是的,如果样本数据少了几年,可能会对研究结果产生影响。一方面,缺少足够的样本数据可能会使研究结果变得不够准确、不够可靠。另一方面,缺少样本数据也可能导致研究人员无法得出有用的结论,因为他们根本无法收集到足够的数据。
问卷样本数量在500-1000即可,太多了数据差异性不明显,太少了没有信度。
首先,取决于样本总体的广泛性,比如研究汉族和藏族学生,那样本量差异就很大。因为汉族学生的总体很庞大,要想获得一个具有代表性样本,显然需要很大的样本量。而藏族学生的总体很少,相对少的样本量理论上代表性也可能比较好了。
那么样本量如何确定呢,主要有以下几个因素:
1、总体指标的变异情况。这会影响到应答率的准确率,从而对样本量产生影响,在计算样本的过程中,还要考虑好以下几个重要环节。
2、预测值要有一定的精确度。因为抽样误差的大小会直接影响到估计值的准确程度。
3、一是为保证抽样率的准确性,必须要做好抽样推断,使之有一定的可信度;在确定样本后,样本量的计算是一个很关键的问题,需要一个科学的公式,是专业性的。总体来主,样本量要根据估计的域的多少来决定样本量的多少。
4、总之样本量的确定要遵循一人原则,即:精度和费用的互相作用,费用一定精度最高,精度一定费用最低。
5、而样本的收集与整理可以上各大问卷网站或者沃销众填上解决,也可以加入QQ、微信群免费互填问卷。
6、这里介绍一个公式,对于已知数据为绝对数,我们一般根据下列步骤来计算所需要的样本量。已知期望调查结果的精度(E), 期望调查结果的置信度(L),以及总体的标准差估计值σ的具体数据,总体单位数N。
计算公式为:n=σ2/(e2/Z2+σ2/N)。
特殊情况下,如果是很大总体,计算公式变为:n= Z2σ2/e2。
会。研究生毕业论文出现了实验数据,要确保数据必须是真实的,有效的,实证是会查数据的,但具体的还要看专业和学校,毕业论文按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。
硕士论文不都是实证论文。
可以根据兴趣进行选择,但是相对于理论的研究,很多本科的法律人,会选择实证论文。因为实证分析相对于理论的论文,会比较容易把握,不过存在数据收集难、数据分析难等问题。
小包公法律实证分析系统可以帮助法律人对实证文章所需要的研究维度进行数据收集、数据清洗、数据验证,从而能得出文章所需的数据图表。帮助完成实证分析论文。
毕业论文开头报告注意事项:
开题报告是比较简单的格式汇报,主要是确定选题、报备研究方向和研究的学术意义及其对现实的指导价值等等。
(1)研究背景。要细看前人研究不知道前人研究的不足点,以免自己的研究存在重复研究。
(2)研究问题。避免问题太大,不细化,进而让问题研究得不深入让对策都禁不起推敲。
(3)研究方法。不要简单罗列研究方法,要同时进行说明。
(4)研究理论。不清楚这些理论的研究出发点,在运用该理论时,明显存在问题和理论的脱节现象。
(5)研究框架。避免不说明具体的研究方法和程序化的步骤、每个阶段做了什么、取得什么成果以及每个步骤之间的关系。
(6)研究意义。避免不谈创新性。
以上内容参考:百度百科--毕业论文
你要在好一点的期刊上发表他们会问你要数据包的,毕业论文貌似不会问你要数据的,确实很头痛。
1、中国数据网
中国数据网就是进入“中华人民共和国国家统计局”官网找数据,接着可以在“数据查询”里点相关数据查询,有年度、季度、月度数据,也有普查、国际和部门数据,里面还有细分指标数据查询。
如年度数据指标有国民经济、人口、对外经济贸易、能源、财政、价格指数、工农业、社会服务、固定资产投资和房地产等,可以搜索最近5年、10年、20年的数据资料。
2、中国产业信息网
中国产业信息网主要是专注于本产业的实时信息共享,以及数据分析查询。中国产业信息网主要是由相关产业的专家及资深从业人员发布产业数据和相关信息。
3、优易数据
优易数据由国家信息中心发起,拥有国家级信息资源的数据平台,是国内领先的数据交易平台。平台有B2B、B2C两种交易模式,包含政务、社会、社交、教育、消费、交通、能源、金融、健康等多个领域的数据资源。
4、国家统计局
除了数据外,最大特点是网站还设有“数据解读”模块,可以看到专家学者对特定数据的分析解读,帮助快速理解数据背后反映的现实问题,推荐拿到数据不知从何入手的同学使用学习。
5、中国统计信息网
汇集了海量的全国各级政府各年度的国民经济和社会发展统计信息,包括统计年鉴、统计公报、阶段发展数据、统计分析、经济新闻等。
毕业论文需要的数据可以从下面几个方面获取:
一、问卷调查。很多文科的同学,用问卷调查的数据比较多,这种数据比较好收集,自己设计一套问卷,去找目标人群收集数据就行了。现在有很多专门的调查问卷的网站和小程序之类的,收集这类数据就简单多了。
二、实验数据。这种数据一般理科的同学用的比较多,通过自己的实验拿到的数据也比较可靠,自己用起来也很有底气。
三、国家和政府公布的数据,这种数据大多都是月度,季度,年度数据。数据范围比较广,官方数据很有说服力,如果是做行业调查之类的很实用,而且也不需要自己收集,直接拿来就可以用,很方便。
四、就是行业数据,行业数据可能来自于行业协会,行业专业网站等等。
五、常用的数据来源网站有:
1、国家统计局,这个网站上的数据比较官方权威。
2、中国旅游研究院,适合一些旅游专业的学生。
3、产业信息网,了解不同产业的收益、市场占额等信息。
4、国土资源部,获取土地资源、矿产资源、海洋资源等自然资源的规划、管理、保护与合理利用等信息。
5、国家企业信用信息公示系统,收集企业的信用信息。
6、中国知网,阅读参考文献的网站。
7、新浪财经,了解全球经济宏观数据。
数据分析法论文研究方法怎么写
数据分析法论文研究方法怎么写,毕业论文对大学生是很重要的一项内容,如果毕业论文不通过就可能毕不了业了,论文的数据是很重要的,如果你的论文数据不准确,就没研究意义了, 下面我和大家分享数据分析法论文研究方法怎么写。
确定数据分析方法
首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。
另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。
搜集整理实验数据
接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。
那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。
在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。
给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。
在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。
使用软件进行分析
接下来第三部分就是使用软件进行数据分析,本部分是非常重要的一个部分。因而可能会出现各种各样的问题。
在本部分大家可以通过软件对所得数据按照前面选定的研究方法进行分析。实践是检验一切的'唯一标准。有很多问题往往都是在进行了数据分析以后才暴露出来的。
根据自身经历,通过软件分析了实验数据以后,才发现结果非常不理想,此时就需要及时跟论文指导老师沟通去进行数据分析方法的调整。
在使用软件进行数据分析之前,一切都是未知的,只有分析之后才能对症下药。所以本环节大家一定要高度重视,根据分析结果及时对研究方法或者样板数据进行微调。
梳理归纳实验结果
最后一个部分就是梳理和归纳实验数据分析结果,此时,大家要讲结果进行合理化解释。同时也需要大量参考先前学者的优秀文献,寻找类似的结果或者解释,从而为自己的实验结果的合理解释提供参考。
有的实证性论文的课题研究可能还不止一个阶段,因为很多研究方法会分阶段进行,比如考虑外部因素的影响或者投出产入效率等等,所以大多研究方法都是两阶段或者三阶段。此时就需要大家根据论文整体性原则,及时对实验结果进行分阶段阐述,所以大家一定要自己思维清晰,层次分明。
这一部分也是将来在毕业论文答辩需要大家重点向答辩老师介绍和阐述的,一定要熟稔于心。
1、调查法
它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解。
2、观察法
观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。
3、实验法
实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性和控制性。
4、文献研究法
文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。
5、实证研究法
在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。
房地产专升本毕业论文1.房地产经济走向:目前重庆,武汉,杭州等经济受到国家政策的打压房产的价格开始回落。2.房地产上市公司业绩的影响因素实证研究:房地产企业业绩影响因素研究现状运用线性回归的方法,选取流动负债率和长期负债率、有息融资率和无息融资率、长期借款率和短期借款率分别作为资本结构的衡量指标,而将总资产贡献率和总资产利润率分别作为公司业绩的衡量指标。研究结果表明:总体来看,各项指标相关性不显著,但是就所有指标而言,正负相关的倾向还是比较明显的。就这一实证结果,本文结合我国房地产行业的实际情况,分别从房地产行业所处的阶段特征、政策面的影响以及公司治理结构方面进行了分析。运用数据包络分析(DEA)模型评价房地产上市公司绩效,关注房地产上市公司的经营效率、管理效率及资本配置总体效率的价值评判标准,以我国房地产业23家具有代表性的房地产上市公司为研究对象,通过设立多输入和多输出的指标进行综合评价,找出相对有效的行业标杆,同时分析行业整体和单个公司的资源配置效率,并提出了优化资源配置和提高房地产上市公司绩效的途径。从我国上市公司绩效影响因素及货币政策、物价变动与绩效相关性的一般理论思考出发,揭示出了我国上市公司绩效受国家宏观政策影响的理论依据。(严格意义上来说绩效评价体系包括业绩目标、业绩辅导和业绩评价。但是现在一般都模糊了这种概念,把两者视为一样)从MM理论出发,引进货币传导机制理论和两权分离的相关理论,得出房地产这个行业的所有绩效指标都与货币政策、CP工存在一定相关性。得到物价上涨会对房地产这个行业的经济绩效产生一定的负面影响,国家的宏观政策对地产行业影响甚微的结论。分析比较了目前上市公司经营业绩评价的主要方法,并剖析其存在的不足之处,在此基础上引入因子分析模型,并构建评价上市公司经营业绩的指标体系,然后应用该模型对我国房地产上市公司经营业绩做实证研究,最后得出研究结论,并指出了由于会计信息失真等因素的存在,使得该研究方法存在一些局限性,从而在一定程度上影响了研究结果的现实指导意义。《我国房地产上市公司经营业绩实证研究》选取GDP作为衡量经济发展的数据支持,以房地产开发投资完成额作为房地产行业发展的适合量度,运用协整分析方法对我国房地产行业与经济增长之间的动态均衡关系作相关研究。结论是:房地产行业发展状况对当前GDP变动的影响并不是很显著,我国房地产行业的发展与经济增长之间不存在明显的因果关系。认为人民币升值通过两种途径对不同行业产生影响。一是因人民币升值所导致的资本成本和收入的提升,将在长时期内改变我国的经济结构,重新赋予行业不同的成长速度,并使不同行业的企业业绩出现分化。二是人民币升值在短期内改变行业内企业的资产、负债、收入、成本等账面价值,通过外汇折算差异影响其经营业绩。最后认为人民币升值将使房地产行业受益。而从理论分析的角度得出人民币升值对房地产行业的影响有利好、利空两方面。利空影响:货币持续过度升值会导致经济减速(因为FDI下降、净出口下降),外资需要下降,从而使房地产需求下降并会导致通胀水平下降,从而使房地产价格涨速下降。利好影响:第一,升值预期导致外资对房地产的投资需求加大。货币升值预期会导致外资的涌入,并大量投资到房地产上。从而增加房地产投资需求,推高房价,这是货币升值过程中必然发生的;第二,收入效应及财富效应导致国内房地产需求增加。张敏利用理论结合模型回归分析研究了股权结构的三个关键因素(股权集中度、股权属性及股权流通性)与公司治理绩效的关系。得到结论(1)房地产行业的股权集中度低于市场平均水平,而且股东之间的力量比较均衡,大多数公司的股权结构都呈现出多元共治的局面,并且第一大股东控股比例与公司绩效没有明显关系。(2)分析股权控制类型时,发现国有控股企业与法人控股企业、流通股主导型企业的公司绩效都没有明显的差别。(3)国有股比重、流通股比重与经营绩效没有显著相关关系。而法人股比重与公司绩效有着显著负相关关系。(4)控股股东相对控制权越大,公司绩效越差。采用单位根检验、协整分析、误差修正模型以及Granger因果关系检验等现代经济学计量方法,对湖北省房地产业的发展与经济增长的关系进行实证研究。发现湖北省经济增长是房地产业发展的Granger原因,经济的快速增长带动了房地产经济的发展,反之房地产投资对经济拉动作用却不显著。介绍房地产开发投资与GDP关系的研究方法,并通过近十年来浙江省房地产开发投资对GDP增长的贡献和贡献率进行分析,以反映房地产市场发育程度及经济增长的稳定性和风险性。应用协整分析、误差修正模型技术以及Granger因果分析对我国房地产价格与GDP之间的关系进行了实证分析。实证结果表明:我国的房地产价格与GDP之间存在长期稳定的动态均衡关系;无论长期还是短期,我国的GDP波动都是房地产价格波动的Granger原因,GDP的走势对于房地产价格的涨跌起着决定性的影响,GDP的波动有助于预测房地产价格的走势;短期内经济的过热容易引起房地产价格的过快增长。利用误差修正模型对三者关系进行计量分析,得出协整关系的结论。定量结果表明,GDP、FDI对房地产价格有正向的推动作用,但GDP是主要影响因素。这个结果基本排除了境外“热钱”对房地产市场的冲击威胁假说。选取一系列房地产价格指标与宏观经济指标进行研究分析,总体看,我国房地产价格趋于合理,居民的住房购买能力逐渐加强。房地产价格的增长速度已经受到来自其他价格指数增长缓慢的压力,开始进入调整阶段;随着城镇居民可支配收入的逐渐提高,房价收入比不断降低,居民的购房能力逐步提高。在相当长的一段时间内,对房地产的需求仍将维持在一个较高的水平。房地产价格是基于宏观经济发展水平的平台上的,一旦价格增长过快,超过国民经济和社会发展的承受能力和消化能力,将带来非常严重的后果;但价格下降,也会对国民经济的发展带来一定的负面影响,并不是越低越好。从资本结构、股权结构、公司规模和公司风险等四个方面选取了可能影响企业盈利能力的多个指标变量运用因子模型进行了实证分析,但在财务指标的选取上,只是建立在规范研究的基础上,对影响经营业绩的变量只局限于财务指标本身,一些与经营业绩有重大因果关系的变量未选人,比如说国家的产业政策、宏观经济条件、公司管理者的能力、职工的技能水平等等因此此文使用因子分析方法对我国房地产上市公司经营业绩的分析在实际指导方面的作用有所下降。从房地产市场的过度需求、产业结构不合理、法律法规不完善、政府的执行效率有待完善、地产信息不对称、人民币升值等方面进行了理论分析,并提出一些建议。建立我国近年来房地产价格宏观经济影响因素的线性模型,选取6个宏观经济指标作为方程初始导入自变量,与房地产价格进行初步多元线性回归分析,以解决自变量之间多重共线性问题;进而选取出两个自变量与房地产价格建立多元线性回归方程,并对回归结果进行分析在一个简单的局部均衡模型基础上,利用1999一2003年全国31个省市的房地产市场的面板数据分析了中国房地产市场结构和价格问题。从房地产价值的自然增长、市场供求关系和心理预期三个方面探讨了房价波动的构成、机制和影响因素,并提出了相应的房价调控对策。运用2001一2003年中国上市公司年报中披露的分行业信息,研究了房地产类上市公司多元化水平与财务绩效和企业价值之间的关系。实证结果表明,多元化水平与财务绩效之间存在显著的负相关,但是与用托宾Q衡量的公司价值之间不存在显著的相关性。针对我国目前房地产泡沫膨胀可能波及金融安全的现状,提出了如何优化房地产业资本结构的问题,并根据2000一2002年深沪两地A股房地产上市公司资料,对我国房地产企业上市公司的资产负债率与公司规模、经营业绩之间的相关关系以及资本结构效应进行了实证分析,并提出相关的建议。论文从影响企业的绪论硕一七论文外部因素入手,分析外部因素对公司绩效的影响程度。结合我国的物价变动、货币政策与对上市公司的绩效的相关性进行实证性分析。并运用了实证分析法中的OSL分析法,得到上面的结论。这些结论可以帮助企业在我国当前的形势下如何提高自身的绩效与价值。可以为上市公司在物价变动时和当前货币政策条件如何利用财务杠杆来提高企业的绩效的目的提供帮助。通过聚类分析找出我国房地产上市公司的差距大小,并将其归为几类,以此总结出影响房地产上市公司盈利能力的因素所在,并提出企业发展对策和政策建议。论文由六章组成,本研究所采用聚类分析方法,具体分为两个步骤,首先,在不明确房地产上市公司能够分为几类的情况下,为避免主观误差,采用系统聚类的方式,从SPSS输出的树状图直观的看出不同公司之间的距离;在此基础上,确定分为几类,然后采用快速聚类的方式,将房地产上市公司分类,找出房地产上市公司的特点和共性。从房地产价格的相关理论出发,主要从房地产需求、房地产供给、房地产金融和房地产宏观调控等角度对影响房价的因素展开分析。以房地产统计数据为基础,采用计量经济学方法和统计分析方法,主要从实证角度分析各因素对房价的影响。首先,分析房地产需求各因素对房价的影响,明确了城镇住房制度改革、居民可支配收入增加、城市化、房地产投机和人民币升值预期等因素导致的房地产需求扩张是房价上涨的首要因素。随后,从房屋建造成本、土地价格等角度分析供给因素对房价的影响,并以北京、上海和武汉三城市为例分析了房价和地价的关系。接下来,以房地产开发投资来源及构成为基础,分析了房地产金融对房价的影响,指出个人住房贷款推动了房价的上涨。未完……
先要构建调节项,其次做中介效应分析,分步回归分析。但如果用结构方程模型来做更好。(南心网中介效应和结构方程模型分析)
中介效应不显著,但是如果调动有关因素,仍可能出现显著的中介效应,需要根据特定情况进行适当的调节后进行检验确认。
本篇内容包括Mplus SEM基础模型, 含(连续及类别数据)EFA/CFA及不同CFA模型的比较,测验等值检验, 不同数据类型潜变量之中介(Bootstrap), 调节, 调节的中介,及简单效应分析及做图。有人留言询问基础模型,所以一次性把主要的基础模型介绍完了哈哈……如果有人还问你Mplus基础模型咋搞,请把这篇文章甩给ta……目录1 CFA 基本语句语句解读 Mplus语句一些常用符号模型拟合指数说明 CFA MpLUS 示例及结果解读 备择模型及CFA模型比较 类别变量 Subgroup CFA Test Measurement invariance (MI)介绍 性别作为subgroup MI 示例# EFA探索性因子分析#.1 连续变量的EFA#.2 类别变量的EFA2 中介模型的检验 中介模型 use model constraint 设定中介模型 调节的中介3 调节模型检验 潜变量调节模型 简单效应分析及交互作用图4 如何报告数据结果5 代码获取方法1 CFATesting ameasurement model via CFA is always the first step in fitting a structural equationmodel (SEM). CFA基本语句语句解读Title: 可以任意给定,如three factor modelTITLE: three factor modelVARIABLE:!数据文件里所有的变量名USEVARIABLES= 所使用的变量MISSING = ALL(-1); !界定缺失值,根据自己的设定可以是-999, -99任意ANALYSIS:TYPE = GENERAL;TYPE 主要有四种常见的分析类型· GENERAL最常用的, CFA, SEM, 一般线性回归模型· MIXTURE 用于类别变量的模型,最常用的latent class analysis· TWOLEVEL 多水平数据,可以是连续性及类别变量· EFA 探索性因子分析ESTIMATOR= ML; !estimation method如果所有的因变量是连续性变量,可以使用ML (Maximum Likelihood)如果有一个或多个因变量是类别变量categorical variable,应该使用WLSMV(a weighted least squares estimate)ITERATIONS= 1000; !运行的次数MODEL:!界定模型fdback BY FDBACK1 FDBACK2 FDBACK3;rolecon BY ROLECON1 ROLECON2 ROLECON3;OUTPUT:MOD STAND;MOD modificationindices,注:BY 是Measured by 的缩写ON 是regressed on 的缩写Y ON X Z; 表示X, Z 为自变量,Y 为因变量;WITH 是co-vary with的缩写,表示相关XWITH是用来创建潜变量的交互作用如: X BY X1 X2 X3;Z BY Z1 Z2 Z3;XZWITH | X WITH Z;如果要用潜变量模型求调节模型需要用到。 Mplus语句一些常用符号@ 是用来set a constraintX WITH Y@0; !如果我们想要设定两个潜变量相关为0,* 星号用来 free a fixed –by-default parameter比如X BY X1* X2@1 X3 X4;为了模型识别,Mplus通常默认第一个条目的loading 系数为1,如果你想要改变默认设置,将第二个条目限定loading 系数为1,而第一个条目free to be estimated. 就可以用以上。() 这个是用来命名特定系数,一般复杂模型比较有用。Y1 ON X1 (a);Y2 ON X2 (b);Model constraint :a = 2*b;模型拟合指数说明CFI, TLI, RMSEA, AIC,BIC Kline (2010): MpLUS 示例及结果解读对应代码文件: three factor CFA模型说明:三个变量social support, teamwork, job satisfaction 分别有2个条目测量,验证CFA三因子模型,点击运行MpLUS会给出模型拟合指数及Loading。根据HU & Bentler CFI TLI , SRMR, .06RMSEA 说明模型拟合指数较好Loading系数及变量之间的相关。 备择模型及CFA模型比较至于如何选择不同的模型,可以参考实证研究可以试着运行1 factor, or three, 然后根据chi-sq, df比较模型,nested 模型通常比较两个模型的卡方值(卡方值的变化值 M1 卡方-M0卡方,自由度变化值df1-df0,查卡方表是否显著).Satorra & Bentler(2010)提出一种新的方法,Mplus官网有介绍:来源:我已把这个公式放在一个EXCEL里面,你只需要MpLUS 里ESTIMATOR = ML, ML修改为MLR,跑两个不同的nestedmodel (M1 M0),然后会得到相关的几个数据,输入对应的EXCEL,再去查卡方表即可。 类别变量CFA只需要添加一行代码说明CATEGORICAL =对应的ESTIMATOR =WLSMV; SubgroupCFA Test invariance (MI)介绍量表开发,或者纵向追踪数据的时候需要检验 measurement invariance (Van de Schoot,Lugtig, & Hox, 2012).具体的相关理论方面可以阅读文献 Van de Schoot et al. 2012, 作者详细提供了step by step guide 以及Mplus syntax。(), 打开链接发现作者也是UU的……然而并没有发现Mplus syntax…,但是UU学术笔记提供!通常检验:· factorloading, (weak invariance)· intercepts,(strong invariance)· andresidual variances (strict invariance)然后根据提到的模型比较方法比较不同的模型 性别作为subgroup MI 示例我把三个模型的代码写在一个syntax文件里了,运行的时候只需要删掉前面注释符号!即可Model 1就是普通的CFA不需要添加任何,Model 2, 需要在数据下面添加GROUPING …analysis添加依一句 !MODEL = configural metric scalar;注意:在修改代码时候一定要在英文输入法模式!输入!Mplus无法识别,mplus依然会运行原本需要忽略的代码,修改为英文!就会变成备注模式MODEL 2 Stronginvariance(对应代码文件 strong measurement invariance)就会得到invariance testing, 以及模型拟合指数ModeL3 Strict model( measurement invariance)Strict 模型拟合较差# EFA探索性因子分析#.1 连续变量的EFAEFA比较简单,简单说下 (对应代码文件M0EFA 1-4factor)只需要选择需要进行EFA 的变量,然后再分析方法指定EFA 然后 1和 4分别指,1-4 factor,运行就可以了结果就会给出不同模型的比较loading,以及拟合指数1 factor loadingsTwo factorsThree factor比较发现,two factor , 多个条目出现双载荷cross-loading,三个就更差了,综合模型比较急loading 系数选取单因子模型#.2 类别变量的EFA只需要制定categorical variable 即可2 中介模型的检验 中介模型模型说明 teamwork—social support---job satisfaction (代码文件: mediation bootstrap)用潜变量中介模型,每个变量有两个条目IND: only add atest for the indirect effect可以看出,所有的回归系数都显著;中介也是显著 Bootstrap以同样的模型为例:teamwork—social support---job satisfaction在ANALYSIS: 命令下添加Bootstrap = 10000; 根据Hayes (2013) 一般5000次以上就可以。相应地,在OUTPUT: CINTERVAL (bcbootstrap);在代码M2mediation mplus, 已经添加了Bootstrap,只需要删掉前面的!号即可(!在mplus表示注释说明),运行就会获得bootstrap 结果;只需要不包含0说明结果显著。 use model constraint 设定中介模型如果涉及多个中介时候这种方法比较好一些 结果变量为类别变量的中介模型以性别作为结果变量,仅仅是为了演示……不然拿性别做因变量恐怕很难说得通在用到的变量里说明类别变量,分析方法也需要用MLR, a maximum likelihood estimator withrobust standard errors using a numerical integration algorithm will be used (Muthén &Muthén, 2017).其它把类别变量做自变量之类的,都大同小异,不再赘述。感兴趣的可以看看MpLUS USER GUIDE 调节的中介对应代码文件 moderated mediation新建了交互作用WDxsocsup, 用潜变量或显变量的时候在分析方法交互作用设定都会有所不同。在前文MpLUS语句介绍里有说明 WITH 语句。其它的结果解读略去。这里演示的都以潜变量模型为例子,显变量模型可以参考MpLUS USER GUIDE 3 调节模型检验 潜变量调节模型其实已经在上面中介的调节里有说明了如何创建交互项,潜变量用 WITH 语句工作资源需求模型的,work demand *social support, 工作资源对工作需求的buffer effect就简单运行一个调节模型,work demand, social support, and WDxSSUP 对工作满意度的影响Output 输出代码稍有不同:STAND CINT SAMPSTAT;对应代码文件: latent moderation主效应显著,交互作用不显著。 简单效应分析及交互作用图说实在在MpLUS里简单效应分析比较麻烦,做出来的原始图也比较丑……就用显变量模型演示。对应代码文件: Moderation analysis withsimple slope test and plot首先创建交互项,但是回归分析一般需要数据中心化处理,所以在准备数据的时候最好直接创建交互作用,或者也可以用Define, 然后添加交互作用到usevariables !重要简单效应分析的第一步是首先跑一个回归模型,如果得到交互作用显著之后,根据概念模型写出对应地回归方程Stress =b0+age+b1*wkdem + b2*support+b3*DEMxSUP这里调节变量为sup, 简单效应分析就是调节变量在平均数加减一个标准差之三者之间slope的差异, bo b1等为非标准化的回归系数。Social support 平均数为, 标准差为, 基于此可以求出,Med, high, low social support; 这些数据可以通过TECH1 TECH8; 就可以给出,注MPlus提供的是方差,需要自己计算SD,或者可以用SPSSLOSUP= - ;MEDSUP = ;HISUP = + ;然后界定三个slope,SIMP_LO = b1 +b3*LOSUP;SIMP_MED = b1 + b3*MEDSUP;SIMP_HI = b1 + b3*HISUP;然后上面的公式经过转换,分别界定三条线low, med, high,运行得出结果发现只有low social support 显著……然后查看具体交互作用图……以前以为MpLUS 做出来的图丑到无边……其实是没有调整好……4 如何报告数据结果可参考已发表实证研究。或关注UU学术笔记,目前我们联合众多博士正在整理管理学及心理学领域Top tier journal 数据结果报告的常用句库,未来一个月内会发在公众号。另外,我们英文写作句库已经发布了引言部分及文献综述、方法部分Academic writing: method (sentence bank)写好英文学术论文,你只差一个句库 (Sentence Bank)5代码获取方法· 代码都已经在文章截图呈现,所以可以根据自己数据改编。· 转发至朋友圈获得30个赞同;· 转发至于300人以上心理学或管理学硕士博士群发至邮箱,我们会在3个工作日内发给你代码及数据如果需要MpLUS 软件或者数据准备不清楚,请看Mplus 软件及代码或者如果涉及复杂模型,LCALatent Transition Analysis(潜在群组转变): Mplus分析详解----欢迎关注我们一个专注于心理学及管理学领域统计方法(复杂模型Mplus及R软件的应用)及英文写作的公众号----另如果涉及统计及代码问题,请在文章下方留言或邮寄。公众号回复48小时就无法回复了。编辑于 2020-02-06 · 著作权归作者所有 赞同 146评论相关推荐京东PLUS会员的高级特权,很多人都不知道!白浪费了会员费!棉棉花糖的回答有什么适合学生党的性价比高的水乳套装推荐吗?貂馋螺蛳粉的回答男生怎么短时间内变帅、变白?我家狗会后空翻的回答你们的痘痘最后都是怎么完全好的?我叫陈世美的回答射频美容仪是伪科学吗?OO嘴的回答女生长期脾胃不好,该如何养胃?是在校学生有什么简单高效的方法吗?算命的说我很爱吃的回答请问大家一般找工作都是在什么app上找的,boss、58、前程无忧、智联这几个靠谱吗?陈默Silence的回答什么狗粮比较好?铲屎官kimi的回答知友推荐的山药粉真的能补脾胃吗,喝两个月有什么变化?(个人亲测)陈住气的回答2022智能手表保姆级选购指南 | 智能手表怎么选?华为、苹果、华米、OPPO等主流品牌手表深度对比评测(双十二特更)一昂羊的回答收起大家还在搜人力资源管理5p模型人力资源amo模型人力资源管理的模型精益六西格玛导入阶段人力资源能力模型人力资源分析常用模型人力资源管理常用模型人力资源345原则人力资源管理控制程序人力资源管理大咖索尼人力资源管理案例薪酬水平策略有几种模型塔克曼团队发展阶段模型塔克曼五阶段模型成型参数五大要素蒂蒙斯模型的三要素人力资源管理kpi指标osi参考模型的七个层次人力资源管理七种原则fms的七个评估动作图态度转变模型包含要素osi模型的七个层次设备osi参考模型七个层次胜任素质模型6要素aba的基本训练方法ecp八要素塔克曼团队发展阶段模型塔克曼五阶段模型 相关推荐十分钟学会有调节的中介分析——MPLUS_知乎作者:缇娜 在上期内容中,小编为大家简单介绍了有关“有调节的中介模型”的概念、目前发展趋势以及一种数据分析方法(PROCESS).因此本期内容主要聚焦于有调节的中介的另一种数据分析方法——MPLUS. 但是我们说这种方式对于没有...快速上手MPLUS数据处理_知乎作者:缇娜潜变量模型发展迅速.然而方法学领域的发展延伸到应用领域需要一段时间.这个时间的长短取决于方法学者的... 01 MPLUS基础知识和操作02 测量模型与验证性因素分析CFA——想做结构方差先从测量模型开始学起03 结构方程模型中...有调节的中介在Mplus中的实现(调节直接路径)_知乎当一个模型中既有中介变量,又有调节变量时,如何在Mplus中实现呢?本文的变量均为显变量,调节变量调节的路径为直接效应,即X到Y的这条路径.如果你的模型是第一阶段或第二阶段调节,可以参照本文略作修改.来看下模型长啥样,M为中...Mplus分析有调节的链式中介模型_知乎之前我们尝试分析了链式中介,如果有一个变量W调节了M1到M2这条路径的话,我们在链式中介语句的基础上,如何进行分析呢?链式中介的Mplus语句链接:用Mplus分析链式中介如果想从微信公众号上查看本文请关注公众号心理统计与测量:...有调节的中介在Mplus中的实现及结果详细解读_知乎在写论文的时候,我们常常会将中介和调节混合使用,