1500字论文格式模板(通用5篇)
无论是在学习还是在工作中,大家最不陌生的就是论文了吧,通过论文写作可以培养我们独立思考和创新的能力。相信许多人会觉得论文很难写吧,以下是我为大家收集的1500字论文格式模板(通用5篇),欢迎大家分享。
1 计算机网络的定义
计算机网络就是利用通讯设备和通信线路将地理位置不同的、具有独立功能的多台计算机系统遵循约定的通信协议互连成一个规模大、功能强的网络系统,用功能完善的网络软件(即网络通信协议、信息交换方式和网络操作系统等)来实现交互通信、资源共享、信息交换、综合信息服务、协同工作以及在线处理等功能的系统。
2 计算机网络的分类
1)计算机网络按照地理范围划分为:局域网、城域网、广域网和互联网四种;2)按拓扑结构划分为:总线型、星型、环型、树型和网状网;3)按交换方式划分为:线路交换网、存储转发交换网和混合交换网;4)按传输带宽方式进行划分为:基带网和宽带网;5)按网络中使用的操作系统分为:NetWare网、Windows NT网和Unix网等;6)按传输技术分为:广播网、非广播多路访问网、点到点网。
3 计算机网络系统的构成
计算机网络系统通常由资源子网、通信子网和通信协议三个部分组成。资源子网在计算机网络中直接面向用户;通信子网在计算机网络中负责数据通信、全网络面向应用的数据处理工作。而通信双方必须共同遵守的规则和约定就称为通信协议,它的存在与否是计算机网络与一般计算机互连系统的根本区别。
4 计算机网络的主要功能
资源共享:计算机网络的主要目的是共享资源。共享的资源有:硬件资源、软件资源、数据资源。其中共享数据资源是计算机网络最重要的目的。
数据通信:数据通信是指利用计算机网络实现不同地理位置的计算机之间的数据传送,运用技术手段实现网络间的信息传递。这是计算机网络的最基本的功能,也是实现其他功能的基础。如电子邮件、传真、远程数据交换等。
分布处理:是指当计算机网络中的某个计算机系统负荷过重时,可以将其处理的任务传送到网络中的其它计算机系统中,以提高整个系统的利用率。对于大型的综合性的科学计算和信息处理,通过适当的算法,将任务分散到网络中不同的计算机系统上进行分布式的处理。促进分布式数据处理和分布式数据库的发展。利用网络实现分布处理,建立性能优良、可靠性高的分布式数据库系统。
综合信息服务:在当今的信息化社会中,各行各业每时每刻都要产生大量的信息需要及时的处理,而计算机网络在其中起着十分重要的作用。
5 计算机网络的常用设备
网卡(NIC):插在计算机主板插槽中,负责将用户要传递的数据转换为网络上其它设备能够识别的格式,通过网络介质传输。
集线器(Hub):是单一总线共享式设备,提供很多网络接口,负责将网络中多个计算机连在一起。所谓共享是指集线器所有端口共用一条数据总线,因此平均每用户(端口)传递的数据量、速率等受活动用户(端口)总数量的限制。
交换机(Switch):也称交换式集线器。它同样具备许多接口,提供多个网络节点互连。但它的性能却较共享集线器大为提高:相当于拥有多条总线,使各端口设备能独立地作数据传递而不受其它设备影响,表现在用户面前即是各端口有独立、固定的带宽。此外,交换机还具备集线器欠缺的功能,如数据过滤、网络分段、广播控制等。
线缆:网络的距离扩展需要通过线缆来实现,不同的网络有不同连接线缆,如光纤、双绞线、同轴电缆等。
公共电话网:即PSTN(Public Swithed Telephone Network),速度9600bps~,经压缩后最高可达,传输介质是普通电话线。
综合业务数字网:即ISDN(Integrated Service Digital Network),是一种拨号连接方式。低速接口为128kbps(高速可达2M),它使用ISDN线路或通过电信局在普通电话线上加装ISDN业务。ISDN为数字传输方式,具有连接迅速、传输可靠等特点,并支持对方号码识别。
专线:即Leased Line,在中国称为DDN,是一种点到点的连接方式,速度一般选择64kbps~。专线的好处是数据传递有较好的保障,带宽恒定。
网:是一种出现较早且依然应用广泛的广域网方式,速度为9600bps~64kbps;有冗余纠错功能,可 靠性高,但由此带来的副效应是速度慢,延迟大。
异步传输模式:即ATM(Asynchronous Transfer Mode),是一种信元交换网络,最大特点是速率高、延迟小、传输质量有保障。ATM大多采用光纤作为连接介质,速率可高达上千(109bps)。
调制解调器(Modem):作为末端系统和通信系统之间信号转换的设备,是广域网中必不可少的设备之一。分为同步和异步两种,分别用来与路由器的同步和异步串口相连接,同步可用于专线、帧中继、等,异步用于PSTN的连接在计算机网络时代。
6 结语
人们对计算机和互联网的利用必将会渗透到社会生产和生活的各个方面,通过计算机和网络的功能,将会给企业的生产和经营活动的开展以及老百姓的工作和生活带来极大的便利。在互联网的联系和沟通下,各种信息传播的速度将加快,企业和个人对网络信息的依赖程度也将不断加深,信息需求程度相对较大的部门将成为未来社会中创造高附加值的行业。并通过他们带动相关知识产业的进步和发展,甚至带动全社会的经济结构的优化调整,推动社会经济的全面进步。
计算机网络取得今天的发展成就,是人类文明进入到更高阶段的标志,它推动着人类社会向更现代化的方向发展,同时推动了知识经济时代的到来,人们通过计算机网络的连接,打破了原先在时间和空间上的阻隔,在无形中拉近了人与人之间的距离,也在一定程度上扩大了我们生存的空间,网络给我们提供了超乎寻常的方便和成功。但是,网络也给社会带来了更多的挑战,它要求我们要以更高的层次去面对新的生活和环境,同时不断地改变我们的思想和行为,我们要抓住网络时代带给我们机遇,不断努力推动人类社会向更的高阶段发展。
1摘要
“摘要”是对整篇论文的缩写,建立在通读全文、理解全文的基础之上。评审专家评阅论文时,总是先看摘要,摘要给专家留下第一印象,是评奖的敲门砖。“摘要”包括: 问题背景,要达到什么目标,解决问题的思路、方法和步骤,模型的主要内容、算法和结论,模型的特色。好的“摘要”能很快吸引评审专家的注意力,它建立在多次修改、反复推敲的基础之上,具有统揽全文、层次分明、重点突出、文笔流畅的特点。
2问题提出
“问题提出”也可写作“问题重述”。是将竞赛试题所给定的问题背景和解题要求用论文书写者自己的语言重新表述。在美国的数学建模竞赛中,这一部分称为 Background或者 Introduction。
3模型假设
任何问题的求解都有它的背景和适用范围,建模试题来自于现实问题,同样受到各种外在因素的约束。“模型假设”就是界定一个范围,或给出几个约束条件,一使得问题的解决过程不至于太复杂,二使得其他人在使用该模型时知晓它的适用范围。“模型假设”不是凭空臆造的,是在建立模型的过程中挖掘、提炼出来的。
4符号说明
数学符号是数学语言的基本元素,具有抽象性、准确性、简洁性的特点。数学模型由数学符号组成,模型的求解通过符号的运算来完成。可见,在建立数学模型时根据需要随时引入必要的数学符号是多么重要的事情。根据竞赛要求,在建立模型的过程中所引入的数学符号要在本模块给出说明,最好的说明方式是列一个表格。
5问题分析
众所周知,解决数学问题最难、最重要的一步就是明确解题思路,确定解题方法。而“分析”,则是迈出这一步的关键。数学建模也这样。建模试题往往由几个子问题组成,这时的“问题分析”既要有全局分析,也要有局部分析。“问题分析”包括: 分析解决该问题需要用到哪些专业背景知识; 分析解决问题的切入点、重点和难点; 分析解决问题的思路、方法、工具和步骤。这样的分析对于“如何建立模型? 采用哪些数学理论或公式? 怎样求解? 会遇到哪些困难?”具有指导作用。
6模型建立
“模型建立”就是将原问题抽象成数学的表示式,主要步骤:
第一步,根据问题的实际背景和专业背景,选择适当的数学理论或工具。例如,如果是变化率问题,则考虑借助于导数或微分方程的手段; 如果涉及面积、体积、曲线弧长、功、流量等几何量或物理量,则考虑运用积分元素法,将问题转化为定积分、或重积分、或曲线曲面积分; 如果是随机数据的处理,则考虑统计分析的方法。
第二步,确定常量、变量,用符号来表示这些量。
第三步,建立数学模型,即建立常量、变量之间的关系。这种关系可以是方程、函数或表格。
7模型求解
少数模型可能是简单的数学式子,求解起来比较容易。有些模型虽然也可用数学式子表示,但其中含有难以析出的参数,求解很困难,有的模型面对的就是一堆数据,对于这两种情形,就需要借助于软件 Matlab,Mathematic,Maple,SAS,SPSS中的某一个编程求解。
8模型检验
数学建模竞赛的题目来自于科技、工程、经济、社会等领域的实际问题。由于问题的复杂性和方法的局限性,所建立的数学模型与实际情况之间会有差距,模型可靠性的检验成为必然。为了检验提交的数学模型与实际情况吻合的程度,竞赛题中往往会提供一些来自于背景问题的实验数据。“模型检验”就是将给定的数据代入模型,计算相对误差和绝对误差,如果误差较大,就要返回去调整模型以提高可靠性。
9模型评价
该标题也可写成“模型的优缺点分析”。分析模型有哪些优点,缺点是什么。也有人将这里的标题改写为“模型评价、推广与改进”。其中的“推广”是将前述“模型假设”中的某些 条 件 适 当 放 宽,看看结果会怎样。“改进”是指对模型或算法做出某种改进。
10参考文献
列式参考的主要文献。
11附录
详细的软件程序、程序运算过程、运算结果; 用于模型检验的数据表格; 其他不宜放在正文中的数据表格。
1、研究背景
中国的教育体制我想就是每个人都沿着固定的模式一路走来,在同一个阶层的人们所掌握知识水平都差不多,如果父母或师长告诉你,这件事是不应该做的,那么他就会牢记一辈子。致使他会把他的经验告诉他的孙子,我们丢失了正常能力,失去了用自己独特的方式观察世界的能力。替而代之的是,我们把世界概括成一套简单的题目,头脑中的固定模式从不会使我们感到惊讶,因为在我们标准形象不一致的时候,我们几乎视而不见,所以,当我们把所有劳工领导人归类为势力小人,把所有诗人看作梦想家,把所有政治家视为虚情假意的欢迎者,就暴露了我们的局限性。
教育是关系国家和民族前途命运的大事,和我们每个人都有着极为密切的关系。作为国家的主人和民族的一分子,曾经或现在的受教育者或教育者,我们每个人都应当关注教育。
2、对于教育制度,受教育者或教育者都认为有进一步完善的必要。
对于应试教育有些人可能这样理解:应试教育有利的一面是能加快孩子们对知识的记忆与理解。但诸如个人能力、综合素质、创造性等则起不到太大的作用,弊端相当多。
应试教育的最直接后果是导致教育产品供给的短缺。其结果导致教育的高收费,更重要的是,它仿佛是一架考试的机器,因为它推动着学历教育向前迈进;它使得学生从小学到大学一直为考试忙不停。否则,就会因考试不及格宁被淘汰。在这种体制下,孩子们努力学习知识,以通过各种考试。
学校考试以其对学习成果的显示,对学习方向引导,对学生的激励,在这一过程中起了控制器,调节器和加速器的作用。当然考试的控制、调节、加速效应是应接作用与学生学习的考试不但对学生学习的促进、调节作用,在学校教育中,它还集中体现着人的智力、技能在某种程度上是学生自我表现的需要。因此,它在一定意义上体现了人的本恒。但现实生活中,我国的学校考试出现了异化现象,产生了与人的本性、人的社会化过程相分离的运动。考试本来是促进学生社会化过程的手段,却被当成了追求的目的,学生的发展倒成了争取考试合格的手段。考试过程中所有自然形成的关系却变成了分数关系。考试成为学生学习的一种强制力量,学生失去了自身学习的动力。最终学生把考试视为自己的对立面,把自己看成被分数奴役的人。
面对如此问题,无庸置疑,考试要改革,考试要面向未来的教育,考试要与社会发展同步,考试要服务与人类的自我特点,这是考试的基本方向。考试改革的基本出发点是:考试要体现教育使学生全面发展的目的,要创造一个使学生个体全面发展的环境。
目前,我们的学校教育是典型的应试教育,而学校教育主要存在三个方面的问题:第一重视很多智力好的学生的教育,而忽略了大多数学生的教育;第二重视知识的教育,忽略了能力的培养;第三重视智商,忽略了德育、体育、美育等方面的教育。对诸多弊端,中共中央国务院在《中国教育改革和发展纲要》中明确指出:"中小学要由应试教育转向全面提高国民素质的轨道,面向全体学生,全面提高学生的思想道德文化科学,劳动技能和身体心理素质,促进学生生动活泼的发展,办自各自特色"。
3、素质教育这一教育方式应运而生。
"素质教育"这个次越来越广泛应用,与此同时,要求对统治教育上干年的所谓"应试教育"进行改革的呼声也越来越高,那么什么是素质教育?又这样把应试教育向素质教育改革呢?
所谓素质教育,既培养一个人的中和素质,使学生学习的知识技能与社会生活紧密结合,让学生步入社会不会有一种贪图和盲从感,这样培养出的人才才能既有广泛的知识又有各方面的技能和创造力,这才是我们社会真正需要的复合型人才。
由于传统的应试教育思想在人们的头脑中已经根深蒂固,形成了一整套应试机制和模式。因此,要实现由应试教育向素质教育转轨,必须打破已有应试教育机制,建立起强有力的素质教育运行机制,以素质教育取代应试教育。实施素质教育是当前世界各国教育改革的总趋势,也是我国深化改革的核心问题,只有实施素质教育才能从根本上革除传统教育的弊端,达到教育的根本目的提高全民族的素质。
摘要: 当今社会在古代文学中强化人文素质教育与培养,具有特别重要的现实意义,使古典的精华力量在现代社会依然熠熠生辉,这样才有利于学生人文能力、人文精神的全面发展与提升,具备良好的心智水平,更好地适应未来的职业与社会。
关键词: 人文素质;古代文学;教育与培养
一、完善课程体系
依据人文素质教育理念,在原有课程体系基础上修改和完善,无需另建一套课程体系,而是使新增设的人文素质教育课程与原有的课程相互照应,融于同一个大的课程体系中,形成一个有机的课程整体,使课程结构更合理、更科学。具体如下:一是在通识课程中增设最基本的人文素质教育必修课程,如人文素质教育通论、现代社交礼仪、美学与美育、中国通史、古典名著导读与鉴赏、实用书法书写与欣赏、世界名曲欣赏等,并给予相应的学分。二是结合学科课程渗透人文素质教育。如古代文学教师可以结合专业必修课、专业选修课、公共选修课等在教学中对文学院以及全学院学生进行人文素质教育。三是根据专业特点开设与其相对应的人文素质教育课程。可以在专业必修课中增设相应的专业人文素质教育课程,并给予相应的学分,如开设哲学史、戏剧史、教育史等。
二、调整教学内容
这是强化大学生素质教育与培养的关键。文学是民族文化的魂魄,中国古代文学披露的是华夏民族的精气神、炎黄子孙的奋斗史、华夏江山的正气歌,其中蕴含着深厚的人文精神财富。古代文学教学内容要彰显人文素质的精华。既要固守文化传承,使古代文学的精华得以继承和发扬,培养深厚的人文底蕴,还要强化古代文学中的创新精神和创新意识,古代文人提出众多创新思想:“守旧无功”“质疑问难”“濯去旧见以来新意”“不泥古”等。古代文学中的创新精神和创新意识,成为培养创新人才精神上的根基和文化价值取向,古代文学把创新作为新型人文人才的培养目标,使学生树立创新意识,与时俱进。更要关注情商教育,培养现代人文精神。提升思想境界,发展健康个性,塑造健全人格,使之成为学生面对社会压力、人生挫折的动力源泉。
三、建设师资队伍
教师是学生人文素质教育的主导,师者深厚的人文素质储备,是教师队伍建设的关键。师者应具有广博而深厚的文化底蕴,融文学、史学、哲学、艺术、审美、天文、地理等各领域为一炉,以敏锐深邃的时代感受,形成对生命、对生活、对社会的独特体悟。教师的人文素养,便是教之内功、师之根本。师资队伍建设,要注意师资来源,应尽量从本校现有的授课教师中挑选,个别的可外聘;师资培训,可采取校内、校外两种方式。从事必修课和专业课讲授的教师可参加校外举办的高级培训班或培训中心的学习。一般的授课教师要参加校内普通培训班的学习,以了解人文教育的指导思想、基本内容、基本方法等知识,提高全体教师的人文素养和教育水平。
四、营造文化氛围
重视社会实践环节,拓展人文素质教育的培养空间。校园环境的文化氛围,对学生人文素质教育与培养具有强大的潜移默化的作用。开展多元文化活动,使学生的人格得到塑造,个性得到发展,精神得到升华。如请专家学者作系列人文讲座或学术报告,引导学生提高人文素养;以校报、校园网和广播站为载体,开设人文教育专栏,拓展校园文化活动空间;建立人文社团,如新闻、文学、楹联、艺术等协会或社团;开展健康向上、格调高雅、内容丰富的校园文化生活,包括开展古典名著读书报告会、经典诵读和演讲比赛等活动。老师还应充分利用现有的空间来营造浓厚的人文氛围,使学生从中学习知识、开阔视野、美化心灵、娱乐身心,是培养学生人文底蕴、塑造学生人文情怀的有效途径。
五、结语
总之,当今社会在古代文学中强化人文素质教育与培养,具有特别重要的`现实意义,使古典的精华力量在现代社会依然熠熠生辉,这样才有利于学生人文能力、人文精神的全面发展与提升,具备良好的心智水平,更好地适应未来的职业与社会。
参考文献
1、论中国古代的文体学传统——兼论古代文学文体研究的对象与方法钱志熙北京大学学报(哲学社会科学版)2004-09-2069
2、文学传播学的创建与中国古代文学传播研究曹萌沈阳师范大学学报(社会科学版)2004-09-3048
一、教育理念与现实情况结合
在以前旧式的教育下,学生勤奋的学习只是为了应付考试,给家长和老师一个交代,然而数学比较实用,体现智力价值的内容,却在教科书没有学到。应试教育的弊端逐一体现出来,表明当前我国数学教育体系的情况严重落后,拖慢社会的发展,必须重视新课改和新的教学理念。从“新课标下高中数学的改革”看来,我们要从死板的教科书中走出来,开拓学生的视野,运用新的理念来改变旧式的数学教育体系。从数学哲学方面讲,数学史最含有生命力和统摄力的教学体系,是否学好数学,不是从数学成绩分数的高低来判断,最重要的是要以他如何看待数学,如何去学好数学,能否充分了解数学,熟练运用数学观念和方法分析日常生活现象,去解决问题。
在现实中,不同的人具有不同的数学观念,不同观念会导致人们不同行为和工作。一个学生如果对数学产生艰深难懂、枯燥乏味、很难学好的思想,必然会导致逃避数学,逃避数学老师,不去接触数学读物自行封闭行为。一个教师如果认为数学只是公式、法则、考试,那么他的课堂教学就是填鸭式的。但实践教学能让学习回归生活,注入新鲜的血液。体现在:1.让人们知道学习数学是未来社会发展的需求,对其制定和安排教学目标。2.制定符合现阶段学生适应的大众化和生活化的教学内容。3.让学生在生活和活动中,找到学习数学的兴趣,丰富其教学内容。
二、课堂教育方法的改变
课堂作为课改的主要阵地,是新课改是否有成效的直接体现。课堂教育的改变要从体现出来的问题入手,让课堂的学习氛围活跃起来,让教学变得趣味些,不再一味的枯燥,提高学生的学习激情和积极性,让学生学会自主学习,提高学习的效率。在教学上,教师不是讲完一个课时就觉得万事大吉了,但也不是讲得越多越好,要以学生接受能力为前提,要有质量的保证,要让学生明白教师只是讲了主要教学重点,其余要让学生自主学会学习,不懂再去问教师,切实提高课堂讲课的效率性。教师要学会“精讲”,把主要教学内容讲清楚,如重点、关键性的问题等。
在上课时的要求:(1)内容要简洁。扣住主题要求,突显重点、关键问题、难点;(2)方式得当。既要能体现出教学目标,又能复合学生的实际情况;(3)言语简洁明了。趣味生动,其提示作用,不要一味的死板,引起学生兴趣和思考。“多练”,是指在教师的指导下,学生能反复的练习,用口、动手、动脑充分运用课堂知识去解决问题,在练习的过程中,教师要起监督和指导作用,练习的内容要得当,要有一定的难度和深度,不要机械重复去练习,要有分寸。通过练习,让学生稳定熟练的掌握所学知识,培养其全面能力,形成技能、技巧。
学生学会思考,去质疑问题,思维的驱动在于质疑,能成为学生的动力,能激发学生的求知欲,让学生变得活跃起来。而以前的旧式教学是以事先确定好的老师问学生答的模式,使得课堂气氛僵硬,学生的问答完全按照教师的套路,根本没什么价值所在,又不能有效的省时,这值得我们去反省。在新的教学中,要让学生自主的去探讨,在自己思考问题过程中,才能发现问题,反之,没有经过自己大脑思考,是不会产生深刻问题的。教师的提问有利于养成自主思考问题的好习惯,提高学生学习效率的一条捷径,那些具有提问思考能力的学生是学到了一项学习能力,因此,我们要激发学生质疑的意识,让他们敢于提问和思考。
比如,①让教师去引导,提出问题让学生找到问题的关键点去解决,在此过程发现问题,进而去思考和解决问题。②教师要提倡学生主动预习,在预习中发现问题,从学习的重点、关键点发现问题,学会从书上的例题中找到解决的方法。③新旧知识的联系。数学知识点都是前后联系的,有许多新的知识是在旧的知识基础上拓展开来的,只要认真思考就能产生许多问题,所以复习旧的知识,也是学习新知识的必要手段。
三、结束语
总之,高中数学课程改革是现代社会发展必然需求,这关系到社会对培养人才的要求。教育改革是一个漫长且艰辛的过程,这就要求教师们要以积极的心态投入进去,要正面看待课堂教学,正确认识教学理念,必须身体力行,努力做一个优秀的教师,培养出社会需要的全面人才。
绿色物流毕业论文提纲模板
导语:绿色物流是指在物流过程中抑制物流对环境造成危害的同时,实现对物流环境的净化,使物流资源得到最充分利用。下面我整理了绿色物流毕业论文提纲模板,欢迎参考借鉴!
题目:煤炭绿色物流系统构建与优化研究
致谢
摘要
1 绪论
研究背景
研究意义
国内外研究综述
研究目标与研究内容
研究方法与技术路线
2 煤炭现行物流系统分析与绿色物流的提出
煤炭在我国国民经济中重要地位
煤炭物流系统的现状及特点
煤炭物流系统对环境的影响分析
煤炭物流系统对环境影响的原因分析
煤炭绿色物流的引入
煤炭发展绿色物流的必要性
煤炭绿色物流的相关理论
本章小结
3 煤炭绿色物流的影响因素及其作用机理
煤炭绿色物流影响因素构成分析
煤炭绿色物流外部影响因素分析
煤炭绿色物流内部影响因素分析
煤炭绿色物流影响因素作用机理概念模型
本章小结
4 煤炭绿色物流影响因素作用的测度分析
假设提出和测度方法
研究设计
基于结构方程模型的影响因素测度分析
结论与启示
本章小结
5 煤炭绿色物流系统的构建
煤炭绿色物流系统的构建思路
煤炭绿色物流系统模型
煤炭绿色物流系统功能
煤炭绿色物流系统运行
本章小结
6 煤炭绿色物流运输调配优化
我国煤炭运输物流基本概况分析
煤炭绿色物流运输调配优化的目标与原则
煤炭绿色物流运输调配优化模型的建立
煤炭绿色物流运输调配优化模型的应用
本章小结
7 煤炭绿色废弃物物流系统仿真优化
煤炭绿色废弃物物流系统分析
系统动力学研究方法
煤炭绿色废弃物物流系统动力学仿真模型
煤炭绿色废弃物物流系统动力学仿真实例
本章小结
8 煤炭绿色物流系统运行机制设计
煤炭绿色物流系统运行机制设计的`前提
煤炭绿色物流的利益驱动机制
煤炭绿色物流的政府激励机制
煤炭绿色物流的政府约束机制
煤炭绿色物流的技术推动机制
煤炭绿色物流的社会需求拉动机制
本章小结
9 结论
主要研究结论
研究的创新点
未来研究展望
参考文献
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。
Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。
5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。
7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。
8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。
9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。
数学建模全国优秀论文相关 文章 :
★ 数学建模全国优秀论文范文
★ 2017年全国数学建模大赛获奖优秀论文
★ 数学建模竞赛获奖论文范文
★ 小学数学建模的优秀论文范文
★ 初中数学建模论文范文
★ 学习数学建模心得体会3篇
★ 数学建模论文优秀范文
★ 大学生数学建模论文范文(2)
★ 数学建模获奖论文模板范文
★ 大学生数学建模论文范文
我去年就参加了全国大学生数学建模竞赛,这些资料是我去年暑假整理的论文模板,如果资料不足的话,再联系我………………全国大学生数学建模竞赛论文格式规范 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。 论文第一页为承诺书,具体内容和格式见本规范第二页。 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。 论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。 本规范的解释权属于全国大学生数学建模竞赛组委会。[注]赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。全国大学生数学建模竞赛组委会2009年3月16日修订数学建模论文一般结构1摘要 (单独成页)主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3。2、问题重述和分析3、问题假设假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。作假设的两个原则:① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。② 贴近原则:贴近实际。以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。4、符号说明 (可以合并)5、模型建立与求解(重要程度 :60%以上)6、模型检验(误差一般指均方误差)7、结果分析 (可以合并)8、模型的进一步讨论 或 模型的推广9、模型优缺点10、参考文件11、附件(结果千万不能放在附件中)论文最佳页面数:15-21页 论文结构一题目摘要1.问题的重述2.合理假设3.符号约定4.问题的分析5.模型的建立与求解6.模型的评价与推广1、误差分析2、模型的改进与推广对XXXX切实可行的建议和意见:1.……2.…………7.参考文献8.附录 数学建模论文一般格式 摘要(主要理解、主要方法、主要结果、主要特点)或(背景、目标、方法、结果、结论、建议) 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模型优缺点优秀论文要点:1. 语言精练、有逻辑性、书写有条理2. 文字与图形相结合,使内容直观、清晰、明了、容易理解3. 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章4. 对论文中所引用或用到的知识、软件要清晰地予以说明。5. 在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去各步骤解释摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3问题重述与分析: 一向导、对题意的理解、 建模的创造性创造性是灵魂,文章要有闪光点。好创意、好想法应当既在人意料之外,又在人意料之中。新颖性(独特性)与合理性皆备。误区之一:数学用得越高深,越有创造性。解决问题是第一原则,最合适的方法是最好的方法。误区之二:创造性主要体现在建模与求解上。创造性可以体现在建模的各个环节上,并且可以有多种表现形式。误区之三:好创意来自于灵感,可遇不可求。好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。 表达的清晰性好的文章 = 好的内容 + 好的表达 替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。 写好摘要,包括:建模主要方法、主要结果,模型主要优点。 专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。 适当采用图表,增加可读性。求采纳为满意回答。
数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。
数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学 方法 传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体 措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.
[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.
数学建模论文范文二:数学建模教学中数学素养和创新意识的培养
前言
创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.
用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.
而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.
教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.
参考文献:
[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.
[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。
[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.
[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.
[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.
[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.
全国大学生数学建模竞赛论文格式规范 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。 论文第一页为承诺书,具体内容和格式见本规范第二页。 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。 论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。 本规范的解释权属于全国大学生数学建模竞赛组委会。[注]赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。全国大学生数学建模竞赛组委会2009年3月16日修订数学建模论文一般结构1摘要 (单独成页)主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3。2、问题重述和分析3、问题假设假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。作假设的两个原则:① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。② 贴近原则:贴近实际。以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。4、符号说明 (可以合并)5、模型建立与求解(重要程度 :60%以上)6、模型检验(误差一般指均方误差)7、结果分析 (可以合并)8、模型的进一步讨论 或 模型的推广9、模型优缺点10、参考文件11、附件(结果千万不能放在附件中)论文最佳页面数:15-21页 论文结构一题目摘要1.问题的重述2.合理假设3.符号约定4.问题的分析5.模型的建立与求解6.模型的评价与推广1、误差分析2、模型的改进与推广对XXXX切实可行的建议和意见:1.……2.…………7.参考文献8.附录 数学建模论文一般格式 摘要(主要理解、主要方法、主要结果、主要特点)或(背景、目标、方法、结果、结论、建议) 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模型优缺点优秀论文要点:1. 语言精练、有逻辑性、书写有条理2. 文字与图形相结合,使内容直观、清晰、明了、容易理解3. 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章4. 对论文中所引用或用到的知识、软件要清晰地予以说明。5. 在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去各步骤解释摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3问题重述与分析: 一向导、对题意的理解、 建模的创造性创造性是灵魂,文章要有闪光点。好创意、好想法应当既在人意料之外,又在人意料之中。新颖性(独特性)与合理性皆备。误区之一:数学用得越高深,越有创造性。解决问题是第一原则,最合适的方法是最好的方法。误区之二:创造性主要体现在建模与求解上。创造性可以体现在建模的各个环节上,并且可以有多种表现形式。误区之三:好创意来自于灵感,可遇不可求。好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。 表达的清晰性好的文章 = 好的内容 + 好的表达 替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。 写好摘要,包括:建模主要方法、主要结果,模型主要优点。 专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。 适当采用图表,增加可读性。
下载一片获奖论文,之后的所有基本就都解决了吧!!
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。
Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。
5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。
7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。
8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。
9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。
数学建模全国优秀论文相关 文章 :
★ 数学建模全国优秀论文范文
★ 2017年全国数学建模大赛获奖优秀论文
★ 数学建模竞赛获奖论文范文
★ 小学数学建模的优秀论文范文
★ 初中数学建模论文范文
★ 学习数学建模心得体会3篇
★ 数学建模论文优秀范文
★ 大学生数学建模论文范文(2)
★ 数学建模获奖论文模板范文
★ 大学生数学建模论文范文
数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。
数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学 方法 传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体 措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.
[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.
数学建模论文范文二:数学建模教学中数学素养和创新意识的培养
前言
创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.
用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.
而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.
教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.
参考文献:
[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.
[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。
[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.
[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.
[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.
[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.
数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。
一个完整的SEO优化方案主要由四个小组组成:一、前端/页编人员二、内容编辑人员三、推广人员四、数据分析人员接下来,我们就对这四个小组分配工作。首先,前端/页编人员主要负责站内优化,主要从四个方面入手:第一个,站内结构优化合理规划站点结构(1、扁平化结构 2、辅助导航、面包屑导航、次导航)内容页结构设置(最新文章、推荐文章、热门文章、增加相关性、方便自助根据链接抓取更多内容)较快的加载速度简洁的页面结构第二个,代码优化次导航404页面设置、301重定向网站地图图片Alt、title标签标题关键词描述关键字密度个别关键字密度H1H2H3中的关键字关键字强调外链最好nofollow为页面添加元标记meta丰富网页摘要(微数据、微格式和RDFa)第三个,网站地图设置html网站地图(1、为搜索引擎建立一个良好的导航结构 2、横向和纵向地图:01横向为频道、栏目、专题/02纵向主要针对关键词 3、每页都有指向网站地图的链接)XML网站地图(提交给百度、google)第四个,关键词部署挑选关键词的步骤(1、确定目标关键词 2、目标关键词定义上的扩展 3、模拟用户的思维设计关键词 4、研究竞争者的关键词)页面关键词优化先后顺序(1、最终页>专题>栏目>频道>首页 2、最终页:长尾关键词 3、专题页:【a、热门关键词 b、为热点关键词制作专题 c、关键词相关信息的聚合 d、辅以文章内链导入链接】 4、栏目页:固定关键词 5、频道页:目标关键词 6、首页:做行业一到两个顶级关键词,或者网站名称)关键词部署建议(1、不要把关键词堆积在首页 2、每个页面承载关键词合理数目为3-5个 3、系统规划)然后,我们的内容编辑人员要对网站进行内容建设,怎样合理的做到网站内部优化的功效?这里主要有五个方面:第一个,网站内容来源原创内容或伪原创内容编辑撰稿或UGC扫描书籍、报刊、杂志第二个,内容细节优化标题写法、关键词、描述设置文章摘要规范URL标准化次导航内页增加锚文本以及第一次出现关键词进行加粗长尾关键词记录单图片Alt、titile标签外链最好nofollow百度站长工具、google管理员工具的使用建立反向链接第三个,关键词部署挑选关键词的步骤(1、确定目标关键词 2、目标关键词定义上的扩展 3、模拟用户的思维设计关键词 4、研究竞争者的关键词)页面关键词优化先后顺序(1、最终页>专题>栏目>频道>首页 2、最终页:长尾关键词 3、专题页:【a、热门关键词 b、为热点关键词制作专题 c、关键词相关信息的聚合 d、辅以文章内链导入链接】 4、栏目页:固定关键词 5、频道页:目标关键词 6、首页:做行业一到两个顶级关键词,或者网站名称)关键词部署建议(1、不要把关键词堆积在首页 2、每个页面承载关键词合理数目为3-5个 3、系统规划)第四个,内链策略控制文章内部链接数量链接对象的相关性要高给重要网页更多的关注使用绝对路径需要改进的地方第五个,注意事项不要大量采集有节奏的更新编辑发布文章的时候要做好锚文本做好长尾关键词记录单接下来,我们的推广人员就要对网站进行站外优化了,这里主要包括两个大的方面:第一个,外链建设基本途径友情链接软文目录提交独立博客论坛签名黄页网站提交收藏分类信息微博推广sns推广第二个,链接诱饵建设思路举办活动,带上相关链接,引导网友大规模转播最后,我们的数据分析人员就要对网站进行每天的数据分析,总结流量来源,这里主要从五个方面分析:第一个,数据分析根据统计(百度统计工具,CNZZ统计工具等等),分析用户进入的关键词,模拟用户思路,思考长尾关键词第二个,竞争对手分析百度权重、PR值快照反链内链收录网站历史品牌关键词长尾关键词网站结构第三个,关键词定位目标关键词品牌关键词热门关键词长尾关键词第四个,长尾关键词挖掘—长尾关键词类型目标型长尾(目标型指的是网站的产品或者服务延伸的长尾关键词,往往优化长尾的时候都是先以目标型长尾为主,因为这些长尾可以真实给我们带来目标客户和目标量)营销型长尾(营销型长尾是指与行业站服务相关的长尾,可以让我们进行二次转化成我们的目标用户)第五个,挖掘长尾关键词用到的工具百度指数工具百度知道百度及其他SE的相关搜索及下拉框百度站长工具、google关键词分析工具至此,一个完整的网站SEO优化方案已经完成,接下来就是慢慢的完善了,当然喽,这里讲的很流程化,具体怎么合理安排,合理运用,这需要长期的经验积累,不过你按照上面的方法,我觉得已经够用了。。。
SEO优化方案是每位SEOER都必须要做的,那么该如何入手写方案呢?1.要确定网站搜索引擎优化(SEO)的目标SEO方案的制定肯定是要以目标为基础的,所谓方案策略正是为目标所做,相信这一点没有人会有异议。2.诊断和评估网站目前的SEO现状诊断网站的SEO现状才能发现不足。当然,诊断主要是针对网站首页的,因为大部分情况下只要我们完成网站首页的较好排名就足够了。但是,我们也不能忽视其他页面对首页及网站整体所造成的影响。3.选择网站的目标关键词根据以上两个步骤确定的网站搜索引擎优化的目标以及网站的SEO现状,选择网站的目标关键词,当然这里的目标关键词包括主关键词、长尾关键词等。然后,再制定网站各个页面的标题,并将所有选择的为网站目标服务的关键词设置在标题及页面中。这一步,算是实现了SEO的基础。4.确定网站各个页面的先后次序网站内容有主次之分,各个页面之间也有重要性程度的区别。网站首页自不必说,但是首页不可能对每一个关键词进行优化,这就需要次级页面的相辅相成。所以,需要确定各个页面的先后次序,并使之与关键词的先后次序相结合。5.完善并实施搜索引擎优化方案经过以上步骤,SEO方案的框架和内容已经基本明朗了,现在需要做的就是完善并实施SEO方案。总结以上基本步骤和方案,仔细审查,注意细节,让SEO方案获得完善并最终确定。然后,根据SEO方案中时间安排、人员分工等具体内容的安排开始实施SEO方案。6.监督seo方案 为了确保搜索引擎优化目标的完成,我们在SEO的实施过程中需要进行适当的监督,并根据具体情况及时地对原有方案进行测试、评估、监督和修改。通常情况下,三个月为一个SEO方案的实施周期。 另外强调一点:一份切实可行的SEO执行方案对SEO过程来说会起到一个提纲挈领的作用,而且可以节省大量的人力物力成本,所以,请务必仔细做好SEO方案。
针对网站的问题去撰写
一个排名好的网站离不开好的cms,当然不同cms各有各的好处,因此我们在上线新网站的时候,要针对不同的情况因地制宜,选择不同的网站管理系统来做SEO优化,现在使用比较流行的cms是织梦dedecms,今天就针对使用该后台的网站来给大家分享一些SEO优化技巧以及一些需要注意的地方,也算是给自己做一个总结吧,如果你使用的也是织梦那你就大保眼福了! 由于织梦dedecms是一款免费开源的网站管理系统,很多地方设计的不是那么完美,需要进行一些相关的处理才能让SEO建议(百度统计里的一个小工具)打出九十几的高分,更有利于SEO!下面开始详细的说明dedecms的SEO优化技巧,可分为六大点。一、dede优化之网站的基本设置1.首先是404页面的设置,它能够减少网站内部的死链接,其重要性这里就不在说了,每个做SEO的都懂。2.其次是网站的设置,由于织梦有自带的robots,可以根据网站实际情况来屏蔽一些网站不需要抓取的内容或链接。例如中国养猪网养猪论坛## for DZ#User-agent:*(原始robots) ## for DZ#User-agent:*Disallow:/api/Disallow:/data/Disallow:/source/Disallow:/install/Disallow:/template/Disallow:/config/Disallow:/uc_client/Disallow:/uc_server/Disallow:/static/Disallow:/*Disallow:/*Disallow:/*Disallow:/*Disallow:/*?mod=misc*Disallow:/*?mod=follow*Disallow:/*?mod=attachment*Disallow:/*mobile=yes*Disallow:/*Disallow:/*Disallow:/*Disallow:/spaceDisallow:/*Disallow:/*html?x=*(现在的robots) 3.安装统计代码,这里建议使用百度统计,之所以推荐这个是因为目前最新版百度统计工具已经非常完善了,各种功能样样俱全。当然不同的网站适合的统计工具就不一样,例如DZ用腾讯分析就很不错。 例如最近的外链分析,抓取异常等。4.最后url链接的设置,对于一般的企业网站建议使用设置绝对地址比较好,大型门户行网站使用相对路径的url比较好。 绝对路径URL优点是:如果有人抄袭采集你的内容,里面的链接还会指向你的网站。有些抄袭的比较懒,连里面的链接一起抄了过去。如果站长不能做301转向,因而有网址规范化的问题,使用绝对路径有助于链接指向选定的URL版本。假设站长不能从URL做301到站长希望被收录的版本是第二个,带www的。所有网页中的链接直接使用绝对路径如:链接URL硬编码入HTML文件。这样就算有蜘蛛或用户进入了 版本,如:这个页面上的链接使用绝对路径的话就会链接向:用户点击这些已经硬编码的链接后,还是会回到带有www的版本。这也有助于搜索引擎蜘蛛识别到底哪个版本是你想要的。就算你把网页移动位置,里面的链接还是指向正确的URL。缺 点是,除非链接是动态插入的,不然没办法在测试服务器上进行测试。因为里面的链接将直接指向真正的域名URL,而不是测试服务器中的URL。同样移动内容 页面将很困难。因为内容页面位置发生变化,在其他页面上的链接却可能无法跟着变化,还指向原来的已经硬编码的绝对路径。相对路径优缺点正好相反。优点是:移动内容比较容易。在测试服务器上进行测试也比较容易。缺点,内容页面换了位置时,链接容易失效。更容易被抄袭和采集。 不过很多采集软件其实是可以自动鉴别绝对路径和相对路径。所以使用绝对路径有助于把自己的链接也被抄到采集网站上,只在某些情况下是有效的。 所以通常我是建议,除非不能做301转向,因而产生了严重的网址规范化问题时,还是使用相对路径比较简单。在正常情况下,相对路径不会对网站SEO有 什么副作用,绝对路径也不会有多少特殊好处。而出错的可能性,比如搜索引擎错误判断URL,是非常非常低的。二、dede优化之网站首页设置1.网站最顶部的logo,对于新手SEO来说和你喜欢忘记给网站logo链接的图片加上ALT属性,一般该链接是网站的第一个链接点,分配的权重是最大的,因此不使用ALT属性就相当于浪费了一个很关键的描文字链接,包括网站所有页面的图片都应该加上alt属性;2.网站次导航的建立,这一点也是很关键的,对于提高长尾关键词有好处,需要强调的时候不要大量堆积!否则被判作弊!3.网站底部的网站地图,网站地图好处一方面增加蜘蛛抓取的效率,一方面让用户更快速的找到需要的页面。三、dede优化之栏目和内容页的关键词设置 给网站不同的栏目布置不同的长尾关键词,针对栏目设置的关键词来做文章,这样对能够大大提高栏目页的权重,还有文章页面的关键词,充分利用长尾关键词能给网站快速增加流量有优势!四、dede优化之文章内链接布置 这里需要使用到织梦后台里面的文档关键词维护功能,给每一篇文章设置关键词,并记录成表单形式,然后一一添加到网站后台里,建议把关键词频率设置为2-3比较合适,不断的积累,细水长流,所有的文章就形成一个大型的网状结构,促使访问者访问更多的页面,减少跳出率,而且蜘蛛可以爬取到更多深层次的页面,从而增加内页的抓取几率,提升网站的收录和权重。五、dede优化之相关页面链接布置 我们经常会碰见网站内部比较丰富,有上千篇文章,但是实际收录的只有上百篇左右,这种情况及有可能是,每篇文章导向其他文章的入口太少,导致蜘蛛不能抓取充分导致网站整体收录率很低,一般收录率达到%60才算合格。针对这种情况我们可以采取在文章页面的底部以及旁侧增加比如最新发布的文章、热门文章,文章底部可以使用{dede:likearticle}标签调用出包含本页关键词的其他文章,还可以增加一项,看过此篇文章的用户还看过哪些文章等等,这样不仅增加了每页页面的互通性,还增加页面的相关性,搜索引擎会给予比更改之前更高的权重。六、dede优化之注意事项 为了不让搜索引擎判断为两个网站,保持网址规范化问题,所有内部链接保持统一,选择带www还是不带www,去掉主页后缀,去掉栏目的”/”等等这些;现在大部分站长都做百度搜索引擎,因此建议使用伪静态页面,目前几大主流搜索引擎抓取动态页面技术还不是很成熟,过多的跳转会导致蜘蛛抓取困难甚至不抓取。 以上六大点差不多含盖了个人在使用织梦dedecms做SEO优化的时候所有的重要技巧,当然还有很多小细节需要设置的,本文部分引用于互联网,如有雷同不胜荣幸。更多的技巧可以关注新浪微博@郭文豪v继续交流!!! 另外最近想起来了答应南昌大学小辉同学,要给他整理微博SEO的方法,最近基本整理完毕,近期会分享出来,欢迎大家拍砖。
浅谈新课程背景下的课堂教学优化论文
摘要:改革课堂教学、提高课堂效益是课程改革的要求。因而,本文就如何在新课程下使课堂教学达到最优化做了一点探索。
关键词:新课程;课堂教学;优化
课堂教学,是提高学校教育教学质量最基本的途径,是实施素质教育最主要的阵地,是落实新一轮课程改革的突破口。但是,长期以来,因受“应试教育”的影响,目前的课堂教学还未彻底摆脱传统的教学模式,课程改革难以到位。为此,本文就新一轮基础教育课程改革形式下的中小学课堂教学如何优化,作一点粗浅的探索。
一、优化课堂教学观
观念是行动的灵魂,教育观念对教学起着指导和统率的作用。教育观念不变,课堂教学优化无从谈起、课改难以实施。所以,要使课程改革真正落到实处,就必须转变传统的课堂教学观念。
1.要确立“以人为本”的教学思想观
以人为本,就是要以学生为本,以学生为主体。“一切为了每一位学生的发展”是课程改革所倡导的核心理念。虽然课堂教学以“教师为主导,学生为主体”的口号喊了多年,但在不少教师的眼里,“主导”就是“领导”,课堂上仍然居“统治”地位,学生仍是操纵的对象。而以人为本的教学思想核心就是凸显学生的主体地位,学生主体地位的凸显既是调动学生积极参与教学的起步策略,又是学生自在主体成长为自为主体的终极目标。
2.要确立师生交往、积极互动、共同发展的课堂教学观
教与学的关系问题是教学过程的本质问题,同时也是课改中的重大问题。在传统的教学中,教师负责教,学生负责学,教学就是教师对学生单向的“培养”活动,教与学由“双边活动”变成了“单边活动”。新课程下的教学论认为,教学应当是教师的教与学生的学的统一,这种统一的实质就是交往、互动。课堂教学过程则应当是师生交往、积极互动、共同发展、互教互学的过程。
3.要确立科学、全面的课堂教学任务观
课堂教学任务是课堂教学活动的出发点,也是课堂教学活动的归宿。教学任务观是否科学、全面,直接影响着教学质量的提高。新课程理念下的教学任务应该是从“知识与技能、过程与方法、态度情感与价值观”这三个目标维度的有效整合去关注学生,实施教学。即课堂教学中,教师不仅要引导学生掌握基础知识和技能,掌握学习的过程和方法,而且要重视培养学生高尚的.审美情趣和顽强的意志品质,培养学生正确的人生观、价值观,促进学生的全面发展。
4.要确立学生在课堂上的自理、自悟、自主观
我国著名语言学家吕叔湘先生曾说过“教学、就是教会学生学。”教育家叶圣陶先生也说过“教是为了不教。”因此,教师应在新课标的指导下努力地去构建“主动、合作、探究”的学习方式,让学生创造性地掌握学习方法,积极参与学习活动,自己学会提出问题,自己学会解决问题。这是学生养成良好学习习惯的有效渠道,也是挖掘、发现、提高学生潜能的出发点。
二、优化课堂教学结构
优化课堂教学结构(环节),就是在新课程标准的指导下,对原有不合理的课堂教学结构进行改造,将教学的基本要素设计成为一个优化的组合方式和运作流程,保证教学活动有条不紊地进行。
1.导入要先声夺人,引人入“戏”
导入是进行课堂教学的第一步,对每一节课的成败都有着举足轻重的作用,教师在这一环节中应运用多种导入技能,精心设计课堂导入,尤如好戏开头,鼓乐齐鸣,造成一种先声夺人的教学气势,来吸引学生的认知注意力,使学生产生强烈的求知欲望和高涨的学习热情,很快入“戏”。
2.讲授要精心安排,广泛参与
讲授,是教师运用语言对学生讲析、传授知识、开阔视野、启发思维、陶冶性情的教学行为,它是教学最中心的环节,教师须精心安排。既要善讲,又要精讲,还要巧讲;既要抓住关键,又要巧妙点拨,还要重锤敲打,以确保讲授内容的顺利完成。
3.练习要形式多样,灵活善变
练习是课堂教学的重要组成部分,是对课堂所学知识的巩固与提升。这一环节要求教师采用灵活多变的形式进行达标训练,既要切中教学重点、难点、疑点,又要从不同角度组织练习。练习的形式可以是口头练,也可以是书面练、板演;练的题目要具有多样性、典型性和代表性;练的内容既要有书本知识,又要联系生活实际,做到形式多样、灵活善变。
4.结课要收束有度,余音绕梁
课堂的结束和导入一样,是课堂教学的重要环节。它和导入相呼应,一始一终,一开一合,共同组成完整的教学过程。因而,教师要讲究结课的艺术性,既要对整堂课的主要内容高度浓缩,提纲挈领地归纳概括,给学生精要、深刻的印象,还要起到卒章显志、总结升华等功效;既要保持课堂结构的整体性,收束有度,又要给学生留下思索、回味无穷的空间,做到课虽终而意无穷。
三、优化课堂教学方法
教师是教学活动的设计者、组织者和参与者,主导着课堂教学的全过程,充分发挥教师“导”的作用,是促进学生“学”的关键。为此,“教”必须致力于“导”,服务于“学”,这样才能改变以封闭、单向灌注为主的传统教法,才能把课程改革落到实处。
1.着眼于导趣,诱导学生“乐学”
导趣,就是教师创设教学情境,巧妙地激起学生的学习兴趣,将学生自然地引入主动获知的状态之中。实践证明,兴趣是促使学生自觉、自主学习的直接动力,它使每个学生能够把解决学习中的问题变成最大的乐趣和精神满足。这就要求教师要采取有效的教学策略,激发学生产生浓厚的学习兴趣和高涨的学习热情,把学习视为一桩乐事,主动学习、乐于学习,使探究新知的认知活动变成学生的心理需求,变“要我学”为“我要学”,变“苦学”为“乐学”。
2.着力于导思,启导学生“活学”
导思,就是教师通过精心设计问题,引发学生思考,促使学生主动地探究问题、积极地思考问题。“学起于思”,学生的思维活动是贯穿于教学始终的,是学生掌握知识、认识规律、提高能力最基本、最主要的途径。事实证明,出色的问题能引导学生去探索奥秘,获得知识和智慧,养成善于思考质疑的习惯。这就要求教师有意识地去创设一种良好的“问题”情境,来启发鼓励学生积极思考,引发学生主动探索、研究、总结规律,以问题的发现、探究和解决来激发他们的求知欲和创造欲,变被动学习为主动学习、变“死学”为“活学”。
3.着手于导法,指导学生“会学”
导法,就是教师指导学生掌握科学的学习方法和养成良好的学习习惯。“教学”是教师教和学生学的统一活动,教师的“教”离不开学生的“学”,学生的“学”也离不开教师的“教”,两者互促互进、共生共荣,缺一不可。这就要求教师不但自己要掌握灵活多变的教法,而且要指导学生掌握灵活多变的学法,让学生学会学习。教师在传授知识的同时,不但要考虑“怎样教”的问题,而且要考虑“怎样学”的问题,既要指导学生养成良好的学习习惯、掌握科学的学习方法,还要培养学生获取新知、解决问题的技巧和能力,变“学会”为“会学”。
4.着重于导成,引导学生“善学”
导成,就是教师引导学生形成自己的学习特点、风格和方法,养成自主学习的能力和习惯。它是学生形成最优学习方法的途径,是学生“善学”的基础。这就要求教师要引导学生能根据自己的学习特点选择恰当的学习方法,能对自己的学习过程进行监控和调控,并且努力培养学生学习的独立性、创造性的品质和肯于钻研、善于学习的品行,使其养成自主学习的习惯,变“乐学、活学、会学”为“善学”。
参考文献:
[1]朱慕菊.走进新课程:与课程实施者对话[m].北京:北京师范大学出版社,2003.
[2]施良方.课堂教学的原理、策略与研究[m].上海:华东师大出版社,1999.