无人机是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。下面是我为大家精心推荐的无人机应用技术论文,希望能够对您有所帮助。
无人机航测技术的应用分析
【摘 要】以生产项目为例,以无人机航测的技术流程为主线,介绍了无人机航测技术方面的应用分析。
【关键词】无人机、航测技术
【Abstract】Production project as an example, the unmanned aerial technology process, introduced the UAV aerial application analysis.
【Key woerds】UAV、aerial surveying technology
中图分类号:V279+.2文献标识码:A 文章编号:
0 引言
无人机航测遥感技术是继卫星遥感、飞机遥感之后发展起来的一项新型航空遥感技术,在应急测绘保障、国土资源监测、重大工程建设等方面得到广泛应用。它是一种机动灵活、可以实现快速响应的一种航测技术。但也存在影像重叠度不规则、像幅小、影像倾角大、旋偏角大,影像有明显畸变等问题,这些情况都对现有无人机航测技术提出了挑战。
本文从生产案例出发,以无人机航测技术为主线,对生产过程中无人机航测出现的一些问题进行了分析探讨。
1 生产实践
主要技术依据
《无人机航摄系统技术要求》(CH/Z3002-2010);
《低空数字航空摄影规范》(CH/Z3005-2010);
《低空数字航空摄影测量内业规范》(CH/Z 3003-2010);
《低空数字航空摄影外业规范》(CH/Z 3004-2010) ... ...
数据源及预处理
数据源
本测区选用无人机航空摄影获取的真彩色影像,航摄面积为10平方公里。航摄仪采用Canon EOS 5DMarkⅡ,焦距为:35mm,相幅大小为:5616×3744,像元分辨率为。影像地面分辨率为米。
遥感影像预处理
无人机航空摄影采用的相机为非量测型相机,因此,在进行空中三角测量恢复影像空中姿态时,需要对相机进行像片畸变差改正。(相机畸变改正在四维公司检校完成)
无人机航测总体作业流程
无人机航空摄影
本次无人机航摄分两个架次进行,由GPS领航数据计算相对飞行高度。飞行质量和影像良好,影像清晰度高、色彩均匀、饱和度良好,能够表达真实的地物信息,可以满足1:2000成图要求。
像片航向重叠度为75%,旁向重叠一般为35%-45%,旋偏角一般控制在12度以下。
像片控制测量
像控点精度要求
像控点对最近基础控制点的平面位置中误差不大于米,高程中误差不大于米。
像控点布点方案
项目布点方案确定为双模型布点,全部布设为平高点。
像控点测量
在像控测量之前,首先对测区内收集到的已知控制点进行联测,检核控制点情况;为满足后续像控测量,联测已知点的同时加密了2个控制点。联测采用GPS静态相对定位方式施测,采用边连式的布网形式。全网共联测已有已知点4个,新设控制点2个,观测时具体技术参数依据规范,像控点采用GPS实时动态定位(RTK)的方法进行测量,满足要求。
空中三角测量
本项目采用Virtuozo工作站进行空三加密,根据航飞及影像分布情况,将空三区域分为两个加密区域网采用自动与手动相结合的方式进行空三加密,即采用自动匹配进行像点量测,剔除粗差。人工调整直至连接点符合规范要求,检查点平面中误差为米,高程中误差为米,最终加密成果符合1:2000数据采集要求。
数据采集
在空三完成后,利用空三成果进行单模型定向时我们发现有模型无法定向的情况,第一架次无法建立的模型有29个,占总模型数的4%。第二架次有67个无法建立的模型占总模型数的9%。主要原因为无人机航摄姿态不稳定导致的飞行倾角、旋偏角过大,航线弯曲、像片比例不一致等现象都是导致单模型定向精度差的原因。考虑到1:2000地形图精度要求,我们提出了如下解决方案:在测图定向超限点的周围进行野外实测用来检核分析数据并进行必要的修正。
项目精度报告
根据1:2000精度要求对测绘产品检进行了精度的统计,统计了3幅地形图,其中高程精度中误差最大为米,最小为米,从统计的结果看,粗差率比较高,有的达到了5%,平面精度中误差为米。
2 结 论
(1)无人机航空摄影测量技术应用于地形图的生产存在不确定性,比如,区域网整体加密精度评定良好,但单模型定向精度存在超限情况,在测图过程中表现为测图定向点和立体模型套合差大、接边误差大等,可以通过外业实测进行补充测量、验证。
(2)利用无人机航测进行航空摄影测量时,应采用试验区的作业方法,即在确定布点方案前选取一定面积的试验区进行布点方案试验,分析精度指标后确定作业方案。
(3)目前,无人机航测技术主要应用于载人飞机航测技术的补充方面,如多块小面积、危险场所、远离机场或没有可供其起降场地的区域,在载人机不便或无法完成的情况下,由无人机来完成。
参考文献:
[1] 范承啸,韩俊,熊志军,赵毅。 无人机遥感技术现状与应用[J] 测绘科学 2009,34(5):214-215;
[2] 崔红霞,李杰,林宗坚,储美华。非量测数码相机的畸变差检测研究[J] 测绘科学2005,30(1):105-107;
[3] 连镇华。无人机航摄相片倾角对立体高程扭曲的影响分析[J] 地理空间信息2010,8(1):20-22;
作者简介:徐锦前(1982-),男,辽宁铁岭人,工程师,主要从事摄影测量和地理信息系统建库等测绘工作。
点击下页还有更多>>>无人机应用技术论文
一、通信领域:因为是无人驾驶飞机,所以必须要通过信号远程遥控指挥,这对信号的传输质量、效率、保密性、稳定性等是极大的考验,尤其是在复杂的地形、天气情况下。二、优点:1,人员安全,由军人在后方进行远程遥控,即使出现坠机、被击落等情况也没有人员损失,这对当前越来越重视人权及爱好和平的百姓来说是更能接受的事。2,经济性,历来飞行员培训都是极耗资源的,即使是军事大国的飞行员也是很宝贵的财富,失去一位都是很大的损失,再加上抚恤金,所以一些极危险的任务,如果可以用无人机完成自然更好。3,避免飞行员被俘虏,尤其是喜欢全球干涉的国家,如果飞机出现意外或者被击落前飞行员跳伞落入敌区,那么很有可能被俘,后续的营救、谈判等一系列问题会让政府和军方很头疼。4,性能可发挥性更高,没有驾驶员就不用再考虑驾驶员的承受能力,比如加速度、氧气、温度等条件,摆脱这些因素,无人机可发挥性就更高。三、缺点:1,远程操控信号受限于地形、气候、距离等条件,有一定的隐患。甚至敌方会有意屏蔽信号,以此设法击落或者捕获无人机,这不是没发生过。2,远程控制毕竟比不了直接在战机里驾驶,在灵活性上要想和普通战斗机比还是有一定差距的。3,受限于技术,无人机在复杂环境下自由起降、作战有难度,另外由于政治、人文等问题,普通战机无人化难以做到,也就是说无人机很难做到普通战机那样大小,而不够大,就意味着载弹量小、攻击力弱的缺点
浅谈多旋翼无人机任务系统的优秀论文
前言: 随着无人机产品的不断增加,市场之间的竞争力,也逐渐的提升,对此本项目研究出了更适合于工业控制、自动化装备等领域产品的多旋翼无人机,产品不仅定位合理,同时与其他产品存在一定的差异,该任务系统,是指先进智能装备数据链的无人多旋翼任务,存在较高的能量利用效率、载荷运输性能,是其它无人机产品,在技术方面不能相比的;制定合理的市场规划,会给企业带来一定的经济效益。
1 多旋翼无人机定义概述
我们常称无人飞行载具,为无人飞机系统,主要是利用无线电智能遥控设备,以及自带的控制程序装置,对于不载人的飞机进行操控。其中广义的无人机,包括狭义无人机以及航模。
多旋翼飞行器,主要由动力系统、主体、控制系统组成,动力系统包括电机、动力、电子调速器、桨;主体部分包括机架、脚架、云台;控制系统包括由遥控接收器、遥控组成的手动控制;地面站,以及由主控、GPS、IMU、电子陀螺、LED显示屏组成的飞行控制器。其中四旋翼,是一种4输入6输出的欠驱动系统;通过PID、,鲁棒、模糊、非线性、自适应神经网络控制。近年来,对于系统的控制功能的研究趋势,为大荷载、自主飞行、智能传感器技术、自主控制技术、多机编队协同控制技术、微小型化等方向。其中一些关键技术为,数学模型的建立、能源供给系统、飞行控制算法、自主导航智能飞行。
2 控制系统改进发展阶段
多旋翼无人飞行器的控制系统,最初是由惯性导航系统,借助了微机电系统技术,形成了EMES惯性导航系统;经过对于EMES去噪声的研究,有效的降低了其传感器数据噪音的问题,最后经过等速度单片机、非线性系统结构的研究、应用,最终在2005年,制作出了性能相对稳定的多旋翼无人机自动控制飞行器。对其飞行器的评价,可从安全性、负载、灵活性、维护、扩展性、稳定性几方面要素进行分析。具有体积小、重量轻、噪音小、隐蔽性强、多空间平台使用、垂直起降,以及飞行高度不高、机动强、执行任务能力强的特点;在结构方面,不仅安全性高、易于拆卸维护、螺旋桨小、成本低、灵活控制的特点。
3 技术原理
系统组成
无人多旋翼任务系统,总体技术方案框图如图1所示;如图所示,无人多旋翼任务系统,由无人机、地面工作站构成。无人机,由多旋翼无人机、任务载荷组成;地面工作站,由数据链通信单元、工业控制电脑、飞行控制摇杆等组成。
系统技术原理
多旋翼无人机,通过对于螺旋桨微调的推力,实现稳定的飞行姿态控制、维持。经过上述,对于多旋翼无人机、常规直升机、固定翼飞机的对比,可以明显的看出,多旋翼无人机,在任务飞行方面,具有多能量的优势,从而更好的执行完成飞行任务,改善了飞行姿态维持,消耗大量能量的缺陷,从而更好的保证了其能量利用率,直接产生续航时间、载荷运输性能的提升;在结构方面,做了大量的简化,省去了传动机构,使其运行噪音、故障概率、维护成本大大的降低。
无人机,与地面工作站之间的通信,通过设备数据链实现连接,起到通信中介的作用,同好也是无人机、地面工作站之间,实现地空信息交换的重要桥梁环节。以往无人机,对于地空信息的转换连接,只是普通的点对点通信,收到信号传输距离的影响,性能发挥受到严重的影响,只能实现一些简单遥控数据信号的传输。
但是本项目,对于无人多旋翼任务系统的研究,是通过数据链协议MAVLink的研究后,将其合理的嵌入到控制核心、地面数据链的ARM平台中,有效的改善了以往低空信息传输环节存在的问题,将其遥测、遥信、遥控、遥调、遥视这五遥很好的进行了统一,保证了通信之间的无障碍,从根本上解决了无人机和地面工作站的数据通信问题。其中涉及到的.五遥;其中遥测,是指对于远方的电压、电流、功率、压力、温度等模拟量进行测量;其中遥信,是指对于远方的电气开关、设备,以及机械设备的工作、运行等状态进行监视;遥控,是指对于远方电气设备、电气机械化装置工作状态的控制、保护;遥调,是指对于远方所控设备的工作参数、标准流程等进行设定、调整;遥视,是指对于远方设备的安全运行状态的监视、记录。
传统的无人机,在飞行时需要通过人工对于遥控器的操作,对其飞行姿态进行的控制,体现出其自动程序的不完善,功能单调等缺陷。但是本项目对于无人机的研究,在地面工作站,通过飞行任务规划软件的配套,有效的改善了以往功能单一的缺点,直接增加了其功能性。其中飞行任务规划软件,具备GoogleMap高速API接口,实现对于无人机飞行航线,在三维地图上的简易规划,同时也能对其航线进行启动,使其实现自动巡航、执行飞行任务、返航等操作。
4 技术关键点及创新点
技术关键点:
地空信息的的数据通信。
先进智能装备数据链协议MAVLink的应用,能够对其所有数据进行有效的整合,并全部归纳在数据链路中,整合五遥操作,有效的降低了多种通信制式、通信模块存在等方面的问题,提高了通信效率,保证了通讯功能得以有效发挥。
解决飞行姿态操控问题
嵌入式操作系统,在ARM处理器平台上的应用,加上陀螺仪等传感器、卡尔曼滤波等先进算法,从而更好的保证了控制系统的功能增加,除此之外,不仅实现了无人操作飞行,在飞行操纵方面,也有效的降低了能耗,增加了能量利用率。
在工业控制领域应用的扩展
本项目以同一载具+多种载荷的建设、研究思路,针对于型号相同的多旋翼飞行器,设计一样的数据、电气、机械接口的任务载荷,实现快速更换载荷,使其飞行任务之间,能够良好、稳定的切换、衔接,保证该系统的实用性,同时也减少了任务执行的成本。
增强地面工作站功能
通过C/S架构、C#语言、.net平台、三维GoogleMap、SQL数据库,以及地面任务规划软件、分析数据分析软件,从而更好的增强地面工作站的功能,以及自动化、智能化的程度,更好的为用户操作,带来更多的便利。
项目的技术创新性
在无人机、地面站,在植入数据链MAVLink的同时,加强整体系统功能的改进,有效的实现了五遥的综合统一。
卡尔曼滤波、四元数算法,加上嵌入式ARM平台,对其飞行姿态实现有效控制。
同一载具+多种载荷思路的研究,实现了无人机,对任务执行模式的有效转换。
同时地面任务规划软件、分析数据分析软件的应用,提高了系统的控制功能,以及系统智能化程度。
5 总结
综上所述,通过对于无人多旋翼任务系统的分析,发现我国针对于此方面的研究,仍存在很多不完善的地方,该项目通过C/S架构、C#语言、先进智能装备数据链、分析数据分析软件等,照比以往的无人机飞行器,在系统功能改进方面,实现了遥测、遥信、遥控、遥调、遥视的统一;在任务执行模式方面,实现了灵活转换;在飞行姿态方面,实现了智能操控;是在已有多旋翼飞控技术的基础上,有效的规避了其以往的缺陷,同时自主飞行控制软件编程,这种飞控任务的提供,有效的实现了飞行中,自主导航智能飞行。
为了能够有效地将无人机系统连接到综合一体化的作战信息网络当中,需要深入探讨无人机系统的组网问题。本文研究了无人机作为信息支撑平台,采用分层结构的接入技术,路由算法以及数据调度算法,论文的主要内容如下: 1.分析了无人机平台自身特点和设备特性,研究了无人机超视距通信的传输体制;基于结构分层概念,提出了包括主干层、战术层以及用于提供战场信息支持的无人机通信网络结构;介绍了网络协议设计需要解决的关键问题和用于性能分析的军用仿真技术。 2.依据无人机网络分层的特殊结构,分析了常用多址接入方式的容量大小以及优缺点,提出了不同层间无人机的多址接入方式,并着眼于用于战场通信服务的无人机,提出了适用于自组织结构的空中无人机机群的同步式多址接入方式ESMA,通过对协议进行分析可以看出该协议具有较强的鲁棒性和接入效率。 3.分析了无线自组织网络的路由问题,提出了自组织结构的无人机网络在不同的信道条件下所应采取的不同路由策略。包括链路稳定时的DSR路由算法和链路不稳定时的定向泛洪式的DREAM路由算法。 4.提出了无人机数据调度问题,研究了现有的数据调度算法,通过理论和试验数据的分析,为无人机在使用时采取的不同数据调度策略提供依据。
《人工智能与机器人研究》是一本关于人工智能的期刊,该期刊杂志上发表的文章包含这些领域:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工业过程建模与智能控制、智能计算与机器博弈、人工智能理论、语音识别与合成、机器翻译、图像处理与计算机视觉、计算机感知、计算机神经网络、知识发现与机器学习、建筑智能化技术与应用、人工智能其他学科等等。另外,这本期刊就是一本开源期刊,与传统期刊相比,采用了同行评审的方法审稿,具体开源期刊的特点可以百度了解更多;而且发表了的文章传播范围更广,受众更多,文章的影响力也更大。
无人机是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。下面是我为大家精心推荐的无人机应用技术论文,希望能够对您有所帮助。
无人机航测技术的应用分析
【摘 要】以生产项目为例,以无人机航测的技术流程为主线,介绍了无人机航测技术方面的应用分析。
【关键词】无人机、航测技术
【Abstract】Production project as an example, the unmanned aerial technology process, introduced the UAV aerial application analysis.
【Key woerds】UAV、aerial surveying technology
中图分类号:V279+.2文献标识码:A 文章编号:
0 引言
无人机航测遥感技术是继卫星遥感、飞机遥感之后发展起来的一项新型航空遥感技术,在应急测绘保障、国土资源监测、重大工程建设等方面得到广泛应用。它是一种机动灵活、可以实现快速响应的一种航测技术。但也存在影像重叠度不规则、像幅小、影像倾角大、旋偏角大,影像有明显畸变等问题,这些情况都对现有无人机航测技术提出了挑战。
本文从生产案例出发,以无人机航测技术为主线,对生产过程中无人机航测出现的一些问题进行了分析探讨。
1 生产实践
主要技术依据
《无人机航摄系统技术要求》(CH/Z3002-2010);
《低空数字航空摄影规范》(CH/Z3005-2010);
《低空数字航空摄影测量内业规范》(CH/Z 3003-2010);
《低空数字航空摄影外业规范》(CH/Z 3004-2010) ... ...
数据源及预处理
数据源
本测区选用无人机航空摄影获取的真彩色影像,航摄面积为10平方公里。航摄仪采用Canon EOS 5DMarkⅡ,焦距为:35mm,相幅大小为:5616×3744,像元分辨率为。影像地面分辨率为米。
遥感影像预处理
无人机航空摄影采用的相机为非量测型相机,因此,在进行空中三角测量恢复影像空中姿态时,需要对相机进行像片畸变差改正。(相机畸变改正在四维公司检校完成)
无人机航测总体作业流程
无人机航空摄影
本次无人机航摄分两个架次进行,由GPS领航数据计算相对飞行高度。飞行质量和影像良好,影像清晰度高、色彩均匀、饱和度良好,能够表达真实的地物信息,可以满足1:2000成图要求。
像片航向重叠度为75%,旁向重叠一般为35%-45%,旋偏角一般控制在12度以下。
像片控制测量
像控点精度要求
像控点对最近基础控制点的平面位置中误差不大于米,高程中误差不大于米。
像控点布点方案
项目布点方案确定为双模型布点,全部布设为平高点。
像控点测量
在像控测量之前,首先对测区内收集到的已知控制点进行联测,检核控制点情况;为满足后续像控测量,联测已知点的同时加密了2个控制点。联测采用GPS静态相对定位方式施测,采用边连式的布网形式。全网共联测已有已知点4个,新设控制点2个,观测时具体技术参数依据规范,像控点采用GPS实时动态定位(RTK)的方法进行测量,满足要求。
空中三角测量
本项目采用Virtuozo工作站进行空三加密,根据航飞及影像分布情况,将空三区域分为两个加密区域网采用自动与手动相结合的方式进行空三加密,即采用自动匹配进行像点量测,剔除粗差。人工调整直至连接点符合规范要求,检查点平面中误差为米,高程中误差为米,最终加密成果符合1:2000数据采集要求。
数据采集
在空三完成后,利用空三成果进行单模型定向时我们发现有模型无法定向的情况,第一架次无法建立的模型有29个,占总模型数的4%。第二架次有67个无法建立的模型占总模型数的9%。主要原因为无人机航摄姿态不稳定导致的飞行倾角、旋偏角过大,航线弯曲、像片比例不一致等现象都是导致单模型定向精度差的原因。考虑到1:2000地形图精度要求,我们提出了如下解决方案:在测图定向超限点的周围进行野外实测用来检核分析数据并进行必要的修正。
项目精度报告
根据1:2000精度要求对测绘产品检进行了精度的统计,统计了3幅地形图,其中高程精度中误差最大为米,最小为米,从统计的结果看,粗差率比较高,有的达到了5%,平面精度中误差为米。
2 结 论
(1)无人机航空摄影测量技术应用于地形图的生产存在不确定性,比如,区域网整体加密精度评定良好,但单模型定向精度存在超限情况,在测图过程中表现为测图定向点和立体模型套合差大、接边误差大等,可以通过外业实测进行补充测量、验证。
(2)利用无人机航测进行航空摄影测量时,应采用试验区的作业方法,即在确定布点方案前选取一定面积的试验区进行布点方案试验,分析精度指标后确定作业方案。
(3)目前,无人机航测技术主要应用于载人飞机航测技术的补充方面,如多块小面积、危险场所、远离机场或没有可供其起降场地的区域,在载人机不便或无法完成的情况下,由无人机来完成。
参考文献:
[1] 范承啸,韩俊,熊志军,赵毅。 无人机遥感技术现状与应用[J] 测绘科学 2009,34(5):214-215;
[2] 崔红霞,李杰,林宗坚,储美华。非量测数码相机的畸变差检测研究[J] 测绘科学2005,30(1):105-107;
[3] 连镇华。无人机航摄相片倾角对立体高程扭曲的影响分析[J] 地理空间信息2010,8(1):20-22;
作者简介:徐锦前(1982-),男,辽宁铁岭人,工程师,主要从事摄影测量和地理信息系统建库等测绘工作。
点击下页还有更多>>>无人机应用技术论文
浅谈多旋翼无人机任务系统的优秀论文
前言: 随着无人机产品的不断增加,市场之间的竞争力,也逐渐的提升,对此本项目研究出了更适合于工业控制、自动化装备等领域产品的多旋翼无人机,产品不仅定位合理,同时与其他产品存在一定的差异,该任务系统,是指先进智能装备数据链的无人多旋翼任务,存在较高的能量利用效率、载荷运输性能,是其它无人机产品,在技术方面不能相比的;制定合理的市场规划,会给企业带来一定的经济效益。
1 多旋翼无人机定义概述
我们常称无人飞行载具,为无人飞机系统,主要是利用无线电智能遥控设备,以及自带的控制程序装置,对于不载人的飞机进行操控。其中广义的无人机,包括狭义无人机以及航模。
多旋翼飞行器,主要由动力系统、主体、控制系统组成,动力系统包括电机、动力、电子调速器、桨;主体部分包括机架、脚架、云台;控制系统包括由遥控接收器、遥控组成的手动控制;地面站,以及由主控、GPS、IMU、电子陀螺、LED显示屏组成的飞行控制器。其中四旋翼,是一种4输入6输出的欠驱动系统;通过PID、,鲁棒、模糊、非线性、自适应神经网络控制。近年来,对于系统的控制功能的研究趋势,为大荷载、自主飞行、智能传感器技术、自主控制技术、多机编队协同控制技术、微小型化等方向。其中一些关键技术为,数学模型的建立、能源供给系统、飞行控制算法、自主导航智能飞行。
2 控制系统改进发展阶段
多旋翼无人飞行器的控制系统,最初是由惯性导航系统,借助了微机电系统技术,形成了EMES惯性导航系统;经过对于EMES去噪声的研究,有效的降低了其传感器数据噪音的问题,最后经过等速度单片机、非线性系统结构的研究、应用,最终在2005年,制作出了性能相对稳定的多旋翼无人机自动控制飞行器。对其飞行器的评价,可从安全性、负载、灵活性、维护、扩展性、稳定性几方面要素进行分析。具有体积小、重量轻、噪音小、隐蔽性强、多空间平台使用、垂直起降,以及飞行高度不高、机动强、执行任务能力强的特点;在结构方面,不仅安全性高、易于拆卸维护、螺旋桨小、成本低、灵活控制的特点。
3 技术原理
系统组成
无人多旋翼任务系统,总体技术方案框图如图1所示;如图所示,无人多旋翼任务系统,由无人机、地面工作站构成。无人机,由多旋翼无人机、任务载荷组成;地面工作站,由数据链通信单元、工业控制电脑、飞行控制摇杆等组成。
系统技术原理
多旋翼无人机,通过对于螺旋桨微调的推力,实现稳定的飞行姿态控制、维持。经过上述,对于多旋翼无人机、常规直升机、固定翼飞机的对比,可以明显的看出,多旋翼无人机,在任务飞行方面,具有多能量的优势,从而更好的执行完成飞行任务,改善了飞行姿态维持,消耗大量能量的缺陷,从而更好的保证了其能量利用率,直接产生续航时间、载荷运输性能的提升;在结构方面,做了大量的简化,省去了传动机构,使其运行噪音、故障概率、维护成本大大的降低。
无人机,与地面工作站之间的通信,通过设备数据链实现连接,起到通信中介的作用,同好也是无人机、地面工作站之间,实现地空信息交换的重要桥梁环节。以往无人机,对于地空信息的转换连接,只是普通的点对点通信,收到信号传输距离的影响,性能发挥受到严重的影响,只能实现一些简单遥控数据信号的传输。
但是本项目,对于无人多旋翼任务系统的研究,是通过数据链协议MAVLink的研究后,将其合理的嵌入到控制核心、地面数据链的ARM平台中,有效的改善了以往低空信息传输环节存在的问题,将其遥测、遥信、遥控、遥调、遥视这五遥很好的进行了统一,保证了通信之间的无障碍,从根本上解决了无人机和地面工作站的数据通信问题。其中涉及到的.五遥;其中遥测,是指对于远方的电压、电流、功率、压力、温度等模拟量进行测量;其中遥信,是指对于远方的电气开关、设备,以及机械设备的工作、运行等状态进行监视;遥控,是指对于远方电气设备、电气机械化装置工作状态的控制、保护;遥调,是指对于远方所控设备的工作参数、标准流程等进行设定、调整;遥视,是指对于远方设备的安全运行状态的监视、记录。
传统的无人机,在飞行时需要通过人工对于遥控器的操作,对其飞行姿态进行的控制,体现出其自动程序的不完善,功能单调等缺陷。但是本项目对于无人机的研究,在地面工作站,通过飞行任务规划软件的配套,有效的改善了以往功能单一的缺点,直接增加了其功能性。其中飞行任务规划软件,具备GoogleMap高速API接口,实现对于无人机飞行航线,在三维地图上的简易规划,同时也能对其航线进行启动,使其实现自动巡航、执行飞行任务、返航等操作。
4 技术关键点及创新点
技术关键点:
地空信息的的数据通信。
先进智能装备数据链协议MAVLink的应用,能够对其所有数据进行有效的整合,并全部归纳在数据链路中,整合五遥操作,有效的降低了多种通信制式、通信模块存在等方面的问题,提高了通信效率,保证了通讯功能得以有效发挥。
解决飞行姿态操控问题
嵌入式操作系统,在ARM处理器平台上的应用,加上陀螺仪等传感器、卡尔曼滤波等先进算法,从而更好的保证了控制系统的功能增加,除此之外,不仅实现了无人操作飞行,在飞行操纵方面,也有效的降低了能耗,增加了能量利用率。
在工业控制领域应用的扩展
本项目以同一载具+多种载荷的建设、研究思路,针对于型号相同的多旋翼飞行器,设计一样的数据、电气、机械接口的任务载荷,实现快速更换载荷,使其飞行任务之间,能够良好、稳定的切换、衔接,保证该系统的实用性,同时也减少了任务执行的成本。
增强地面工作站功能
通过C/S架构、C#语言、.net平台、三维GoogleMap、SQL数据库,以及地面任务规划软件、分析数据分析软件,从而更好的增强地面工作站的功能,以及自动化、智能化的程度,更好的为用户操作,带来更多的便利。
项目的技术创新性
在无人机、地面站,在植入数据链MAVLink的同时,加强整体系统功能的改进,有效的实现了五遥的综合统一。
卡尔曼滤波、四元数算法,加上嵌入式ARM平台,对其飞行姿态实现有效控制。
同一载具+多种载荷思路的研究,实现了无人机,对任务执行模式的有效转换。
同时地面任务规划软件、分析数据分析软件的应用,提高了系统的控制功能,以及系统智能化程度。
5 总结
综上所述,通过对于无人多旋翼任务系统的分析,发现我国针对于此方面的研究,仍存在很多不完善的地方,该项目通过C/S架构、C#语言、先进智能装备数据链、分析数据分析软件等,照比以往的无人机飞行器,在系统功能改进方面,实现了遥测、遥信、遥控、遥调、遥视的统一;在任务执行模式方面,实现了灵活转换;在飞行姿态方面,实现了智能操控;是在已有多旋翼飞控技术的基础上,有效的规避了其以往的缺陷,同时自主飞行控制软件编程,这种飞控任务的提供,有效的实现了飞行中,自主导航智能飞行。
工程测绘中无人机遥感技术的优势和运用论文
无论是在学校还是在社会中,大家一定都接触过论文吧,通过论文写作可以提高我们综合运用所学知识的能力。写起论文来就毫无头绪?下面是我精心整理的工程测绘中无人机遥感技术的优势和运用论文,欢迎阅读,希望大家能够喜欢。
摘要:
文章主要就无人机遥感测绘技术相关内容进行分析,其中着重探究工程测绘中无人机遥感测绘技术的应用。无人遥感测绘技术的应用,不仅有利于提升测绘行业发展的科学性、创新性,同时也有利于提高工程测绘的水平和质量。
关键词:
工程测绘;无人机烟感测绘技术;数据分析;
引言:
近年来,无人机在很多领域都得到了广泛应用,并发挥着越来越重要的作用。在工程测量领域对无人机技术的应用,能够为复杂环境下地面测量提供便利,获取相应地区的图像、影像等数据资料,有效提升测量工作的严谨性和科学性。
1、无人机遥感测绘技术的优势
、提升数据的准确性
在工程测绘中全面应用无人机遥感技术,能够对数据准确性有效提升,保证收集数据的安全性,为工程建设提供依据。无人机遥感技术的复杂性相对较高,借助不同类型的技术,特别是对数码传感技术、卫星定位技术以及无人技术的应用,能够全面提升数据收集的质量及效率,大大降低测绘误差,从而保证对数据快速收集的同时,利用高科技全面提升数据的准确性。在对无人机技术不断应用的过程中,其设计也在不断改善,应用的成熟性越来越高。无人机有较小的体积、较高的灵活性,能够很好地推动工程测绘,尤其针对复杂地区,借助无人机遥控测绘技术,能够开展详细的勘察工作,借助软件的应用,能够对数据失误、丢失情况有效避免。
、提升效率
无人机遥感测绘技术的应用,能够减少人工操作程序,有效提高工作效率,在一定程度上降低误差,短时间内对数据快速处理,不仅能够保证效率,还能够保证质量。应用无人机外部作业过程中,能够突破恶劣天气影响,同时也有较长的续航时间,从而保障测绘进度。
、降低成本
测绘作业的复杂性相对较高,应用无人机遥控测绘技术能够有效减少其成本,在一定程度上转变传统测绘方式,提升测绘工作的准确性、科学性。借助地面信息收集工作,能够为其他工作的数据来源奠定基础。在传统测绘过程中,借助载人飞机或卫星对收集数据,会产生较高的成本,且存在安全问题,很容易被恶劣天气影响。应用无人机遥感测绘技术,能够有效地降低成本。
2、无人机遥感技术在工程测绘中的具体应用
、采集数据
在建设工程中,需要始终以数据为基础,因此需要保证数据的精度,但保证数据的精度就需要保证测绘的精度,从而保证建设项目的建筑质量。可见工程测绘收集数据工作十分重要,是工程决策的重要依据,在此基础上分析数据,有利于全面优化工程的谋划、设计。在不同工程测绘过程中,无人机遥感技术的应用也更加广泛,工作人员能够对不同类型数据有效收集,同时也能够借助相关技术,对数据进行分析汇总,对数据收集的精度、速度有效提升。在具体操作过程中,工作人员可以应用计算机输入指令,划分相应的测绘区域,对无人机航线有效设计,并在相应的环境下,引导无人机执行相应的命令,在无人机测绘飞行的过程中,能够明确相应的数据信息,从而结束工程测绘工作。现阶段,技术创新性不断提升,应用定位系统,能够保证定位的精准性,结合坐标系统,能够保证相应区域内的测绘作业能力。对无人机取得的资料,相关工作人员要优化监测、复核工作,对数据的精确性有效保证,并补充其他数据。
、采集图像
应用无人机遥感测绘技术开展工程测绘,除了收集数据,还要收集整理不同图像,对制图的要求有效满足。借助无人机技术,能够收集测绘范围内不同方面的信息,进一步形成影像拍摄。同时,在此基础上,还能够对三维建模有效应用,深加工上一阶段拍摄的画面,为制图工作奠定良好的基础。无人机测绘有较高的智能化,针对不符合需求的图像会进行自动处理,如应用重叠影像数码相机进行自动变焦,对图像参数快速调整有效实现,保证图像收集的清晰性。
、开展低空作业
应用无人机遥感测绘技术,能够对安全性有效保障,尤其一些对图像要求较高的工程测绘项目,无人机测绘能够对上述要求有效满足。在一些恶劣环境之中,应用无人机开展低空作业,因其有更强的灵活性,能够避免受外部条件影响,高效快捷地完成任务。无人机遥感测绘技术也在不断升级,能够很好地提高无人机快速应对能力,有效提升测绘质量。
3、无人机遥感测绘技术应用注意事项
、对相关设备定期检查
为了全面发挥无人机的优势,有效保证测绘结果,并对无人机使用效率有效提高,需要对设备监测的精准性不断优化,保证设备始终处于最佳状态。监测调试工作在应用无人机遥感测绘技术中十分重要,在正式应用设备前,相关工作人员要做好设备性能检测工作,对设备的性能优化,再开展飞行试验,针对不稳定的'设备,相关的工作人员要强化相应的调试工作,对设备性能的稳定性有效保证。此外,相关工作人员还要优化日常保养工作,对通讯设备、电源系统、地面电台等方面进行定期检查,对设备安全性有效保证。
、对像控电测量流程优化
对无人机技术应用,要优化相应的流程,保证无人机遥感测绘技术的应用效果有效提升。工作人员要注意强化拍摄像控点布设工作,对其安全性、高效性有效保证,并完善优化升级工作。具体从以下3个方面入手:
1)要注意监测在可控范围内,与拍摄范围的具体情况有效结合,进行相应地分析,对拍摄区域自由网效果明确,同时还要检查快速生成自由网快拼图的情况,明确是否存在偏差。
2)要对像控点测量方案布设流程优化。要以目标测量范围的具体情况为基础,如地势、地形,优化控制像控点相片质量,提升收集数据的严谨性,避免对影响、数据处理的随意性,还要注意保留原始数据,从而为后续调整制图奠定良好的基础,有效保证数据的真实性。
3)相关工作人员要加强数据存储工作。对于无人机拍摄而言,会出现大量数据,设备中会对相应的数据储存,需要对其中没有价值的信息有效去除,避免无用数据对新数据的影响,保证色彩效果和清晰度。
、对飞行、摄影质量有效控制
为了对无人机拍摄的水平、效率有效保证,相关工作人员需要在实际应用过程中,对无人机的飞行、摄影质量进行严格控制。在具体应用过程中,相关工作人员需要注意:
1)结合规定的时间,带无人机进场,并对无人机不同方面的信息明确,如无人机的降落、起飞方式等,同时还要对飞行速度有效控制,保证测绘影像的清晰性。
2)要注意对无人机飞行高度的设计、控制工作优化,对拍摄区域的设计航高于飞行航高之间的高度差明确,并控制在合理的范围之内。随后还要注意对无人机的飞行状态有效控制,避免其他信号影响无人机拍摄的准确性。此外,在无人机飞行过程中,相关工作人员还需要注意对无人机的上升、下降飞行速率有效控制,并制定相应的安全保护方案。
4、总结
综上所述,应用传统测绘技术,已经不能满足现阶段的市场需要,需将无人机遥感测绘技术应用其中。但为了保证工程测绘结果的科学性和准确性,相关工作人员需要结合实际情况,优化无人机遥感测绘技术,从而有效提升工程测绘的质量和效率。
参考文献
[1]周李乾.工程测绘中无人机遥感测绘技术的应用[J].智能城市,2020,6(12):73-74.
[2]易应军.工程测绘中无人机遥感测绘技术的应用研究[J].建筑工程技术与设计,2020(8):4376.
[3]郑义,董晓亮.论无人机遥感测绘技术在工程测绘中的应用[J].建筑工程技术与设计,2019(36):4055.
为了能够有效地将无人机系统连接到综合一体化的作战信息网络当中,需要深入探讨无人机系统的组网问题。本文研究了无人机作为信息支撑平台,采用分层结构的接入技术,路由算法以及数据调度算法,论文的主要内容如下: 1.分析了无人机平台自身特点和设备特性,研究了无人机超视距通信的传输体制;基于结构分层概念,提出了包括主干层、战术层以及用于提供战场信息支持的无人机通信网络结构;介绍了网络协议设计需要解决的关键问题和用于性能分析的军用仿真技术。 2.依据无人机网络分层的特殊结构,分析了常用多址接入方式的容量大小以及优缺点,提出了不同层间无人机的多址接入方式,并着眼于用于战场通信服务的无人机,提出了适用于自组织结构的空中无人机机群的同步式多址接入方式ESMA,通过对协议进行分析可以看出该协议具有较强的鲁棒性和接入效率。 3.分析了无线自组织网络的路由问题,提出了自组织结构的无人机网络在不同的信道条件下所应采取的不同路由策略。包括链路稳定时的DSR路由算法和链路不稳定时的定向泛洪式的DREAM路由算法。 4.提出了无人机数据调度问题,研究了现有的数据调度算法,通过理论和试验数据的分析,为无人机在使用时采取的不同数据调度策略提供依据。
电力企业输电线路巡检工作中无人机的运用论文
在当前形势下,电力企业的体制改革已取得了一定的成效,供电服务范围进一步扩大,输电线路的分布也越来越广。由于各地区的自然环境具有一定的差异性,因此,采用人工方式对输电线路进行日常巡检已远远达不到要求。而采用无人机巡检可以在第一时间查明故障位置,且不会受到地形条件的影响,同时,还可以实现多角度、全方位的巡检,进而从整体上掌握输电线路的运行状况。可见,无人机的应用对于电力企业的输电线路巡检工作具有重要意义。
1 无人机的研究设计分析
当前,在输电线路巡检中,应用最为广泛的是遥控直升机和四旋翼无人机。应用无人机对输电线路进行全方位的巡视,可以迅速、准确地判断故障的发生点,大大提高巡视工作的效率。从产生和自身结构来看,无人机是先进科学技术创新研究的产物,它的形成主要涉及以下几方面。
技术方面
遥控直升机采用的是普通直升机的气动布局,一般可以携带图像采集和实时传输设备,在飞行过程中,可以将所“看”
到的各种信息通过传输设备及时传输到监控中心,从而大大提高输电设备巡视、检修工作的效率。四旋翼无人机的气动布局结构是 4 个旋翼相互对称分布。这种结构设置使其具有较高的起降能力。此外,四旋翼无人机还安装有减振云台和无线传输设备,在对输电线路进行巡检时,可以利用微型高分辨率的图像采集设备获得高清信息,并将所获信息及时传输到监控中心。
自身系统构成方面
遥控式无人机的构成主体是遥控直升机的本体。此外,遥控直升机还包括减振悬挂装置、信息采集和传输设备、地面图像的监视和操控系统等。四旋翼无人机主要由本体和地面监控站构成。
功能方面
无人机的功能分析应用遥控直升机巡检的工作流程是由人工进行遥控飞行或者悬停在输电线路的上空,而后再利用信息采集设备对线路的图像信息进行实时采集和传输;应用四旋翼无人机巡检的工作流程是在地面站的引导下,根据输电线路的布设状况进行信息的采集和传输。具体来说,分为以下几个步骤:①四旋翼无人机自主悬停于特定空间位置,而后再进行图像信息采集;②通过调节四旋翼的航向和减振云台,对图像采集设备、被检测设备的光学角度和距离进行合理调整,实现对输电线路设备图像的实时采集和传输;③根据人工操作的各项指令进行控制,而后沿输电线路进行飞行式观测和信息采集。
地面站的功能分析四旋翼无人机地面站的基本功能包括与四旋翼无人机协调进行遥控、遥测通信,对四旋翼无人机的图像信息采集位置的确定起引导作用,实时接收和整理分析无人机所获得的输电线路信息,实时操作、控制无人机的飞行状态和云台状态。
关键技术要点和创新点的分析
无人机巡检输电线路的关键技术要点和创新点主要包括以下几个:①四旋翼无人机具有自主悬停、自主导航飞行的特点,可以进行输电线路跳闸后的故障点查找,并在此基础上,构建一个完整的输电线路全过程立体式的巡检系统。②四旋翼无人机的另一个功能就是可以对输电线路起到防碰撞保护作用,用于输电线路的巡视和检测,同时,还可以对严重自然灾害下的输电线路起到保护作用,比如常见的大风、暴雨等。③地面实时监控技术和图像防抖降噪技术在输电线路巡检中的应用。无人机所配备的可见光视频可以在网络信息技术的作用下及时传输到监控中心。④对四旋翼无人机一体化设计和输电线路的快速检测系统进行优化,有效解决流线型机身的碳纤维制作工艺问题,进而解决锂电池的选型、旋翼的升力、电机的选型和空气动力等相关问题。⑤自主悬停和飞行控制系统具有自驾和手动两种工作模式。在自主悬停的状态下,无人机不仅可以通过地面站的高清录像检查线路,并保留手动模式,还可以按照既定的路线进行自主导航的飞行和巡检。
2 无人机的应用分析
实际应用效果
在输电线路的巡检中,应用无人机可以实现多角度、全方位的高空信息采集,有效降低架空输电线路巡检工作的强度,减少安全隐患,促进巡检效率和质量的提高,尤其是在恶劣的'环境中,比如在铁塔打滑时,无人机可以代替人工蹬杆和走线,进而保障了电网的安全、稳定运行。另外,应用无人机可以大大降低巡检工作的成本,为生产生活用电提供保障。
可见,无人机的应用对当前电力企业的输电线路巡检工作具有重要意义。
无人机的发展前景
无人机的发展前景可以概括为以下几点:
①在高压输电线路中,可快速、准确地查找故障点,并对存在的可疑故障点进行高效、合理的巡检,是高压输电线路稳定运行的保障。
②在输电线路具体的某个路段或局部设备中,可以快速对故障进行巡检,成本低、效率高,具有较好的安全性和技术性。
③可以智能化定点悬停在输电线路金具和绝缘子的上方进行局部检测,操作简单,从而减少人工巡检的任务量和时间,尤其是在环境条件恶劣的输电线路中,无人机的优势更为明显。
④无人机所具有的陀螺稳定可见监视器和红外线成像仪设备不仅能够对输电线路起到录像和检测的作用,实现自动巡检,还能够有效解决地形巡视困难等问题,进一步降低人工巡检的潜在危险性,提高输电线路的运行质量。
3 总结
电力在现代社会发展中发挥着重要作用,是国民经济健康、稳定发展的保障。在科技的推动下,将无人机应用于输电线路巡检中,可以大大提高输电线路的运行效率和质量,并进一步提升其运行的可靠性和稳定性。因此,电力企业要加大对无人机的应用和研究力度,提升其实际应用效果。
参考文献
[1]张永,李德波,吴翔,等。无人机巡检输电线路技术的应用与分析[J].宿州学院学报,2013,28(8):87-88.
[2]诸葛葳。无人机巡检输电线路技术的应用探析[J].科技经济市场,2015(5):16.
[3]周海峰。无人机巡检输电线路技术的应用与分析[J].建筑工程技术与设计,2015(18):1238.
木材撕碎机撕碎物料后有哪些用途:一、方面撕碎后物料运输方便,二、加工后的木料可以用来制作三合板,合成版家具,另外还可用来焚烧发电,所以用途是相当广泛的。木材撕碎机的适用范围也是很广的,木材,树干、边角料、树枝等,而木材撕碎机造形好,可以根据用户的需求来选择不同尺寸的刀片,来满足用户的需求,木材加工后还可以做桌子,木地板、小玩具等,所以在我们的生活中是离不开木材的使有的。
个有各的用途,不是一回事。
这个很正常。两个电机参数不可能一样。参数差一点,并联运行的电流就会差很多的。越大功率的电机这个问题越明显。粉碎机电流波动的原因及解决办法: 1、故障原因:喂料不均匀 故障分析:粉碎机喂料均匀不仅能保证产品质量,也能充分地发挥粉碎机的效能。当喂料过多时,会造成电机负荷突然增加,使得电流波动剧烈,严重的会造成电机烧毁。 解决方法:①采用科学喂料方式(如用负压进料的方式,特别要避免人工进料的方式)。 ②选用先进喂料器和调频器,使物料均匀进入粉碎机内。2、故障原因:原料水分过高或者棉绒较多 故障分析:当原料的水分过高(如玉米的水分每增加1%则电流就增加10%左右)或者原料(如棉粕)的棉绒较多,会导致粉碎机的部分筛网被堵,影响物料及时排出粉碎室,使电流波动剧烈。 解决方法:①选用水分较低的玉米原料。 ②选用过筛的棉粕原料。3、故障原因:粉碎机锤片磨损 故障分析:对于锤片式粉碎机是利用安装在粉碎室内的许多高速回转锤片对饲料撞击而破碎,当锤片磨损后,会使锤片撞击物料的能力大为降低,且会使粉碎室内的料层变厚,影响了出料,导致电流波动剧烈。 解决方法:更换新的锤片或将锤片调头安装。 4、故障原因:进料方向和锤片旋转方向不一致 故障分析:正常情况下,物料下落的方向和锤片旋转方向一致时,有利于物料被击碎且迅速通过筛网,而当二者方向相反时,会使物料在粉碎室内停留时间过长,白白消耗一部分机械能,同时引起粉碎机电流波动。 解决方法:检查导料板使物料下落与锤片旋转方向一致。5、故障原因:导料板没有完全将物料沿一侧导下 故障分析:当导料板没有到位时,使得物料形成两部分而进入粉碎机,这时,就使部分物料下落的方向和锤片旋转方向不一致,从而引起粉碎机电流波动。 解决方法:检查导料板的位置是否到位(建议安装行程开关)。 6、故障原因:粉碎机负压的影响 故障分析:当粉碎机转子高速回转时,粉碎机就像一台风机,在粉碎室内产生负压,而在筛面则存在很小的正压,这样,筛片两侧只存在很小的压力差,这对物料通过筛网是不利的。当粉碎机的负压很小,甚至反喷,会造成粉碎机产量下降,电流波动剧烈。 解决方法:检查负压系统,使得粉碎室外达到689~980Pa的负压。
撕碎机顾名思义是一种用作破碎的设备,常见可破碎物料:大件垃圾、生活垃圾、餐厨垃圾、电子垃圾、工业垃圾、医疗垃圾、金属、塑料、橡胶、家电、木材等等。撕碎机的结构种类双轴剪切式破碎机洁普环保双轴剪切式破碎机双轴剪切式破碎机也叫双轴撕碎机,是利用刀具之间相互剪切、撕裂、挤压的工作原理对物料进行加工,用于各种固体废弃物的破碎,对软硬物料都有很好的破碎效果,常被用于MSW(城市生活垃圾)处置、资源再生、垃圾焚烧预处理等环保领域。该设备采用低转速、大扭矩设计,具有剪切力大、撕碎效果好,噪音小、稳定性好等特点。应用领域固(危)废破碎-混合-泵送系统;危险废物处理厂破碎系统;垃圾焚烧发电厂;RDF(垃圾衍生燃料)破碎;生物质燃料预处理;轮胎破碎回收领域;电子废弃物破碎回收系统;各种工业废物。工作原理双轴j剪切式破碎机工作原理通过液压或电机驱动两个刀轴正反旋转,刀轴上的动刀相邻刀面刃口形成剪切、动刀刀尖与隔套圆柱面形成剪切、刀轴的扭力和速差形成的撕扯从而达到破碎效果。单轴破碎机洁普环保单轴细破碎机细破碎机也叫单轴破碎机、单轴撕碎机,是利用动刀刀粒与定刀相互作用,并通过筛网控制出料粒度,将物料进行撕碎、剪切、挤压将物料加工到较小粒度。常被用于各种固体废弃物的细碎,可以将物料一次性加工到较小粒度,广泛应用于资源再生、RDF(生活垃圾衍生燃料)制作、垃圾减容等领域。具有出料粒度小、筛网可更换、物料适用性广、效率高等特点。应用领域轮胎破碎;水泥厂;垃圾发电厂;焚烧厂;垃圾分选厂;塑料破碎。工作原理单轴细破碎机工作原理电机驱动刀轴带动刀具快速旋转,进入破碎腔的物料被喂料器推到动刀轴与定刀中间,刀轴上的刀片与定刀配合将物料剪切、撕扯进行破碎,不合格物料被刀片带回破碎区域继续破碎,达到出料粒度的物料从筛网落下达到破碎目的。刀片尺寸及筛网开孔大小根据用户的要求选定,可根据出料粒度要求更换筛网。
酸性玻璃胶相宜作密封、堵塞防漏及防风雨用途,室阁房外两者咸宜(室内结果更佳),防渗防漏结果明显。粘接汽车的种种内部装饰,包罗:金属、织物和有机织物及塑料。接合加热和制冷设置装备部署上的垫片。在金属外貌加装无螺孔的筋条、铭牌以及漆加塑料质料。对烘箱门上的窗口、气体用具上的烟道、管道讨论、通道门举行封口。为齿轮箱、压缩机、泵提供即时成形的防漏垫。对船仓以及窗口密封。拖车、卡车驾驶室玻璃窗的密封。粘合和密封设置装备部署部件。形成防磨涂层。镶嵌和添补薄金属片迭层、道管网络和设置装备部署机壳。中性耐候胶实用于种种幕墙耐候密封,分外保举用于玻璃幕墙、铝塑板幕墙、石本领挂的耐候密封;金属、玻璃、铝材、瓷砖、有机玻璃、镀膜玻璃间的接缝密封;混凝土、水泥、砖石、岩石、大理石、钢材、木料、阳极处置处罚铝材及涂漆铝材外貌的接缝密封。大多数环境下都无需利用底漆。 酸性玻璃胶 1、脱酸性硅酮玻璃胶就是酸性玻璃胶,酸性玻璃胶在固化的过程中吸收空气中的水分释放乙酸气体; 2、酸性玻璃胶固化速度快,对金属等有一定的腐蚀性。中性玻璃胶 1、脱醇性硅酮玻璃胶就是中性玻璃胶,中性玻璃胶在固化的过程中吸收空气中的水分释放乙醇气体: 2、中性玻璃胶固化速度较慢,对粘接面有很强的粘接性,但延展性较弱。以上就是酸性玻璃胶和中性玻璃胶的区别,希望大家不要再用错了。
这要看你做什么用,酸性的密封胶一般都有腐蚀性,适用于玻璃和其它建筑材料之间的一般性粘接(如铝合金门窗)。中性的又分为醇型和酮圬型,醇型属于环保型的,目前国内的做得不是很好,所以应用不是很广。国内现在所说的中性一般都是酮圬型的,这种胶具有耐候性,既可以作为粘结,也可作为填充。中性胶还克服了酸性胶腐蚀金属材料和与碱性材料发生反应的特点,因此适用范围更广。中性胶主要用于玻璃幕墙、铝塑板幕墙、石材干挂的耐候密封;金属、玻璃、铝材、瓷砖、有机玻璃、镀膜玻璃间的接缝密封;混凝土、水泥、砖石、岩石、大理石、钢材、木材、阳极处理铝材及涂漆铝材表面的接缝密封。
区别在于用途不同 ,性质不同 ,固化速度不同 ,美观程度不同, 从用途上来看,前者可以作为室内外密封、堵漏、防风雨时使用,但室内防渗防漏效果更理想一些。后者可以作为各种幕墙密封时使用,尤其是玻璃幕墙、石材干挂密封,效果更好。 除此之外,也可以使用在金属、玻璃、铝材、瓷砖、农业生产的玻璃、镀膜玻璃间的接缝密封当中。
可以在不同的场合进行使用,比如说在粘合石头的时候可以使用中性,在粘合玻璃的时候可以使用酸性。质量不一样,区别不一样,酸碱程度不一样,价格不一样。过程不一样。