO、Avalon Tri�State Bridge等模块。对这些模块配置完成后,使用SoPC Builder进行系统生成。SOPC Builder自动产生每个模块的HDL文件,同时自动产生一些必要的仲裁逻辑来协调系统中各部件的工作。 使用Nios II的定制指令提高系统性能 使用Nios II的定制指令,可以将一个复杂的标准指令序列简化为一个用硬件实现的单一指令,从而简化系统软件设计并加快系统运行速度。Nios II的定制指令是与CPU的数据通路中的ALU相连的用户逻辑块。其基本操作是,接收从dataa和/或datab端口输入的数据,经过定制指令逻辑的处理,将结果输出到result端口。 在指纹识别算法中,对指纹图像的处理数据运算量大,循环数目多;而Nios II的定制指令个数已增加到256个,可以使用定制指令完成许多循环内的数据处理,从而加速数据处理的速度。 在对指纹图像的处理中,频繁地用到坐标转换,将图像的二维坐标转换为一维的存储地址;通过定制指令来完成坐标的转换,用一组易于用硬件实现的位移和加法运算替代乘加运算,可将转换时间缩短1/3。在方向图计算中,要进行离散反正切变换,使用优化过的用硬件实现的定制指令来替代C语言中的atan函数,更可以将变换时间缩短到原来的1/1000。 定制指令逻辑和Nios II的连接在SoPC Builder中完成。Nios II CPU配置向导提供了一个可添加256条定制指令的图形用户界面,在该界面中导入设计文件,设置定制指令名,并分配定制指令所需的CPU时钟周期数目。系统生成时,Nios II IDE为每条用户指令产生一个在系统头文件中定义的宏,可以在C或C++应用程序代码中直接调用这个宏。 3 系统软件的设计与实现 本系统的指纹图像处理及识别算法采用C语言在Nios II IDE中实现。指纹识别算法的流程如图4所示。图4指纹识别算法流程 背景分离是将指纹区与背景分离,从而避免在没有有效信息的区域进行特征提取,加速后续处理的速度,提高指纹特征提取和匹配的精度。采用标准差阈值跟踪法,图像指纹部分由黑白相间的纹理组成,灰度变化大,因而标准差较大;而背景部分灰度分布较为平坦,标准差较小。将指纹图像分块,计算每个小块的标准差。若大于某一阈值(本文取20),则该小块中的所有像素点为前景;否则,为背景。 方向图是用纹线的方向来表示原来的纹线。本文采用块方向图,将源指纹图像分成小块,使用基于梯度值的方向场计算方法,计算出每个小块的脊线方向。 图像增强的目的是改善图像质量,恢复脊线原来的结构;采用方向滤波,设计一个水平模板,根据计算出的方向图,在每个小块中将水平模板旋转到所需要的方向进行滤波。 图像的二值化是将脊线与背景分离,将指纹图像从灰度图像转换为二值图像。 二值化后的图像经过细化,得到纹线的骨架图像。细化采用迭代的方法,使用Zhang�Suen并行细化算法,可对二值图像并行处理。 特征提取阶段,选择脊线端点和分叉点作为特征点,记录每一个特征点的类型、位置和方向信息,从而得到指纹的特征点集。但由于在指纹扫描和预处理阶段会引入噪声,产生大量伪特征点,因此需要进行伪特征点的去除。去除伪特征点后的特征点集作为特征模板保存。 特征匹配阶段采用基于特征点的匹配算法,通过平移和旋转变换实现特征点的大致对齐重合,计算坐标变换后两个模板中的特征点的距离和角度。如果小于某一阈值(本文的距离和角度阈值分别取5个像素和10°),则认为是一对匹配的特征点。计算得出所有匹配的特征点对后,计算匹配的特征点占模板中所有特征点的百分比S。根据系统的拒识率(FRR)和误识率(FAR)要求设置阈值TS。如果S大于或等于阈值TS,则认为是同一指纹;否则,匹配失败。 结语 本文提出了一种基于Nios II嵌入式处理器软核的自动指纹识别系统实现方法。使用Altera的Cyclone FPGA实现,且具有开发周期短、成本低等特点;同时,采用Nios II的定制指令来提高系统性能,利用硬件实现算法速度快的优点,使以Nios II处理器为核心的系统能够快速地完成大量数据处理。 参考文献 1 Frank Vahid,等. 嵌入式系统设计.骆丽等译. 北京:北京航空航天大学出版社, 2004 2 任爱锋,等.基于FPGA的嵌入式系统设计.西安:西安电子工业大学出版社, 2004 3 Nios II Custom Instruction User Guide. 4 Vizcaya P, Gerhardt L. A nonlinear orientation model for global description of fingerprints. Pattern Recognition, v. 29, no. 7 5 柴晓光,等.民用指纹识别技术.北京:人民邮电出版社,2004

生物科学论文格式范文

无论是身处学校还是步入社会,大家都尝试过写论文吧,论文是对某些学术问题进行研究的手段。那么,怎么去写论文呢?以下是我为大家整理的生物科学论文格式范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

摘要:

随着我国对科学技术的探究和发展,生物科学与技术研究成为21世纪以来人类关注的重点话题,其发展与人们的生活息息相关,改变着人们的生产活动和生活面貌。随着生物科学技术的不断成熟,生物科学逐渐运用于现代医疗领域、农学领域和工业领域,它对基因遗传和生物化学的研究也具有重大意义。因此,重视生物科学的发展与应用,是关乎生活的重要话题。本文从生物科学的应用、研究成果进展和生物科学技术对社会的影响三方面对生物科学的发展与应用进行阐述。

关键词:

生物科学;科学技术;发展;应用;研究进展

生物科学是对生命活动规律和生命本质进行研究的一门学科,是认识自然的有利工具。20世纪50年代以来,DNA双螺旋结构的构建和基因重组等技术的重大突破发展,使得现代的生物技术逐渐趋于成熟。生物科学的发展对医学领域和农业领域的发展有重大的推动作用。重视生物科学的发展对人类的生产生活带来了巨大的影响。

一、生物科学的研究成果及发展

(一)基因组计划的实施

破译基因的遗传码,解开生命的奥秘是基因破译的主要目的。目前,科学研究人员对遗传图、物理图和转录图的制作工作已由相关的制作单位完成,这在理论上具有重大的进步意义的同时也具有重要的实践意义和很高的商业价值。2013年的1月中国科学家成功破译了小菜蛾基因组,历时三年的研究,终于得出了小菜蛾的基因组图谱,科学家指出,将进一步与国内外人员合作交流,在小菜蛾基因组的研发完成后,将继续开展研究与抗药性和食性生长发育密切相关的功能基因组学和遗传学,为小菜蛾的有效防御、持续控制提供科学依据。

(二)细胞全能技术的实施与应用

随着人类基因组图谱的进一步发展,更多的生物模式经重要的动植物基因组将不断被揭露。细胞全能技术是一项快速纯合创造新品种的先进技术。21世纪后,生物的起源、原始细胞的产生和新生物的形式与改造等重大理论问题在我国已经得到重大的发展。人类对生物生命本质的'认识将会进一步的提高,这对生物细胞全能技术的理论性和实践性的发展都将会产生重大的影响,对新品种作物的选育具有指导性因素。

(三)生物识别技术

生物识别技术是指依据人类自身所固有的生理或行为特征而进行识别的一种技术。目前,应用最为广泛的包括有:指纹识别、手掌几何学识别、声音识别、面部识别等。生物识别具有不易遗忘、防伪性能高、不易被盗、便于携带等特点,容易和电脑配套使用,从而增强在使用过程中的自动化管理,已广泛用于胜负、军队、银行等地。但生物识别技术中由于其中一部分技术含量较高,现在还处于试验阶段。

二、生物科学的应用

(一)农业领域的生物科学技术

20世纪以来,在生物科学领域,分子生物学的诞生及现代生物技术的兴起已然成为人类社会进步最伟大的事件之一。20世纪末21世纪初,对基因组学的突破性研究推动了生物技术进入迅猛发展的阶段。动植物和微生物技术在农业领域的发展已对农业起到了极大的推动作用。不仅如此,转基因技术的推广应用使得农业得到了相应的发展。同时,抗病虫、除草剂的使用推进了转基因棉花、玉米、花生、大豆等的商业化发展。现代分子生物学与传统的动植物育种学催生了新型的分子育种学。

(二)生物科学在医学上的应用

药品领域的开发对生物科学的运用已达到相对成熟的阶段。改革开放后,生物技术制药受到了相对高度的重视,为生物高新技术的发展投入了大量的人力财力,因此,我国生物技术制药得到了快速的发展,已达到国际水平。2013年7月,深圳华大基因研究院亚洲癌症研究组织合作完成干细胞癌基因研究项目,这是继乙肝病毒整合机制研究之后的又一项重要生物科学研究成果。通过对88例癌患者进行全基因组测序,发现了一些列与肝细胞癌发生发展相关的基因突变,找到了肝细胞癌发生的两条关键性途径,从而为日后肝细胞癌治疗法的药物开发奠定了基础。

三、生物科学对社会带来的影响

20世纪70年代以来,随着生物科学的发展,生物科学基础的研究取得了不断突破。我国的生物科学技术成果在世界范围内得到了公众认可。在工业化和商业化飞速发展的今天,生物技术具有了良好的发展环境。通过对社会各个领域的发展经验总结得出,生物科学技术的发展仍然面临着众多挑战。我国的科研管理部门应对高校或科研组的科研项目加大人力财力的扶持,鼓励更多的青年科学家、技术专家投身于生物科学的研究中,并为他们提供多学科的培训,使得多学科科学的发展能具有高度的综合性,从而推进多领域的融合,促进现代社会生物科学技术的革新与健康发展。

四、结束语

生物科学技术的研究是科学应用研究的源泉,随着科学技术的进步和多种学科的融合发展,生物科学逐渐从单一化发展为多层次、多方面的科学技术,由宏观逐步发展到微观的可操作性。生物科学的发展对人们的生产生活产生了重要影响,赢得了人们越来越多的关注。我国的生物技术在发展中不断突破,研究成果已遍布全世界,相信如此下去,将会赢得生物科学的巨大成果。加大生物科学技术的研究进程,促进现代生物科学技术的良性有利发展,以实现我国科学技术又快又好的发展。

参考文献:

[1]周宜君,张淑萍,杨林等.民族高校生物科学类综合性、研究型野外实习的探索与实践――以中央民族大学实验基地为个案[J].民族教育研究,2009,20(5):18-22.

[2]郝建华,卢祥云,韩曜平等.应用型本科生物科学专业人才培养方案的构建――以常熟理工学院生物科学(师范)专业为例[J].新课程研究(高等教育),2011,(3):14-16.

[3]赵格日乐图,苏亚拉图,哈斯巴根等.生物科学专业野外综合实习教学改革与实践――以内蒙古师范大学生物科学专业为例[J].内蒙古师范大学学报(教育科学版),2011,24(5):148-151.

[4]李朝晖,周峰,华春等.高校生物科学专业人才培养方案的改革与实践――以南京晓庄学院生物科学专业为例[J].南京晓庄学院学报,2013,25(5):66-68.

[5]叶辉,丁斐,王兆慧等.特色专业与重点学科一体化建设实践与探索――以南通大学生物科学特色专业与生物学重点学科建设为例[J].安徽农业科学,2012,40(23):11885-11887.

格式

(一)题目

科学论文都有题目,不能“无题”。论文题目一般20字左右。题目大小应与内容符合,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。

(二)署名

科学论文应该署真名和真实的工作单位。主要体现责任、成果归属并便于后人追踪研究。严格意义上的论文作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答论文的有关问题者。现在往往把参加工作的人全部列上,那就应该以贡献大小依次排列。论文署名应征得本人同意。学术指导人根据实际情况既可以列为论文作者,也可以一般致谢。行政领导人一般不署名。

(三)引言

是论文引人入胜之言,很重要,要写好。一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出论文立题依据、基础、背景、研究目的。要复习必要的文献、写明问题的发展。文字要简练。

(四)材料和方法

按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计方法等。这些按杂志对论文投稿规定办即可。

(五)实验结果

应高度归纳,精心分析,合乎逻辑地铺述。应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。只有在技术不熟练或仪器不稳定时期所得的数据、在技术故障或操作错误时所得的数据和不符合实验条件时所得的数据才能废弃不用。而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。废弃这类数据时应将在同样条件下、同一时期的实验数据一并废弃,不能只废弃不合己意者。实验结果的整理应紧扣主题,删繁就简,有些数据不一定适合于这一篇论文,可留作它用,不要硬行拼凑到一篇论文中。论文行文应尽量采用专业术语。能用表的不要用图,可以不用图表的最好不要用图表,以免多占篇幅,增加排版困难。文、表、图互不重复。实验中的偶然现象和意外变故等特殊情况应作必要的交代,不要随意丢弃。

(六)讨论

是论文中比较重要,也是比较难写的一部分。应统观全局,抓住主要的有争议问题,从感性认识提高到理性认识进行论说。要对实验结果作出分析、推理,而不要重复叙述实验结果。应着重对国内外相关文献中的结果与观点作出讨论,表明自己的观点,尤其不应回避相对立的观点。论文的讨论中可以提出假设,提出本题的发展设想,但分寸应该恰当,不能写成“科幻”或“畅想”。

(七)结语或结论

论文的结语应写出明确可靠的结果,写出确凿的结论。论文的文字应简洁,可逐条写出。不要用“小结”之类含糊其辞的词。

(八)参考义献

这是论文中很重要、也是存在问题较多的一部分。列出论文参考文献的目的是让读者了解论文研究命题的来龙去脉,便于查找,同时也是尊重前人劳动,对自己的工作有准确的定位。因此这里既有技术问题,也有科学道德问题。一篇论文中几乎自始至终都有需要引用参考文献之处。如论文引言中应引上对本题最重要、最直接有关的文献;在方法中应引上所采用或借鉴的方法;在结果中有时要引上与文献对比的资料;在讨论中更应引上与论文有关的各种支持的或有矛盾的结果或观点等。一切粗心大意,不查文献;故意不引,自鸣创新;贬低别人,抬高自己;避重就轻,故作姿态的做法都是错误的。而这种现象现在在很多论文中还是时有所见的,这应该看成是利研工作者的大忌。其中,不查文献、漏掉重要文献、故意不引别人文献或有意贬损别人工作等错误是比较明显、容易发现的。有些做法则比较隐蔽,如将该引在引言中的,把它引到讨论中。这就将原本是你论文的基础或先导,放到和你论文平起平坐的位置。又如科研工作总是逐渐深人发展的,你的工作总是在前人工作基石出上发展起来做成的。正确的写法应是,某年某人对本题做出了什么结果,某年某人在这基础上又做出了什么结果,现在我在他们基础上完成了这一研究。这是实事求是的态度,这样表述丝毫无损于你的贡献。有些论文作者却不这样表述,而是说,某年某人做过本题没有做成,某年某人又做过本题仍没有做成,现在我做成了。这就不是实事求是的态度。这样有时可以糊弄一些不明真相的外行人,但只需内行人一戳,纸老虎就破,结果弄巧成拙,丧失信誉。这种现象在现实生活中还是不少见的。

(九)致谢

论文的指导者、技术协助者、提供特殊试剂或器材者、经费资助者和提出过重要建议者都属于致谢对象。论文致谢应该是真诚的、实在的,不要庸俗化。不要泛泛地致谢、不要只谢教授不谢旁人。写论文致谢前应征得被致谢者的同意,不能拉大旗作虎皮。

(十)摘要或提要

以200字左右简要地概括论文全文。常放篇首。论文摘要需精心撰写,有吸引力。要让读者看了论文摘要就像看到了论文的缩影,或者看了论文摘要就想继续看论文的有关部分。此外,还应给出几个关键词,关键词应写出真正关键的学术词汇,不要硬凑一般性用词。

你看下(微生物前沿)上的文献吧,

生物特征识别技术论文参考文献

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

指纹识别技术是生物测量学技术中较为成熟、应用较多的一种,它是一种利用人的指纹进行计算机自动识别的综合...这里的指纹识别技术是指利用计算机进行的指纹自动识别技术,它是一项综合技术,其研究发展涉及到多个前沿及边缘科学...当...基于Nios II的自动指纹识别系统设计摘要: 介绍基于Nios II处理器的嵌入式自动指纹识别系统的实现方法;具体说明自动指纹识别系统的基本原理、系统总体结构、硬件结构设计、用户自定义指令的设计,以及指纹识别算法的处理流程和实现方法。关键词: 嵌入式 指纹识别 Nios II 定制指令引 言指纹识别作为生物特征识别的一种,在身份识别上有着其他手段不可比拟的优越性:人的指纹具有唯一性和稳定性的特点;随着指纹传感器性能的提高和价格的降低,指纹的采集相对容易;指纹的识别算法已经较为成熟。由于指纹识别的诸多优点,指纹识别技术已经逐渐走入民用市场,并应用到许多嵌入式设备中。目前的嵌入式处理器种类繁多。Altera公司的Nios II处理器是用于可编程逻辑器件的可配置的软核处理器,与Altera的低成本的Cyclone FPGA组合,具有很高的性能价格比。本系统采用Nios II和Cyclone EP1C20嵌入式系统开发板,以及Veridicom公司的FPS200指纹传感器芯片,实现了一个嵌入式自动指纹识别系统。1 总体设计及系统架构本系统有两大功能:指纹登记和指纹比对。指纹登记主要包括指纹采集、指纹图像预处理、特征点提取、特征模板存储和输出显示;指纹比对的前三步与指纹登记相同,但在特征点提取后,是将生成的特征模板与存储在指纹特征模板库中的特征模板进行特征匹配,最后输出显示匹配结果。自动指纹识别系统的基本原理框图如图1所示。本系统在结构上分为三层:系统硬件平台、操作系统和指纹识别算法。系统层次结构如图2所示。图1自动指纹识别的基本原理框图图2系统层次最底层——系统硬件平台,是系统的物理基础,提供软件的运行平台和通信接口。系统的硬件平台在Altera的Nios II Cyclone嵌入式系统开发板上实现,指纹传感器采用美国Veridicom公司的FPS200。FPS200可输出大小为256×300像素、分辨率为500 dpi的灰度图像。第二层是操作系统,采用μC/OSII。μC/OSII是一个基于抢占式的实时多任务内核,可固化、可剪裁、具有高稳定性和可靠性。这一层提供任务调度以及接口驱动,同时,通过硬件中断来实现系统对外界的通信请求的实时响应,如对指纹采集的控制、对串口通信的控制等。这种方式可以提高系统的运行效率。最上层是指纹识别核心算法的实现。该算法高效地对采集到的指纹进行处理和匹配。采用C语言在Nios II的集成开发环境(IDE)中实现。2 系统硬件的设计与实现 Nios II嵌入式软核处理器简介Nios II嵌入式处理器是Altera公司于2004年6月推出的第二代用于可编程逻辑器件的可配置的软核处理器,性能超过200 DMIPS。Nios II是基于哈佛结构的RISC通用嵌入式处理器软核,能与用户逻辑相结合,编程至Altera的FPGA中。处理器具有32位指令集,32位数据通道和可配置的指令以及数据缓冲。它特别为可编程逻辑进行了优化设计,也为可编程单芯片系统(SoPC)设计了一套综合解决方案。Nios II处理器系列包括三种内核:一种是高性能的内核(Nios II/f);一种是低成本内核(Nios II/e);一种是性能/成本折中的标准内核(Nios II/s),是前两种的平衡。本系统采用标准内核。Nios II 处理器支持256 个具有固定或可变时钟周期操作的定制指令;允许Nios II设计人员利用扩展CPU指令集,通过提升那些对时间敏感的应用软件的运行速度,来提高系统性能。 硬件平台结构系统的硬件平台结构如图3所示。图3系统硬件平台结构本系统使用FPS200指纹传感器获取指纹图像。FPS200是电容式固态指纹传感器,采用CMOS技术,获取的图像为256×300像素,分辨率为500 dpi。该传感器提供三种接口方式:8位微机总线接口、集成USB全速接口和集成SPI接口。本系统采用集成SPI接口。指纹采集的程序流程是:首先初始化FPS200的各个寄存器,主要是放电电流寄存器(DCR)、放电时间寄存器(DTR)和增益控制寄存器(PGC)的设置;然后查询等待,指纹被FPS200采集进入数据寄存器后,通过DMA存入内存。由于从指纹传感器采集到的指纹图像数据在80 KB左右,以DMA方式存入片内RAM。Nios II对指纹图像数据进行处理后,生成指纹特征模板,在指纹登记模式下,存入片外Flash中;在指纹比对模式下,与存储在Flash中的特征模板进行匹配,处理结果通过LCD和七段LED显示器输出显示。本系统的硬件平台主要是在Altera的Nios II Cyclone嵌入式开发板上实现,选用Altera的Cyclone版本的Nios II开发套件,包括Nios II处理器、标准外围设备库、集成了SoPC Builder系统设计工具的QuartusII开发软件等。系统的主要组件Nios II的标准内核、片内存储器、SPI、UART、DMA控制器、并行I/O接口、Avalon总线、定时器等都集成在一块Altera的Cyclone FPGA芯片上,使用SoPC Builder来配置生成片上系统。SoPC Builder是功能强大的基于图形界面的片上系统定义和定制工具。SoPC Builder库中包括处理器和大量的IP核及外设。根据应用的需要,本系统选用Nios II Processor、On�Chip�Memory、Flash Memory(Common Flash Interface)、SPI、JTAG UART、DMA、Interval timer、LCD PIO、Seven Segment PIO、Avalon Tri�State Bridge等模块。对这些模块配置完成后,使用SoPC Builder进行系统生成。SOPC Builder自动产生每个模块的HDL文件,同时自动产生一些必要的仲裁逻辑来协调系统中各部件的工作。 使用Nios II的定制指令提高系统性能使用Nios II的定制指令,可以将一个复杂的标准指令序列简化为一个用硬件实现的单一指令,从而简化系统软件设计并加快系统运行速度。Nios II的定制指令是与CPU的数据通路中的ALU相连的用户逻辑块。其基本操作是,接收从dataa和/或datab端口输入的数据,经过定制指令逻辑的处理,将结果输出到result端口。在指纹识别算法中,对指纹图像的处理数据运算量大,循环数目多;而Nios II的定制指令个数已增加到256个,可以使用定制指令完成许多循环内的数据处理,从而加速数据处理的速度。在对指纹图像的处理中,频繁地用到坐标转换,将图像的二维坐标转换为一维的存储地址;通过定制指令来完成坐标的转换,用一组易于用硬件实现的位移和加法运算替代乘加运算,可将转换时间缩短1/3。在方向图计算中,要进行离散反正切变换,使用优化过的用硬件实现的定制指令来替代C语言中的atan函数,更可以将变换时间缩短到原来的1/1000。定制指令逻辑和Nios II的连接在SoPC Builder中完成。Nios II CPU配置向导提供了一个可添加256条定制指令的图形用户界面,在该界面中导入设计文件,设置定制指令名,并分配定制指令所需的CPU时钟周期数目。系统生成时,Nios II IDE为每条用户指令产生一个在系统头文件中定义的宏,可以在C或C++应用程序代码中直接调用这个宏。3 系统软件的设计与实现本系统的指纹图像处理及识别算法采用C语言在Nios II IDE中实现。指纹识别算法的流程如图4所示。图4指纹识别算法流程背景分离是将指纹区与背景分离,从而避免在没有有效信息的区域进行特征提取,加速后续处理的速度,提高指纹特征提取和匹配的精度。采用标准差阈值跟踪法,图像指纹部分由黑白相间的纹理组成,灰度变化大,因而标准差较大;而背景部分灰度分布较为平坦,标准差较小。将指纹图像分块,计算每个小块的标准差。若大于某一阈值(本文取20),则该小块中的所有像素点为前景;否则,为背景。方向图是用纹线的方向来表示原来的纹线。本文采用块方向图,将源指纹图像分成小块,使用基于梯度值的方向场计算方法,计算出每个小块的脊线方向。图像增强的目的是改善图像质量,恢复脊线原来的结构;采用方向滤波,设计一个水平模板,根据计算出的方向图,在每个小块中将水平模板旋转到所需要的方向进行滤波。图像的二值化是将脊线与背景分离,将指纹图像从灰度图像转换为二值图像。二值化后的图像经过细化,得到纹线的骨架图像。细化采用迭代的方法,使用Zhang�Suen并行细化算法,可对二值图像并行处理。特征提取阶段,选择脊线端点和分叉点作为特征点,记录每一个特征点的类型、位置和方向信息,从而得到指纹的特征点集。但由于在指纹扫描和预处理阶段会引入噪声,产生大量伪特征点,因此需要进行伪特征点的去除。去除伪特征点后的特征点集作为特征模板保存。特征匹配阶段采用基于特征点的匹配算法,通过平移和旋转变换实现特征点的大致对齐重合,计算坐标变换后两个模板中的特征点的距离和角度。如果小于某一阈值(本文的距离和角度阈值分别取5个像素和10°),则认为是一对匹配的特征点。计算得出所有匹配的特征点对后,计算匹配的特征点占模板中所有特征点的百分比S。根据系统的拒识率(FRR)和误识率(FAR)要求设置阈值TS。如果S大于或等于阈值TS,则认为是同一指纹;否则,匹配失败。结语本文提出了一种基于Nios II嵌入式处理器软核的自动指纹识别系统实现方法。使用Altera的Cyclone FPGA实现,且具有开发周期短、成本低等特点;同时,采用Nios II的定制指令来提高系统性能,利用硬件实现算法速度快的优点,使以Nios II处理器为核心的系统能够快速地完成大量数据处理。参考文献1 Frank Vahid,等. 嵌入式系统设计.骆丽等译. 北京:北京航空航天大学出版社, 20042 任爱锋,等.基于FPGA的嵌入式系统设计.西安:西安电子工业大学出版社, 20043 Nios II Custom Instruction User Guide. Vizcaya P, Gerhardt L. A nonlinear orientation model for global description of fingerprints. Pattern Recognition, v. 29, no. 75 柴晓光,等.民用指纹识别技术.北京:人民邮电出版社,2004

中国门禁网论坛上应该有或者直接登陆中国门禁网首页查寻

人脸识别技术文献论文

Viola-Jones方法,人脸识别研究组。《智能环保垃圾处理设备》发布的公告得知人脸识别参考文献为Viola-Jones方法,人脸识别研究组。包括人脸检测,人脸预处理和人脸等方向。

计算机人脸识别是一个复杂和困难的问题,其原因是:(1)人脸是由复杂的三维曲面构成的可变形体,难以用数学描述;(2)所有人的人脸结构高度相似,而人脸的图像又受年龄和成像条件的影响,这使得同一人在不同条件下的差别可能比不同的人在相同条件下的差别还要大。因此,人脸识别技术实用化所需解决的重要问题是研究能在上述变化条件下可靠工作的人脸识别技术,即鲁棒的人脸识别技术。实现鲁棒的人脸识别涉及人脸检测、特征检测、人脸描述、建模、识别等技术,而其中最关键的是特征检测。基于上述理解,本论文以鲁棒的人脸识别为目标,以人脸特征检测为重点进行了相关的研究,并取得了如下创新性成果:1、提出多线索自适应人脸特征检测方法,将多种人脸线索通过导引、校验、纠错等方式相融合,实现了在姿态、背景和光照变化的情况下人脸特征的可靠检测。与现有典型的特征检测方法相比,正确率和适应性有显著提高(对于姿态变化的情况,正确率提高10%左右),从而使人脸特征检测技术达到实用阶段。2、提出图像分析和运动分析相结合的交叉验证方法,实现了活动图像人脸特征检测中的自动纠错和特征估计机制,从而使视频中人脸特征自动检测的正确率达到98%以上,为基于... It is difficult to implement the face recognition mechanism using computers for several reasons. First, human face is a deformable object composed of complex 3D curve surfaces, which is hard to be represented in form of mathematics. Secondly, faces of different persons have the similar structure. On the other side, the face images are greatly dependent on ages and photography conditions. This results that the difference between two face images of two different persons taken under the same photography co...

相关百科

热门百科

首页
发表服务