首页

> 学术期刊知识库

首页 学术期刊知识库 问题

浅谈韦达定理的运用毕业论文

发布时间:

浅谈韦达定理的运用毕业论文

浅谈韦达定理的活用毕业论文:一、摘要:二、关键字:韦达定理,重难点,解题技巧三、1、韦达定理概述 2、韦达定理的重难点 3、利用韦达定理的解题技巧四、结语五、参考文献

韦达定理说明了一元二次方程中根和系数之间的关系。

法国数学家弗朗索瓦·韦达在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。

定理意义

韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。

利用韦达定理可以快速求出两方程根的关系,韦达定理应用广泛,在初等数学、解析几何、平面几何、方程论中均有体现。

韦达定理说明了一元n次方程中根和系数之间的关系。法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论证。 韦达定理在方程论中有着广泛的应用。

基本介绍:

英文名称:Vieta's formulas

韦达定理证明了一元n次方程中根和系数之间的关系。

这里讲一元二次方程两根之间的关系。

一元二次方程aX²+bX+C=0﹙a≠0﹚中,两根X1,X2有如下关系:X1+X2=-b/a,X1·X2=c/a

韦达最重要的贡献是对代数学的推进,他最早系统地引入代数符号,推进了方程论的发展。韦达用“分析”这个词来概括当时代数的内容和方法。他创设了大量的代数符号,用字母代替未知数,系统阐述并改良了三、四次方程的解法,指出了根与系数之间的关系。给出三次方程不可约情形的三角解法。主要著有《分析法入门》、《论方程的识别与修正》、《分析五章》、《应用于三角形的数学定律》。

韦达介绍:

他1540年生于法国的普瓦图,1603年12月13日卒于巴黎。年轻时当过律师,后从事政治活动,当过议员,在对西班牙的战争中,还曾为政府破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。

韦达在欧洲被尊称为'现代数学之父'。韦达最重要的贡献是对代数学的推进,他最早系统地引入代数符号,推进了方程论的发展。韦达用“分析”这个词来概括当时代数的内容和方法。他创设了大量的代数符号,用字母代替未知数,系统阐述并改良了三、四次方程的解法,指出了根与系数之间的关系。给出三次方程不可约情形的三角解法。著有《分析方法入门》、《论方程的识别与订正》等多部著作。

韦达从事数学研究只是出于爱好,然而他却完成了代数和三角学方面的巨著。他的《应用于三角形的数学定律》(1579年)是韦达最早的数学专著之一,可能是西欧第一部论述6种三角形函数解平面和球面三角形方法的系统著作。他被称为现代代数符号之父。韦达还专门写了一篇论文"截角术",初步讨论了正弦,余弦,正切弦的一般公式,首次把代数变换应用到三角学中。他考虑含有倍角的方程,具体给出了将COS(nx)表示成COS(x)的函数并给出当n≤11等于任意正整数的倍角表达式。

他的《解析方法入门》一书(1591年),集中了他以前在代数方面的大成,使代数学真正成为数学中的一个优秀分支。他对方程论的贡献是在《论方程的整理和修正》一书中提出了二次、三次和四次方程的解法。

浅谈韦达定理的活用毕业论文

韦达定理应用:如果给出二次函数图象与x轴交点坐标,以及另外一个条件,可以求二次函数解析式,对称轴等;

韦达定理说明了一元二次方程中根和系数之间的关系。

法国数学家弗朗索瓦·韦达在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。

定理意义

韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。

利用韦达定理可以快速求出两方程根的关系,韦达定理应用广泛,在初等数学、解析几何、平面几何、方程论中均有体现。

浅谈韦达定理的活用毕业论文:一、摘要:二、关键字:韦达定理,重难点,解题技巧三、1、韦达定理概述 2、韦达定理的重难点 3、利用韦达定理的解题技巧四、结语五、参考文献

韦达定理给出多项式方程的根与系数的关系,所以又简称根系关系

毕业论文韦达定理

韦达定理说明了一元n次方程中根和系数之间的关系。法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。 韦达定理在方程论中有着广泛的应用。英文名称:Vieta's formulas 韦达定理证明了一元n次方程中根和系数之间的关系。 这里讲一元二次方程两根之间的关系。 一元二次方程aX^2+bX+C=0﹙a≠0﹚中,两根X1,X2有如下关系:X1+X2=-b/a,X1*X2=c/a 一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中,设两个根为x1,x2 则 X1+X2= -b/a X1*X2=c/a 用韦达定理判断方程的根 一元二次方程ax^2+bx+c=0 (a≠0)中, 若b^2-4ac<0 则方程没有实数根 若b^2-4ac=0 则方程有两个相等的实数根 若b^2-4ac>0 则方程有两个不相等的实数根韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0 韦达定理推广它的根记作X1,X2…,Xn 我们有右图等式组 其中∑是求和,Π是求积。 如果一元二次方程在复数集中的根是,那么 由代数基本定理可推得:任何一元 n 次方程 在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积: 其中是该方程的个根。两端比较系数即得韦达定理。 (x1-x2)的绝对值为√(b^2-4ac)/|a| 法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。 韦达定理在方程论中有着广泛的应用。由一元二次方程求根公式为:X = (-b±√b^2-4ac)/2a (注意:a指二次项系数,b指一次项系数,c指常数)可得X1= (-b+√b^2-4ac)/2a ,X2= (-b-√b^2-4ac)/2a 1. X1﹢X2=(-b+√b^2-4ac)/2a+(-b-√b^2-4ac)/2a 所以X1﹢X2=-b/a 2. X1X2= [(-b+√b^2-4ac﹚÷2a]×[(-b-√b^2-4ac﹚÷2a] 所以X1X2=c/a (补充:X1^2+X2^2=(X1+X2)^2-2X1·X2 (扩充)(-b+√b^2-4ac)/2a-(-b-√b^2-4ac)/2a 又因为的值可以互换,所以则有 X1-X2=±【(-b+√b^2-4ac)/2a-(-b-√b^2-4ac)/2a】 所以X1-X2=±(√b^2-4ac)/a 韦达定理推广的证明设X1,X2,……,xn是一元n次方程∑AiXi =0的n个解。 则有:An(x-x1)(x-x2)……(x-xn)=0 所以:An(x-x1)(x-x2)……(x-xn)=∑AiXi(在打开(x-x1)(x-x2)……(x-xn)时最好用乘法原理) 通过系数对比可得: A(n-1)=-An(∑xi) A(n-2)=An(∑xixi) … A0=[(-1) ]×An×ΠXi 所以:∑Xi=[(-1) ]×A(n-1)/A(n) ∑XiXj=[(-1) ]×A(n-2)/A(n) … ΠXi=[(-1) ]×A(0)/A(n) 其中∑是求和,Π是求积。 一元五次方程验证:已知一个一元五次方程:a1*(x^5)+b*(x^4)+c*(x^3)+d*(x^2)+e*x+f = 0 设该式为形式1 根据高斯的代数原理:上式在复数范围内必可分解成: a1*(x-x1)*(x-x2)*(x-x3)*(x-x4)*(x-x5)=0 的形式;且x1,x2,x3,x4,x5是该多项式在复数范围内的根。 把上式展开成: -a1*x1*x2*x3*x4*x5+a1*x*x2*x3*x4*x5+a1*x*x1*x3*x4*x5-a1*(x^2)*x3*x4*x5+a1*x*x1*x2*x4*x5-a1*(x^2)*x2*x4*x5-a1*(x^2)*x1*x4*x5+a1*(x^3)*x4*x5+a1*x*x1*x2*x3*x5-a1*(x^2)*x2*x3*x5-a1*(x^2)*x1*x3*x5+a1*(x^3)*x3*x5-a1*(x^2)*x1*x2*x5+a1*(x^3)*x2*x5+a1*(x^3)*x1*x5-a1*(x^4)*x5+a1*x*x1*x2*x3*x4-a1*(x^2)*x2*x3*x4-a1*(x^2)*x1*x3*x4+a1*(x^3)*x3*x4-a1*(x^2)*x1*x2*x4+a1*(x^3)*x2*x4+a1*(x^3)*x1*x4-a1*(x^4)*x4-a1*(x^2)*x1*x2*x3+a1*(x^3)*x2*x3+a1*(x^3)*x1*x3-a1*(x^4)*x3+a1*(x^3)*x1*x2-a1*(x^4)*x2-a1*(x^4)*x1+a1*(x^5)=0 上述方程可化简成: a1*(x^5)-(x2+x1+x4+x5+x3)*(x^4)*a1+(x4*x5+x1*x3+x2*x3+x1*x2+x2*x4+x1*x4+x3*x4+x3*x5+x2*x5+x1*x5)* (x^3)*a1-(x3*x4*x5+x2*x3*x5+x1*x3*x5+x1*x2*x5+x2*x4*x5+x1*x4*x5+x2*x3*x4+x1*x3*x4+x1*x2*x4+x1*x2*x3)* (x^2)*a1+(x2*x3*x4*x5+x1*x3*x4*x5+x1*x2*x4*x5+x1*x2*x3*x5+x1*x2*x3*x4)*x*a1-x1*x2*x3*x4*x5*a1=0 设化简后的方程为形式3. 最后对比形式1与形式3的x次方相同的数,即可得该多项式根与系数的关系

韦达定理说明了一元n次方程中根和系数之间的关系。法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论证。 韦达定理在方程论中有着广泛的应用。

基本介绍:

英文名称:Vieta's formulas

韦达定理证明了一元n次方程中根和系数之间的关系。

这里讲一元二次方程两根之间的关系。

一元二次方程aX²+bX+C=0﹙a≠0﹚中,两根X1,X2有如下关系:X1+X2=-b/a,X1·X2=c/a

韦达最重要的贡献是对代数学的推进,他最早系统地引入代数符号,推进了方程论的发展。韦达用“分析”这个词来概括当时代数的内容和方法。他创设了大量的代数符号,用字母代替未知数,系统阐述并改良了三、四次方程的解法,指出了根与系数之间的关系。给出三次方程不可约情形的三角解法。主要著有《分析法入门》、《论方程的识别与修正》、《分析五章》、《应用于三角形的数学定律》。

韦达介绍:

他1540年生于法国的普瓦图,1603年12月13日卒于巴黎。年轻时当过律师,后从事政治活动,当过议员,在对西班牙的战争中,还曾为政府破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。

韦达在欧洲被尊称为'现代数学之父'。韦达最重要的贡献是对代数学的推进,他最早系统地引入代数符号,推进了方程论的发展。韦达用“分析”这个词来概括当时代数的内容和方法。他创设了大量的代数符号,用字母代替未知数,系统阐述并改良了三、四次方程的解法,指出了根与系数之间的关系。给出三次方程不可约情形的三角解法。著有《分析方法入门》、《论方程的识别与订正》等多部著作。

韦达从事数学研究只是出于爱好,然而他却完成了代数和三角学方面的巨著。他的《应用于三角形的数学定律》(1579年)是韦达最早的数学专著之一,可能是西欧第一部论述6种三角形函数解平面和球面三角形方法的系统著作。他被称为现代代数符号之父。韦达还专门写了一篇论文"截角术",初步讨论了正弦,余弦,正切弦的一般公式,首次把代数变换应用到三角学中。他考虑含有倍角的方程,具体给出了将COS(nx)表示成COS(x)的函数并给出当n≤11等于任意正整数的倍角表达式。

他的《解析方法入门》一书(1591年),集中了他以前在代数方面的大成,使代数学真正成为数学中的一个优秀分支。他对方程论的贡献是在《论方程的整理和修正》一书中提出了二次、三次和四次方程的解法。

x1+ x2=-b/a , x1·x2=c/a.

英文名称:Viete theorem 韦达定理说明一元二次方程2根之间的关系. 一元二次方程ax^2+bx+c=0中,两根x1,x2有如下关系:x1+x2=-b/a , x1*x2=c/a[编辑本段]韦达简介 他1540年生于法国的普瓦图。1603年12月13日卒于巴黎。年轻时学习法律当过律师,后从事政治活动,当过议会的议员,在对西班牙的战争中曾为政府破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。 韦达在欧洲被尊称为“现代数学之父”。韦达最重要的贡献是对代数学的推进,他最早系统地引入代数符号,推进了方程论的发展。韦达用“分析”这个词来概括当时代数的内容和方法。他创设了大量的代数符号,用字母代替未知数,系统阐述并改良了三、四次方程的解法,指出了根与系数之间的关系。给出三次方程不可约情形的三角解法。著有《分析方法入门》、《论方程的识别与订正》等多部著作。 韦达从事数学研究只是出于爱好,然而他却完成了代数和三角学方面的巨著。他的《应用于三角形的数学定律》(1579年)是韦达最早的数学专著之一,可能是西欧第一部论述6种三角形函数解平面和球面三角形方法的系统著作。他被称为现代代数符号之父。韦达还专门写了一篇论文"截角术",初步讨论了正弦,余弦,正切弦的一般公式,首次把代数变换应用到三角学中。他考虑含有倍角的方程,具体给出了将COS(nx)表示成COS(x)的函数并给出当n≤11等于任意正整数的倍角表达式了。 他的《解析方法入门》一书(1591年),集中了他以前在代数方面的大成,使代数学真正成为数学中的一个优秀分支。他对方程论的贡献是在《论方程的整理和修正》一书中提出了二次、三次和四次方程的解法。[编辑本段]韦达的代数著作 《分析方法入门》是韦达最重要的代数著作,也是最早的符号代数专著,书中第1章应用了两种希腊文献:帕波斯的《数学文集》第7篇和丢番图著作中的解题步骤结合起来,认为代数是一种由已知结果求条件的逻辑分析技巧,并自信希腊数学家已经应用了这种分析术,他只不过将这种分析方法重新组织。韦达不满足于丢番图对每一问题都用特殊解法的思想,试图创立一般的符号代数。他引入字母来表示量,用辅音字母B,C,D等表示已知量,用元音字母A(后来用过N)等表示未知量x,而用A quadratus,A cubus 表示 x2、x3 ,并将这种代数称为本“类的运算”以此区别于用来确定数目的“数的运算”。当韦达提出类的运算与数的运算的区别时,就已规定了代数与算术的分界。这样,代数就成为研究一般的类和方程的学问,这种革新被认为是数学史上的重要进步,它为代数学的发展开辟了道路,因此韦达被西方称为"代数学之父"。1593年,韦达又出版了另一部代数学专著—《分析五篇》(5卷,约1591年完成);《论方程的识别与订正》是韦达逝世后由他的朋友A.安德森在巴黎出版的,但早在 1591年业已完成。其中得到一系列有关方程变换的公式,给出了G.卡尔达诺三次方程和L.费拉里四次方程解法改进后的求解公式。而另一成就是记载了著名的韦达定理,即方程的根与系数的关系式。韦达还探讨了代数方程数值解的问题,1600年以《幂的数值解法》为题出版。 1593年韦达在《分析五篇》中曾说明怎样用直尺和圆规作出导致某些二次方程的几何问题的解。同年他的《几何补篇》(Supplementum geometriae)在图尔出版了,其中给尺规作图问题所涉及的一些代数方程知识。此外,韦达最早明确给出有关圆周率π值的无穷运算式,而且创造了一套 10进分数表示法,促进了记数法的改革。之后,韦达用代数方法解决几何问题的思想由笛卡儿继承,发展成为解析几何学。韦达从某个方面讲,又是几何学方面的权威,他通过393416个边的多边形计算出圆周率,精确到小数点后9位,在相当长的时间里处于世界领先地位。[编辑本段]韦达最主要的贡献 韦达最重要的贡献是对代数学的推进,他最早系统地引入代数符号,推进了方程论的发展。韦达用“分析”这个词来概括当时代数的内容和方法。他创设了大量的代数符号,用字母代替未知数,系统阐述并改良了三、四次方程的解法,指出了根与系数之间的关系。给出三次方程不可约情形的三角解法。著有《分析方法入门》、《论方程的识别与订正》等多部著作。 由于韦达做出了许多重要贡献,成为十六世纪法国最杰出的数学家之一。[编辑本段]韦达定理(Vieta's Theorem)的内容 一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 设两个根为X1和X2 则X1+X2= -b/a X1*X2=c/a 用韦达定理判断方程的根 若b^2-4ac>0 则方程有两个不相等的实数根 若b^2-4ac=0 则方程有两个相等的实数根 若b^2-4ac<0 则方程没有实数解[编辑本段]韦达定理的推广 韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0 它的根记作X1,X2…,Xn 我们有 ∑Xi=(-1)^1*A(n-1)/A(n) ∑XiXj=(-1)^2*A(n-2)/A(n) … ∏Xi=(-1)^n*A(0)/A(n) 其中∑是求和,∏是求积。 如果一元二次方程 在复数集中的根是,那么 由代数基本定理可推得:任何一元 n 次方程 在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积: 其中是该方程的个根。两端比较系数即得韦达定理。 法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。 韦达定理在方程论中有着广泛的应用。[编辑本段]韦达定理的证明 一元二次方程求根公式为: x=(-b±√b^2-4ac)/2a 则x1=(-b+√b^2-4ac)/2a,x2=(-b-√b^2-4ac)/2a x1+x2=(-b+√b^2-4ac/2a)+(-b-√b^2-4ac/2a) x1+x2=-b/a x1*x2=(-b+√b^2-4ac/2a)*(-b-√b^2-4ac/2a) x1*x2=c/a 韦达定理 判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理。 〖大纲要求〗 1.掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况;对含有字母系数的由一元二次方程,会根据字母的取值范围判断根的情况,也会根据根的情况确定字母的取值范围。 2.掌握韦达定理及其简单的应用。 【考3.】会在实数范围内把二次三项式分解因式。 4.会应用一元二次方程的根的判别式和韦达定理分析解决一些简单的综合性问题。 内容分析 。 1.一元二次方程的根的判别式 。 一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b^2-4ac 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根, 当△<0时,方程没有实数根. 2.一元二次方程的根与系数的关系 。 (1)如果一元二次方程ax^2+bx+c=0(a≠0)的两个根是x1,x2,那么 , (2)如果方程x^2+px+q=0的两个根是x1,x2,那么x1+x2=-P, x1x2=q (3)以x1,x2为根的一元二次方程(二次项系数为1)是 x2-(x1+x2)x+x1x2=0. 3.二次三项式的因式分解(公式法) 在分解二次三项式ax^2+bx+c的因式时,如果可用公式求出方程ax2+bx+c=0的两个根是X1,x2,那么ax2+bx+c=a(x-x1)(x-x2). 另外这与射影定理是初中必须射影定理图掌握的.[编辑本段]韦达定理推广的证明 设x1,x2,……,xn是一元n次方程∑AiX^i=0的n个解。 则有:An(x-x1)(x-x2)……(x-xn)=0 所以:An(x-x1)(x-x2)……(x-xn)=∑AiX^i (在打开(x-x1)(x-x2)……(x-xn)时最好用乘法原理) 通过系数对比可得: A(n-1)=-An(∑xi) A(n-2)=An(∑xixj) … A0==(-1)^n*An*∏Xi 所以:∑Xi=(-1)^1*A(n-1)/A(n) ∑XiXj=(-1)^2*A(n-2)/A(n) … ∏Xi=(-1)^n*A(0)/A(n) 其中∑是求和,∏是求积。有关韦达定理的经典例题 例1 已知p+q=198,求方程x2+px+q=0的整数根. (’94祖冲之杯数学邀请赛试题) 解:设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得 x1+x2=-p,x1x2=q. 于是x1x2-(x1+x2)=p+q=198, 即x1x2-x1-x2+1=199. ∴(x1-1)(x2-1)=199. 注意到x1-1、x2-1均为整数, 解得x1=2,x2=200;x1=-198,x2=0. 例2 已知关于x的方程x2-(12-m)x+m-1=0的两个根都是正整数,求m的值. 解:设方程的两个正整数根为x1、x2,且不妨设x1≤x2.由韦达定理得 x1+x2=12-m,x1x2=m-1. 于是x1x2+x1+x2=11, 即(x1+1)(x2+1)=12. ∵x1、x2为正整数, 解得x1=1,x2=5;x1=2,x2=3. 故有m=6或7. 例3 求实数k,使得方程kx2+(k+1)x+(k-1)=0的根都是整数. 解:若k=0,得x=1,即k=0符合要求. 若k≠0,设二次方程的两个整数根为x1、x2,由韦达定理得 ∴x1x2-x1-x2=2, (x1-1)(x2-1)=3. 因为x1-1、x2-1均为整数,所以 例4 已知二次函数y=-x2+px+q的图像与x轴交于(α,0)、(β,0)两点,且α>1>β,求证:p+q>1. (’97四川省初中数学竞赛试题) 证明:由题意,可知方程-x2+px+q=0的两根为α、β.由韦达定理得 α+β=p,αβ=-q. 于是p+q=α+β-αβ, =-(αβ-α-β+1)+1 =-(α-1)(β-1)+1>1(因α>1>β).

韦达定理毕业论文

方程论是古典代数的中心课题。直到19世纪中叶,代数仍是一门以方程式论为中心的数学学科,代数方程的求解问题依然是代数的基本问题,特别是用根式求解方程。所谓方程有根式解(代数可解),就是这个方程的解由该方程的系数经过有限次加减乘除以及开整数次方等运算表示出来的。群论也就是起源于对代数方程的研究,它是人们对代数方程求解问题逻辑考察的结果。 一、伽罗瓦群论产生的历史背景 从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。 随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。 二.伽罗瓦创建群理论的工作 伽罗瓦仔细研究了前人的理论,特别是拉格朗日、鲁菲尼、高斯、阿贝尔等人的著作,开始研究多项式方程的可解性理论,他并不急于寻求解高次方程的方法,而是将重心放在判定已知的方程是否有根式解。如果有,也不去追究该方程的根究竟是怎样的,只需证明有根式解存在即可。峰 1.伽罗瓦群论的创建 伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。 2.伽罗瓦群论的实质 我们可以从伽罗瓦的工作过程中,逐步领悟伽罗瓦理论的精髓。首先分析一下他是怎样在不知道方程根的情况下,构造伽罗瓦群的。仍然是对方程(1),设它的根x1,x2,…,xn中无重根,他构造了类似于拉格朗日预解式的关于x1,x2,…,xn的一次对称多项式 △1=a1x1+a2x2+…+anxn,其中ai(i=1,2,3,…,n)不必是单位根,但它必是一些整数且使得n!个形如△1的一次式△1,△2,…,△n!各不相同,接着又构造了一个方程 =0 (2) 该方程的系数必定为有理数(可由对称多项式定理证明),并且能够分解为有理数域上的不可约多项式之积。设f(x)=是的任意一个给定的m次的不可约因子,则方程(1)的伽罗瓦群是指n!个△i中的这m个排列的全体。同时他又由韦达定理知伽罗瓦群也是一个对称群,它完全体现了此方程的根的对称性。但是计算一个已知方程的伽罗瓦群是有一定困难的,因此伽罗瓦的目的并不在于计算伽罗瓦群,而是证明:恒有这样的n次方程存在,其伽罗瓦群是方程根的可能的最大置换群s(n),s(n)是由n!个元素集合构成的,s(n)中的元素乘积实际上是指两个置换之积。现在把s(n)中的元素个数称为阶,s(n)的阶是n!。 伽罗瓦找出方程系数域中的伽罗瓦群g后,开始寻找它的最大子群h1,找到h1后用一套仅含有理运算的手续(即寻找预解式)来找到根的一个函数。的系数属于方程的系数域r,并且在h1的置换下不改变值,但在g的所有别的置换下改变值。再用上述方法,依次寻找h1的最大子群h2,h2的最大子群h3,…于是得到h1,h2,…,hm,直到hm里的元素恰好是恒等变换(即hm为单位群i)。在得到一系列子群与逐次的预解式的同时,系数域r也随之一步步扩大为r1,r2,…,rm,每个ri对应于群hi。当hm=i时,rm就是该方程的根域,其余的r1,r2,…,rm-1是中间域。一个方程可否根式求解与根域的性质密切相关。例如,四次方程 x4+px2+q=0 (3) p与q独立,系数域r添加字母或未知数p、q到有理数中而得到的域,先计算出它的伽罗瓦群g,g是s(4)的一个8阶子群,g={e,e1,e2,…e7},其中 e=,e1=,e2=,e3=,e4=,e5=, e6=, e7=。 要把r扩充到r1,需在r中构造一个预解式,则预解式的根,添加到r中得到一个新域r1,于是可证明原方程(3)关于域r1的群是h1,h1={e,e1,e2,e3},并发现预解式的次数等于子群h1在母群g中的指数8÷4=2(即指母群的阶除以子群的阶)。第二步,构造第二个预解式,解出根 ,于是在域r1中添加得到域r2,同样找出方程(3)在r2中的群h2,h2={e,e1},此时,第二个预解式的次数也等于群h2在h1中的指数4÷2=2。第三步,构造第三个预解式,得它的根 ,把添加到r2中得扩域r3,此时方程(3)在r3中的群为h3,h3={e},即h3=i,则r3是方程(3)的根域,且该预解式的次数仍等于群h3在h2中的指数2÷1=2。在这个特殊的四次方程中,系数域到根域的扩域过程中每次添加的都是根式,则方程可用根式解。这种可解理论对于一般的高次方程也同样适用,只要满足系数域到根域的扩域过程中每次都是添加根式,那么一般的高次方程也能用根式求解。 现仍以四次方程(3)为例,伽罗瓦从中发现了这些预解式实质上是一个二次的二项方程,既然可解原理对高次方程也适用,那么对于能用根式求解的一般高次方程,它的预解式方程组必定存在,并且所有的预解式都应是一个素数次p的二项方程xp=a。由于高斯早已证明二项方程是可用根式求解的。因此反之,如果任一高次方程所有的逐次预解式都是二项方程,则能用根式求解原方程。于是,伽罗瓦引出了根式求解原理,并且还引入了群论中的一个重要概念“正规子群”。 他是这样给正规子群下定义的:设h是g的一个子群,如果对g中的每个g都有gh=hg,则称h为g的一个正规子群,其中gh表示先实行置换g,然后再应用h的任一元素,即用g的任意元素g乘h的所有置换而得到的一个新置换集合。定义引入后,伽罗瓦证明了当作为约化方程的群(如由g 约化到h1)的预解式是一个二项方程xp=a (p为素数)时,则h1是g的一个正规子群。反之,若h1是g的正规子群,且指数为素数p,则相应的预解式一定是p次二项方程。他还定义了极大正规子群:如果一个有限群有正规子群,则必有一个子群,其阶为这有限群中所有正规子群中的最大者,这个子群称为有限群的极大正规子群。一个极大正规子群又有它自己的极大正规子群,这种序列可以逐次继续下去。因而任何一个群都可生成一个极大正规子群序列。他还提出把一个群g生成的一个极大正规子群序列标记为g、h、i、j…, 则可以确定一系列的极大正规子群的合成因子[g/h],[h/i],[i/g]…。合成因子[g/h]=g的阶数/ h的阶数。对上面的四次方程(3),h1是g的极大正规子群, h2是h1的极大正规子群,h3又是h2的极大正规子群,即对方程(3)的群g 生成了一个极大正规子群的序列g、h1、h2、h3。 随着理论的不断深入,伽罗瓦发现对于一个给定的方程,寻找它在伽罗瓦群及其极大不变子群序列完全是群论的事。因此,他完全用群论的方法去解决方程的可解性问题。最后,伽罗瓦提出了群论的另一个重要概念“可解群”。他称具有下面条件的群为可解群:如果它所生成的全部极大正规合成因子都是质数。 根据伽罗瓦理论,如果伽罗瓦群生成的全部极大正规合成因子都是质数时,方程可用根式求解。若不全为质数,则不可用根式求解。由于引入了可解群,则可说成当且仅当一个方程系数域上的群是可解群时,该方程才可用根式求解。对上面的特殊四次方程(3),它的[g/h]=8/4=2,[h1/h2]=2/1=2,2为质数,所以方程(3)是可用根式解的。再看一般的n次方程,当n=3时,有两个二次预解式t2=a和t3=b,合成序列指数为2与3,它们是质数,因此一般三次方程可根式解。同理对n=4,有四个二次预解式,合成序列指数为2,3,2,2,于是一般四次方程也可根式求解。一般n次方程的伽罗瓦群是s(n),s(n)的极大正规子群是a(n) (实际a(n)是由s(n)中的偶置换构成的一个子群。如果一个置换可表为偶数个这类置换之积,则叫偶置换。),a(n)的元素个数为s(n)中的一半,且a(n)的极大正规子群是单位群i,因此[s(n)/a(n)]=n!/(n!/2)=2,[a(n)/i]=(n!/2)/1=n!/2, 2是质数,但当n ≥5时,n!/2不是质数,所以一般的高于四次的方程是不能用根式求解的。至此,伽罗瓦完全解决了方程的可解性问题。 顺带提一下,阿贝尔是从交换群入手考虑问题的,他的出发点与伽罗瓦不同,但他们的结果都是相同的,都为了证其为可解群,并且伽罗瓦还把阿贝尔方程进行了推广,构造了一种现在称之为伽罗瓦方程的方程,伽罗瓦方程的每个根都是其中两个根的带有系数域中系数的有理函数。 三.伽罗瓦群论的历史贡献 伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。

韦达定理说明了一元二次方程中根和系数之间的关系。

法国数学家弗朗索瓦·韦达在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。

定理意义

韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。

利用韦达定理可以快速求出两方程根的关系,韦达定理应用广泛,在初等数学、解析几何、平面几何、方程论中均有体现。

恭喜你毕业了,钱没有白花。。。

论题:置换群运算与证明的数学机械化目录摘要ABSTRACT' 科学计算和计算机代数系统.' 论文的主要结果及安排第二章群论知识背景' 置换群' 置换群的运算及其在集合上的作用' 小结第三章置换群运算与证明的计算机实现置换群上运算的实现 置换群证明的计算机实现小结第四章计算对称群的子群数据表示和计算方法对称群中的交换子群.例子第五章结束语杯.1群论和算法对A。为单群的计算机证明的展望.计算机代数系统的局限性致谢参考文献附录A置换群运算的Mathematics程序群论的算法是一个很有意义的问题。在实际应用中遇到的群大都十分复杂,需要借助于计算机来实现其运算。本文用计算机代数系统Mathematica实现了置换群上的运算和证明问题。针对置换群上的基木运算、子群的运算和生成以及群对集合的作用等问题,我们设计了相应的算法并用Mathematica实现了这些算法。把交代群A。的元素按共扼分类,将除单位元所在共扼类之外的其它共辘类的阶数进行所有可能的组合相加,对所得的每个数加上单位元所在共扼类的阶数1,然后用所得结果依次去除{An,如果其中存在某个数k,使得k能够整除{An I,则只有阶数相加为k的那些共扼类的并集所生成的群才有可能成为A。的非平凡的正规子群。从这个理论出发,我们设计了用计算机代数的方法判断A。是否为单群的算法,当n< 10时都能很快地得出An (n } 4)为单群的结论。Caley定理揭示了一个抽象群G和一个具体的群Sn的关系。如果能把Sn中所有不同构的n阶子群都找出来,那么也就能把所有可能存在的n阶群都找出来了。本文讨论了计算对称群的所有子群并对其进行共扼分类的算法,作为例子,我们完成了}S(n_7)的所有子群的共扼分类。论题:置换群_PSL_3_p_PSL_2_7_的次轨道结构目录摘要Abstract .1.引言2.预备知识3.主要定理证明长为7的自阮挤寸次轨道长为8的自配对次轨道长为14的自配对次轨道长为21的自配对次轨道长为24的自配对次轨道长为28的自配对次轨道长为42的自配对次轨道长为56的自瓦织寸次轨道长为84的自配对次轨道参考文献致谢摘要设群G是有限集合几上的传递置换群,对任意aES2,令G。二{9〔G}as二a}是G关于点a的稳定子群.我们称G。在几上作用的轨道为G关于a的次轨道,而次轨道的个数称为G的秩.对任一次轨道△,设as E△,则把as_,所在的次轨道△,称为与△配对的次轨道.当二者重合时,称其为自配对的.决定一个置换群的次轨道结构是置换群理论的基本间题之一,它在组合结构的研究中有着重要的应用.在文!21】中,作者决定了PSL(3,川关于极大子群 PSL(2, 7)的本原置换表示的次轨道,其中p三1(mod 168),但未研究其次轨道的瓦妞寸情况.而在多数情况下,群在组合结构方面的应用要求决定次轨道的配对情况.本文将决定该置换表示的全体非正则自配对的次轨道.

浅谈企业的营运能力毕业论文

营运能力分析的意义:有利于企业管理当局改善经营管理。有助于投资者进行投资决策。有助于债权人进行信贷决策。企业营运能力分析就是要通过对反映企业资产营运效率与效益的指标进行计算与分析,评价企业的营运能力,为企业提高经济效益指明方向。

营运能力分析包括流动资产周转情况分析、固定资产周转情况分析和总资产周转情况分析。

流动资产周转情况分析

反映流动资产周转情况的指标主要有应收账款周转率、存货周转率和流动资产周转率。

1)应收账款周转率

应收帐款周转率(Receivable Turnover)是反映应收帐款周转速度的指标,它是一定时期内赊销收入净额与应收帐款平均余额的比率。应收帐款周转率有两种表示方法。

一种是应收帐款在一定时期内(通常为一年)的周转次数,另一种是应收帐款的周转天数即所谓应收帐款帐龄(Age of Receivable)。

在一定时期内应收账款周转的次数越多,表明应收帐款回收速度越快,企业管理工作的效率越高。这不仅有利于企业及时收回贷款,减少或避免发生坏帐损失的可能性而且有利于提高企业资产的流动性,提高企业短期债务的偿还能力。

2)存货周转率

存货周转率(Inventory Turnover)是一定时期内企业销货成本与存货平均余额间的比率。它是反映企业销售能力和流动资产流动性的一个指标,也是衡量企业生产经营各个环节中存货运营效率的一个综合性指标。

在一般情况下,存货周转率越高越好。在存货平均水平一定的条件下,存货周转率越高好。在存货平均水平一定的条件下,存货周转率越高,表明企业的销货成本数额增多,产品销售的数量增长,企业的销售能力加强。反之,则销售能力不强。

企业要扩大产品销售数量,增强销售能力,就必须在原材料购进,生产过程中的投入,产品的销售,现金的收回等方面做到协调和衔接。因此,存货周转率不仅可以反映企业的销售能力,而且能用以衡量企业生产经营中的各有关方面运用和管理存货的工作水平。

存货周转率还可以衡量存货的储存是否适当,是否能保证生产不间断地进行和产品有秩序的销售。存货既不能储存过少,造成生产中断或销售紧张;又不能储存过多形成呆滞、积压。存货周转率也反映存贷结构合理与质量合格的状况。

因为只有结构合理,才能保证生产和销售任务正常、顺利地进行;只有质量合格,才能有效地流动,从而达到存货周转率提高的目的。存货是流动资产中最重要的组成部分,往往达到流动资产总额的一半以上。

因此,存货的质量和流动性对企业的流动比率具有举足轻重的影响并进而影响企业的短期偿债能力。存货周转率的这些重要作用,使其成为综合评价企业营运能力的一项重要的财务比率。

3)流动资产周转率

流动资产周转率(Current Assets Turnover)是反映企业流动资产周转速度的指标。它是流动资产的平均占用额与流动资产在一定时期所完成的周转额之间的比率。

在一定时期内,流动资产周转次数越多,表明以相同的流动资产完成的周转额越多,流动资产利用的效果越好。流动资产周转率用周转天数表示时,周转一次所需要的天数越少,表明流动资产在经历生产和销售各阶段时占用的时间越短,周转越快。

生产经营任何一个环节上的工作得到改善,都会反映到周转天数的缩短上来。按天数表示的流动资产周转率能更直接地反映生产经营状况的改善。便于比较不同时期的流动资产周转率,应用较为普遍。

固定资产周转情况分析

固定资产周转率(Fixed Assets Turnover),是指企业年销售收入净额与固定资产平均净值的比率。它是反映企业固定资产周转情况,从而衡量固定资产利用效率的一项指标。

固定资产周转率高;表明企业固定资产利用充分,同时也能表明企业固定资产投资得当,固定资产结构合理,能够充分发挥效率。反之,如果固定资产周转率不高,则表明固定资产使用效率不高,提供的生产成果不多,企业的营运能力不强。

运用固定资产周转率时,需要考虑固定资产净值因计提折旧而逐年减少因更新重置而突然增加的影响;在不同企业间进行分析比较时,还要考虑采用不同折旧方法对净值的影响等。

总资产周转情况的分析

反映总资产周转情况的指标是总资产周转率(Total Assets Turnover)它是企业销售收入净额与资产总额的比率。

这一比率可用来分析企业全部资产的使用效率。如果这个比率较低,则说明企业利用全部资产进行经营的效率较差,最终会影响企业的获得能力。这样,企业就应该采取措施提高各项资产的利用程度从而提高销售收入或处理多余资产。

扩展资料:

企业的营运能力分析对企业管理当局至关重要,主要体现在如下几个方面:

1.优化资产结构。资产结构即各类资产之间的比例关系。如上所述,不同资产对企业经营具有不同影响,所以,不同性质、不同经营时期的企业各类资产的组成比例将有所不同。

通过资产结构分析,可发现和揭示与企业经营性质、经营时期不相适应的结构比例,并及时加以调整,形成合理的资产结构。

2.改善财务状况。企业在一定时点上的存量资产,是企业取得收益或利润的基础。然而,当企业的长期资产、固定资产占用资金过多或出现有问题资产、资产质量不高时,就会形成资金积压,以至营运资金不足,从而使企业的短期投资人对企业财务状况产生不良的印象。

因此,企业必须注重分析、改善资产结构,使资产保持足够的流动性,以赢得外界对企业的信心。特别是对于资产“泡沫”,或虚拟资产进行资产结构分析,摸清存量资产结构,并迅速处理有问题的资产,可以有效防止或消除资产经营风险。

3.加速资金周转。非流动资产只有伴随着产品(或商品)的销售才能形成销售收入,在资产总量一定的情况下,非流动资产和非商品资产所占的比重越大,企业所实现的周转价值越小,资金的周转速度也就越低。为此,企业必须通过资产结构分析,合理调整流动资产与其他资产的比例关系。

参考资料来源:百度百科—营运能力

您好,这是参考提纲:企业营运能力分析体系 一、序论 1.提出中心论题; 2,说明写作意图。 二、本论 (一)形成企业营运能力分析体系前提条件 1.市场经济体制的确立,为企业营运能力体系的产生创造了宏观环境; 2.新市场的形成,对企业营运能力体系形成提出了现实的要求; 3.城乡体制改革的深化,为企业营运能力体系的形成提供了可靠的保证; 4。企业营运能力体系市场的建立,是社会发展的内在要求。 (二)目前企业营运能力体系基本现状 1.供大于求的买方体系; 2,有市无场的隐形体系; 3.易进难出的畸形体系; 4,交易无序的自发体系。 (三)培育和完善企业营运能力体系的对策 1.统一思想认识,变自发交易为自觉调控; 2.加快建章立制,变无序交易为规范交易; 3.健全市场网络,变隐形交易为有形交易; 4.调整经营结构,变个别流动为队伍流动; 5,深化用工改革,变单向流动为双向流动。 三、结论 1,概述当前的企业营运能力体系形势和我们的任务; 2.呼应开头的序言。 相关资料:仅供参考,请自借鉴希望对您有帮助

根据营运能力分析的含义与目的,企业营运能力分析的内容主要包括以下几方面(一)全部资产营运能力分析 全部资产营运能力分析的内容包括:1、全部资产产值率分析;2、全部资产收入率分析;3、全部资产周转率分析。(二)流动资产营运能力分析 流动资产营运能力分析的内容包括:1、全部流动资产周转率分析;2、全部流动资产垫支周转率分析;3、流动资产周转加速效果分析;4、存货周转率分析;5、应收账款周转率分析。(三)固定资产营运能力分析 固定资产营运能力分析的内容包括:1.固定资产产值率分析;2.固定资产收入率分析。

相关百科

热门百科

首页
发表服务