首页

> 学术期刊知识库

首页 学术期刊知识库 问题

细胞质遗传的研究进展论文

发布时间:

细胞质遗传的研究进展论文

作物栽培学作物栽培技术作物育种学实验农业概论农业系统工程学农学庄稼医生技术手册植物育种原理与方法植物雄性不育机理的研究及应用油菜优质高产栽培技术油菜品质改良和分析方法油菜生态和遗传育种研究芸薹属植物的生物工程2004年加拿大油菜研究情况简介21世纪初湖南油菜生产发展趋势2BF-6型稻茬田油菜免耕联合播种机的研究681A不育胞质对杂种一代农艺性状的影响ACC合成酶基因技术在培育延熟保鲜果品上的应用ASK1 physically interacts with COI1 and is required for male fertility in ArabidopsisBiodiesel production and its development strategyBreeding and agronomic characters of Bt transgenic insect-resistant Brassica napus linesBt杀虫蛋白基因在转基因油菜中的动态表达与其抗虫性研究Bt毒蛋白基因与植物抗虫基因工程Bt毒蛋白基因导入甘蓝型油菜获得转基因植株Bt毒蛋白基因的研究进展Cytogenetic studies on rapeseed. The analysis of salient feature on the chromosomal morphology of mitotic prophase in rapeseedEffects of lipoxygenase null genes of soybean in controlling beany-flavor of soymilk and soyflourInheritance and mapping of a restorer gene for the rapeseed cytoplasmic male sterile line 681ARAPD Assessment of Genetic Diversity ofRAPD技术及其在油菜遗传育种上的应用Sensitivity of Maize Seed Germ ination and Seedling Growth to Water EnvironmentStudies and application of CHA and its hybrid of winter rapeseed (B. napus) in ChinaStudies of Graft Transfer of Endogenous Gibber ilic AcidsStudies on cytology of visible chromosome formation under the light microscope during cell cycle in rapeseedTA-29基因与转基因油菜杂交系TE缓冲液对RAPD带型的影响The effect of ZMA on inducing male sterility on spring canolaWeb农业专家系统多媒体技术的应用研究^60Co电离辐射对油菜影响的研究“单低 双低油菜系列标准”制定的必要性“单低 双低油菜系列标准”的制定及评价“单低 双低油菜系列标准”的推广与实施情况不同基因型水稻产量和品质的物质代谢研究不同播期对不同基因型油菜产量特性的影响不同播种期油菜与气象因子的关系不同施氮水平和氮素来源烟叶碳氮比及其与碳氮代谢的关系不同栽培方式对辣椒采后病害的影响不同植物激素对油菜角果生长和结实的影响不同氮量和氮源的烟叶高级脂肪酸含量及其与香吃味的关系 世界油菜生产的发展和我国长江流域油菜带的开发两系亚种间与品种间杂交稻籽粒充实度的比较研究两系亚种间杂交稻籽粒充实度的遗传研究两系亚种间杂交稻籽粒充实度的配合力研究两系杂交稻籽粒充实度亲子相关研究中国芸芥形态特征特性及类型研究中国芸芥栽培品种亲缘关系的RAPD分析中国芸芥遗传多样性RAPD标记分析亚种间杂交稻籽粒充实度研究进展优质油菜新品种湘农油571的选育传播科技信息荟萃学术新篇作物产量和品质的碳氮及脂肪代谢调控的研究进展作物收获指数的研究概况作物源─库关系研究的现状作物生长模拟模型技术作物生长模拟模型研究概述俄罗斯油菜育种俄罗斯的油菜育种光叶杂交油菜油用及菜用特性的研究光周期对水稻源库关系的影响关于植物随机引物扩增多态性DNA标记的可靠性问题关于油菜化学杀雄杂种的几点说明内源赤霉素与油菜不同种性品种花芽分化的关系的研究农业大学与职业中学联合建立农业技术推广网络的探讨农业高新技术股份制企业式教学基地建设的探讨农学专业“六边”实习的教学改革探索农学专业《农学实践》课程的设置农学专业学生实践技能训练的系统构建农学专业改革的探讨几种分析方法对杂种棉后代综合评价的比较研究几种化学药物对油菜杀雄效果的研究几种酶活性与油菜油分和蛋白质及产量的关系加拿大卡诺拉的生产和销售加拿大油菜品种的演变及现状匈牙利捷克波兰高等教育考察的启示化学杂交剂诱导油菜雄性不育机理的研究 ⅡKMS-1对甘蓝型油菜育性的影响化学杂交剂诱导油菜雄性不育机理的研究十字花科种间杂交亲和性雄性不育细胞质遗传效应十字花科芸薹属种间杂种营养优势的利用研究单双低油菜研究进展双低杂交油菜新品种湘杂油6号的选育双低油菜品种湘油13号选育及品种特性研究双低油菜新品种湘油15号双低油菜新品种湘油15号的选育双低油菜核心竞争力的研究双低油菜湘油11号高产长势长相及栽培技术的探讨双低油菜湘油15Bnapus对菌核病抗性的研究双低油菜湘油15号对菌核病抗性研究简报双低油菜湘油15号种植密度的调查国外关于Sinapis arvensis L.的一些研究基于Web的油菜生产专家系统施肥知识表示基于Web的油菜生产专家系统的研究与应用基于人工智能的理科电子教材的设计与实现基因克隆技术的研究进展基因工程技术与油菜杂种优势利用基因工程技术与油菜育种基因枪法向甘蓝型油菜转移反义FAD2基因的研究外源基因在转基因抗虫油菜中的遗传行为外源基因直接转移技术之评价大学理科教材汲取人文社会科学的方法与技巧大豆种子脂肪氧化酶与豆制品产生豆腥味关系的研究进展大豆种子脂肪氧化酶的缺失对其农艺性状的影响大豆种子脂肪氧化酶的缺失对种子劣变的影响大豆种子脂肪氧化酶缺失基因控制豆腥味效果的研究大豆种子脂肪氧合酶缺失体类型的加工特性研究大豆脂肪氧化酶生理作用研究进展威优207水稻种子对汞铜锌胁迫的耐抗性研究子房注射法与农杆菌介导法转化甘蓝型油菜的比较研究建立“大农学专业”的实践影响油菜收获指数的几个生理因子抓住机遇,加快发展优质油菜抓住机遇,发展优质油菜抗除草剂油菜研究及其进展拟南芥ASK1与COI1形成蛋白复合体并调控雄性不育改变冬油菜栽培方式,提高和发展油菜生产新疆野生油菜与甘蓝型油菜属间杂种分子鉴定新疆野生油菜与野芥Sinapis arvensis L遗传性状的比较研究新疆野生油菜与野芥品质性状的比较研究新疆野生油菜细胞遗传学研究----Ⅱ.染色体的形态特征过氧化物酶同工酶和mtDNA分新疆野生油菜细胞遗传学研究施氮对油菜几种酶活性的影响及其与产量和品质的关系施钾对油菜酶活性的影响及其与产量品质的关系无菌苗法在鉴定油菜菌核病抗耐性上的应用杂交油菜制种行比的研究杂交油菜湘杂油1号的高产分析根癌农杆菌介导TA29-Barnase基因转化甘蓝型油菜的研究植物RAPD标记的可靠性研究植物体细胞无性系变异及其突变体的RAPD鉴定分析植物基因工程与油菜品种改育植物基因工程的新方向——叶绿体基因工程植物抗病基因克隆的研究进展植物淀粉合成的调控酶植物雄性不育的遗传机制探讨水稻幼穗分化期间减源对源库关系的影响油菜Brassica napus L收获指数的变异油菜RAPD反应体系的优化研究油菜、玉米、晚稻三熟制高产栽培的配套技术油菜不同发育时期喷施杀雄剂1号的杀雄效果和对花药细胞形态的影响油菜不同品种逆境下结实性的研究油菜与芸芥属间杂种离体子房和胚培养研究油菜中内源赤霉素嫁接转移研究油菜产品综合利用的研究:Ⅲ[1].油菜茎杆栽培平菇试验油菜优质高产高效栽培管理多媒体专家系统油菜光温生态特性的研究和应用油菜分子标记图谱构建及抗菌核病性状的QTL定位油菜化学杀雄杂种湘杂油1号湘油11号×466选育报告油菜化学杀雄药物,机理和杂种研究油菜单倍体植株叶原生质体培养再生植株油菜原生质体培养与融合技术的研究进展油菜和芸芥杂交时花粉与柱头识别反应的研究油菜品种与菌核菌相互作用机理研究进展油菜品质育种的研究:Ⅱ.双低油菜湘油11号的选育油菜品质育种的研究:Ⅳ[1]. 甘蓝型油菜种子中硫代葡萄糖甙油菜对菌核病抗耐病性鉴定与抗病育种研究进展油菜对霜霉病抗性鉴定及遗传研究摘要油菜小孢子培养和双单倍体育种研究Ⅰ供体植株和小孢子密度对小孢子培养的影响油菜小孢子培养和双单倍体育种研究Ⅱ影响甘蓝型油菜和芥菜型油菜种间杂种胚产量的因素油菜库器官分化发育期剪叶对源库关系的影响油菜收获指数对经济产量的贡献油菜收获指数的研究摘要油菜无菌苗培养前的种子消毒技术油菜栽培密度与几种酶活性及产量和品质的关系油菜栽培管理多媒体专家系统的设计与实现油菜湘杂油1号的特征特性及栽培技术油菜生产专家系统知识库构建油菜生产情况与科研进展油菜生态特性的研究油菜生态特性的研究:Ⅲ[1].油菜油菜生态特性研究油菜生物量与氮素吸收量及生理效率的动态变化油菜的小孢子培养和双单倍体育种油菜的自交不亲和性和杂种优势育种油菜的转基因育种油菜种子内生菌的检测及杀菌消毒处理方法油菜种子特异表达napin基因启动子的克隆及序列分析油菜种子生产体系和方法的研究:I[1].双低油菜原原种不同隔离方法的比较油菜种子生产体系和方法的研究:Ⅱ双低油菜原原种种子来源对原种生长[1]油菜育种与生物技术油菜脂肪酸品质改良的研究进展油菜自交不亲和性杂种优势利用的遗传基础探讨油菜花期性状与经济性状的相关性油菜花药离体培养研究油菜菌核病抗性鉴定抗性机理及抗性遗传育种研究进展油菜角果内的淀粉酶活性与有关同化物转运的调控油菜转基因的遗传研究油菜转基因育种研究油菜转基因育种研究进展油菜远缘杂交的遗传育种研究Ⅵ芥菜型油菜几个基因的染色体组定位研究油菜远缘杂交育种的主要障碍及其克服方法油菜迟播初步研究摘要油菜遗传育种研究进展油菜雄性不育分子机理的研究进展油菜雄性不育性的研究:I[1].甘蓝型油菜波里马(Polima)细胞油菜雄性不育系与十字花科蔬菜远缘杂交亲和性研究油菜高效转化系统的研究油菜高油酸遗传育种研究进展湖南发展油菜生产的措施湘农油571生长发育及产量形成与播种期关系的模拟分析湘南地区油菜播种期研究湘南地区油菜生长发育特点和适宜品种的研究湘南地区油菜适宜播种期的研究湘油13号高产栽培综合农艺措施优化分析湘西地区油菜播种期研究烟叶自然陈化过程中高级脂肪酸及有关生化特性动态变化的研究烟叶香气前体物在成熟和调制过程中的变化烟草腺毛分泌物的化学成分及遗传现代生物技术与大麦遗传育种甘蓝型冬油菜Brassica napus干物质积累分配与转移的特性研究甘蓝型油菜FAD2基因cDNA片段的克隆和序列分析甘蓝型油菜fad2基因片段的克隆和反义表达载体的构建甘蓝型油菜pep基因片段的克隆和种子特异性反义表达载体的构建甘蓝型油菜与芥菜型油菜种间杂交研究甘蓝型油菜与芥菜型油菜种间杂交研究摘要甘蓝型油菜与芸芥属间杂种F-1的获得及鉴定甘蓝型油菜品系一些酶的活性与抗菌核病的关系甘蓝型油菜显性无蜡粉基因的染色体组定位甘蓝型油菜杂种优势与配合力及通径分析甘蓝型油菜细胞质雄性不育系681A选育研究生物柴油开发研究进展与产业化发展策略科技与教育是农业可持续发展的两个重要问题稻田三熟制油菜简化栽培技术研究I 不同播种量对稻板茬撒播油菜生长发育和产量的影响稻田三熟制油菜简化栽培技术研究Ⅱ 稻板田撒播油菜的播期品种播种量和播种方式稻白叶枯病菌对水稻悬浮细胞H2O2含量及其代谢酶活性的影响篦齿眼子菜沼生水马齿对汞的耐受性与浓缩性研究精密排种器的特征造型及其装配关联设计红光和蓝光对烟叶生长碳氮代谢和品质的影响红麻分子标记的应用研究进展美国油菜生产情况芥菜型油菜Brassica juncea感光性初步研究芥菜型油菜与甘蓝型油菜种间杂种二代分离观察芥菜型油菜与甘蓝型油菜种间杂种后代的RAPD分析芸芥Eruca sativa Mill与芸薹属Brassica L3个油用种的远芸芥Eruca sativa Mill对菌核病的抗性研究芸芥抗菌核病相关基因的分子标记芸薹属作物的遗传转化芸薹属植物抗菌核病的研究进展菜籽蛋白对超滤膜污染机理及在线反冲工艺研究谈谈植被保护与植物栽培谷粒饱对油菜品质和产量的影响转Bt基因抗虫油菜花粉对蜜蜂生存的影响转基因抗虫油菜中Bt杀虫蛋白基因稳定遗传和高效表达及抗虫性研究转基因抗虫油菜品系选育和性状研究转基因抗虫油菜对菜青虫抗性的研究转基因抗虫油菜的ELISA分析转基因抗虫油菜的生物学特性研究转基因植物的应用研究及基因产品的安全性转基因油菜应用研究转基因油菜雄性不育系15A生化特性研究转基因油菜雄性不育系15A结实性的研究辽西半干旱区农田水肥耦合作用对春小麦产量的影响过氧化氢水杨酸与植物抗病性关系的研究进展适应现代农业需要 培养高素质植物生产类人才野芥Sinapis arvensis L在中国的发现及意义高光谱技术在农业上的应用(综述)高等农业院校农学专业人本科才培养方案及教学内容和课程体系改革的研究“杀雄剂1号”诱导油菜雄性不育的效果及其机理的初步研究“湘农油2号”油菜的选育冬油菜稻板田免耕移栽的研究印度油菜的育成品种介绍春大豆花芽分化的初步研究油菜不育胞质对杂种一代的影响油菜主要性状遗传力和遗传相关油菜产品的加工利用油菜产品综合利用的研究Ⅰ油菜产品综合利用的研究Ⅱ油菜化学杀雄药物、机理和杂种研究油菜品质育种的研究Ⅰ油菜品质育种的研究Ⅱ油菜增产的几个问题油菜杂种在生长性状上的优势表现油菜染色体的数目、形态和行为油菜生态特性的研究Ⅰ.甘蓝型油菜()光温生态特性的初步研究油菜生态特性的研究Ⅱ.不同类型甘蓝型油菜( L.)异地异季种植的生态特性研究油菜生态特性的研究Ⅲ.油菜()低温敏感期的研究油菜的几个生理障碍及对策油菜的营养特性和施肥技术油菜种子生产体系和方法的研究油菜花芽分化的研究湖南地区油菜生长发育特点和适宜品种的研究湘油11号高产栽培措施的数学模型研究甘蓝型油菜()的不同杂种组合的优势比较甘蓝型油菜不同杂种组合的优势比较甘蓝型油菜产量形成的初步分析甘蓝性油菜雄性不育系“湘矮A”及其杂种的初步观察甘蓝型油菜单双低品系数量性状的遗传分析积极行动起来 为我省农业发展做出新贡献论油菜“冬发”

李宝键教授在“展望21世纪的生命科学”一文中谈到基因组研究计划研究重要性时,引用《Scinence》上“第三次技术命革”中的一句话:“下一个传大时代将是基因组革命时代,它正处于初期阶段。”在当前的研究水平上,只要涉及生命体重要现象的课题,几乎离不开对基因及其作用的分析。2000年6月26日,英美两国首脑会同公私两大人基因组测序集团向世人正式宣告,人基因组的工作草图已绘制完成。科学家把这作为生命科学进入新时代的标志,即后基因组时代(post-genome era)。因此有必要对基因组及其研究内容和进展作一个了解。1基因组学及其研究内容基因组(GENOME)一词是1920年Winkles从GENes和chromosOMEs组成的,用于描述生物的全部基因和染色体组成的概念。1953年Watson和Crick发现DNA双螺旋结构,标志分子生物学的诞生,随着各学科的发展,当前生物学研究进入新的进代,在生物大分子水平上将不同的研究技术和手段有机的结合以攻克生物学难题。基因组研究可以理解为:(1)基因表达概况研究,即比较不同组织和不同发育阶段、正常状态与疾病状态,以及体外培养的细胞中基因表达模式的差异,技术包括传统的RTPCR,RNase保护试验,RNA印迹杂交,但是其不足是一次只能做一个。新的高通量表达分析方法包括微点阵(microarrary),基因表达序列分析(serial analysis of gene expression,SAGE),DNA芯片(DNA chip)等;(2)基因产物-蛋白质功能研究,包括单个基因的蛋白质体外表达方法,以及蛋白质组研究;(3)蛋白质与蛋白质相互作用的研究,利用酵母双杂交系统,单杂交系统(one-hybrid system),三杂交系统(thrdee-hybrid system)以及反向杂交系统(reverse hybrid system)等。1986年美国科学家Thomas Roderick提出了基因组学(Genomics),指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录图谱),核苷酸序列分析,基因定位和基因功能分析的一门科学。因此,基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(structural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics)。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。随着1990年人类基因组计划(Human Genome Project,HGP)的实施并取得巨大成就,同时模式生物(model organisms)基因组计划也在进行,并先后完成了几个物种的序列分析,研究重心从开始揭示生命的所有遗传信息转移到从分子整体水平对功能的研究上。第一个标志是功能基因组学的产生,第二个标志是蛋白质组学(proteome)的兴起。2 结构基因组学研究内容结构基因组学(structural genomics)是基因组学的一个重要组成部分和研究领域,它是一门通过基因作图、核苷酸序列分析确定基因组成、基因定位的科学。遗传信息在染色体上,但染色体不能直接用来测序,必须将基因组这一巨大的研究对象进行分解,使之成为较易操作的小的结构区域,这个过程就是基因作图。根据使用的标志和手段不同,作图有三种类型,即构建生物体基因组高分辨率的遗传图谱、物理图谱、转录图谱。遗传图谱通过遗传重组所得到的基因在具体染色体上线性排列图称为遗传连锁图。它是通过计算连锁的遗传标志之间的重组频率,确定他们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示。绘制遗传连锁图的方法有很多,但是在DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增。早期使用的多态性标志有RFLP(限制性酶切片段长度多态性)、RAPD(随机引物扩增多态性DNA)、AFLP(扩增片段长度多态性);80年代后出现的有STR(短串联重复序列,又称微卫星)DNA遗传多态性分析和90年代发展的SNP(单个核苷酸的多态性)分析。物理图谱物理图谱是利用限制性内切酶将染色体切成片段,再根据重叠序列确定片段间连接顺序,以及遗传标志之间物理距离[碱基对(bp)或千碱基(kb)或兆碱基(Mb)的图谱。以人类基因组物理图谱为例,它包括两层含义,一是获得分布于整个基因组30 000个序列标志位点(STS,其定义是染色体定位明确且可用PCR扩增的单拷贝序列)。将获得的目的基因的cDNA克隆,进行测序,确定两端的cDNA序列,约200bp,设计合成引物,并分别利用cDNA和基因组DNA作模板扩增;比较并纯化特异带;利用STS制备放射性探针与基因组进行原位杂交,使每隔100kb就有一个标志;二是在此基础上构建覆盖每条染色体的大片段:首先是构建数百kb的YAC(酵母人工染色体),对YAC进行作图,得到重叠的YAC连续克隆系,被称为低精度物理作图,然后在几十个kb的DNA片段水平上进行,将YAC随机切割后装入粘粒的作图称为高精度物理作图.转录图谱利用EST作为标记所构建的分子遗传图谱被称为转录图谱。通过从cDNA文库中随机条区的克隆进行测序所获得的部分 cDNA的5'或3'端序列称为表达序列标签(EST),一般长300~500bp左右。一般说,mRNA的3' 端非翻译区(3'-UTR)是代表每个基因的比较特异的序列,将对应于3'-UTR的EST序列进行RH定位,即可构成由基因组成的STS图。截止到1998年12月底,在美国国家生物技术信息中心(NCBI)数据库中分布的植物EST的数目总和已达几万条,所测定的人基因组的EST达180万条以上。这些EST不仅为基因组遗传图谱的构建提供了大量的分子标记,而且来自不同组织和器官的EST也为基因的功能研究提供了有价值的信息。此外,EST计划还为基因的鉴定提供了候选基因(candidantes)。其不足之处在于通过随机测序有时难以获得那些低丰度表达的基因和那些在特殊环境条件下(如生物胁迫和非生物胁迫)诱导表达的基因。因此,为了弥补EST计划的不足,必须开展基因组测序。通过分析基因组序列能够获得基因组结构的完整信息,如基因在染色体上的排列顺序,基因间的间隔区结构,启动子的结构以及内含子的分布等。3功能基因组学研究功能基因组学(functional genomics)又往往被称为后基因组学(postgenomics),它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。比较基因组学(Comparative Genomics)是基于基因组图谱和测序基础上,对已知的基因和基因组结构进行比较,来了解基因的功能、表达机理和物种进化的学科。利用模式生物基因组与人类基因组之间编码顺序上和结构上的同源性,克隆人类疾病基因,揭示基因功能和疾病分子机制,阐明物种进化关系,及基因组的内在结构。目前从模式生物基因组研究中得出一些规律:模式生物基因组一般比较小,但编码基因的比例较高,重复顺序和非编码顺序较少;其G+C%比较高;内含子和外显子的结构组织比较保守,剪切位点在多种生物中一致;DNA 冗余,即重复;绝大多数的核心生物功能由相当数量的orthologous蛋白承担;Synteny连锁的同源基因在不同的基因组中有相同的连锁关系等。模式生物基因组研究揭示了人类疾病基因的功能,利用基因顺序上的同源性克隆人类疾病基因,利用模式生物实验系统上的优越性,在人类基因组研究中的应用比较作图分析复杂性状,加深对基因组结构的认识。 此外,可利用诱变技术测定未知基因,基因组多样性以及生物信息学(Bioinformatics)的应用。4蛋白质组学研究基因是遗传信息的携带者,而全部生物功能的执行者却是蛋白质,它有自身的活动规律,因而仅仅从基因的角度来研究是远远不够的,必须研究由基因转录和翻译出蛋白质的过程,才能真正揭示生命的活动规律,由此产生了研究细胞内蛋白质组成及其活动规律的新兴学科——蛋白质组学(proteomics)。蛋白质组(proteome)是由澳大利亚Macquarie大学的Wilkins和Williams于1994首先提出,并见于1995年7月的“Electrophonesis”上,指全部基因表达的全部蛋白质及其存在方式,是一个基因、一个细胞或组织所表达的全部蛋白质成分,蛋白质组学是对不同时间和空间发挥功能的特定蛋白质群体的研究。它从蛋白质水平上探索蛋白质作用模式、功能机理、调节控制以及蛋白质群体内相互作用,为临床诊断、病理研究、药物筛选、药物开发、新陈代谢途径等提供理论依据和基础。 蛋白质组学旨在阐明生物体全部蛋白质的表达模式及功能模式,内容包括鉴定蛋白质表达、存在方式(修饰形式)、结构、功能和相互作用方式等。它不同于传统的蛋白质学科,是在生物体或其细胞的整体蛋白质水平上进行的,从一个机体或一个细胞的蛋白质整体活动来揭示生命规律。但由于蛋白质具有多样性和可变性,复杂性,低表达蛋白质难以检测等,应该明确其研究的艰难性。总体上研究可以分为两个方面:对蛋白质表达模式(或蛋白质组成)研究,对蛋白质功能模式(目前集中在蛋白质相互作用网络关系)研究。对蛋白质组研究可以提供如下信息:从基因序列预测的基因产物是否以及何时被翻译;基因产物的相对浓度;翻译后被修饰的程度等。由于蛋白质数目小于基因组中开放阅读框(ORF, open reading frame)数目,因此提出功能蛋白质组学(functional proteomics),功能蛋白质指在特定时间、特定环境和试验条件下基因组活跃表达的蛋白质,只是总蛋白质组的一部分。功能蛋白质组学研究是位于对个别蛋白质的传统蛋白质研究和以全部蛋白质为研究对象的蛋白质研究之间的层次,是细胞内与某个功能有关或某种条件下的一群蛋白质。对蛋白质组成分析鉴定,要求对蛋白质进行表征化,即分离、鉴定图谱化,包括两个步骤:蛋白质分离和鉴定。双向凝胶电泳(2-DGE)和质谱(MS)是主要的技术。近年来,有关技术和生物信息学在不断并迅速开发和发展中。蛋白质组研究技术体系包括:样品制备;双向聚丙烯酰胺凝胶电泳(two-dimensional polyacrylamide gel electrophoresis,2-D PAGE);蛋白质的染色;凝胶图像分析;蛋白质分析;蛋白质组数据库。其中三大关键是:双向凝胶电泳技术、质谱鉴定、计算机图像数据处理与蛋白质数据库。5与基因组学相关学科诞生随着基因组学研究的不断深入,人类有望揭示生命物质世界的各种前所未知的规律,完全揭开生命之谜,进而驾驶生命,使之为人类的社会经济服务。基因组研究和其它学科研究交叉,促进一些学科诞生,如营养基因组学(nutritional genomics),环境基因组学(environmental genomics),药物基因组学(phamarcogenomics),病理基因组学(pathogenomics),生殖基因组学(reproductive genomics),群体基因组学(population genomics)等。其中,生物信息学正成为备受关注的新型产业的支撑点。生物信息学是以生物大分子为研究,以计算机为工具,运用数学和信息科学的观点、理论和方法去研究生命现象、组织和分析呈指数级增长的生物信息数据的一门科学。研究重点体现在基因组学和蛋白质两个方面。首先是研究遗传物质的载体DNA及其编码的大分子量物质,以计算机为工具,研究各种学科交叉的生物信息学的方法,找出其规律性,进而发展出适合它的各种软件,对逐步增长的DNA 和蛋白质的序列和结构进行收集、整理、发布、提取、加工、分析和发现。由数据库、计算机网络和应用软件三大部分组成。其关注的研究热点包括:序列对比,基因识别和DNA序列分析,蛋白质结构预测,分子进化,数据库中知识发现(Knowledge Discovery in Database, KDD)。这一领域的重大科学问题有:继续进行数据库的建立和优化;研究数据库的新理论、新技术、新软件;进行若干重要算法的比较分析;进行人类基因组的信息结构分析;从生物信息数据出发开展遗传密码起源和生物进化研究;培养生物信息专业人员,建立国家生物医学数据库和服务系统[5]。20世纪末生物学数据的大量积累将导致新的理论发现或重大科学发现。生物信息学是基于数据库与知识发现的研究,对生命科学带来革命性的变化,对医药、卫生、食品、农业等产业产生巨大的影响。邹承鲁教授在谈论21世纪的生命科学时讲到,生物学在20世纪已取得巨大的发展,数理科学广泛而又深刻地深入生物学的结果在新的高度上揭示了生命的奥妙,全面改变了生物学的面貌。生物学不仅是当前自然科学发展的热点,进入21世纪后将仍然如此。科学家称21世纪是信息时代。生物科学和信息科学结合,无疑是多个学科发展的必然结果。

细胞生长与细胞分化研究进展论文

细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!

细胞因子的生物学活性

关键字: 细胞因子

细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。

一、免疫细胞的调节剂

免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)

二、免疫效应分子

在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。

三、造血细胞刺激剂

从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。

四、炎症反应的促进剂

炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。

五、其它

许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。

细胞衰老的分子生物学机制

摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。

关键词:细胞衰老;分子生物学;机制研究

细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。

细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。

衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。

1 细胞衰老的特征

科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。

衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。

2 分子水平的变化

①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。

3 细胞衰老原因

迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。

差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。

自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。

英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。

生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。

端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。

遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。

参考文献:

[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.

[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.

[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.

其实现在细胞生物学研究有四大热点:第一,细胞骨架;第二,细胞信号转导及其第二信使的信号放大调节;第三,细胞的增殖和调控及其癌变;第四,细胞的衰老和凋亡,并强调与信号和癌变的联系性。总体上来说,现在细胞生物学研究就是这么四个热点,其他的就是这四个大的方面的边缘延伸。

细胞分化使细胞功能趋向专门化,有利于提高各种生理功能的效率,分化是进化的表现。细胞生长是植物个体生长的基础。

细胞分化的实质:组织特异性基因在时间和空间上差异表达的结果。其表达主要由调控蛋白所启动。

一般认为细胞核内含有该种生物的全套遗传信息。在条件具备时,它可使所在细胞发育分化为由各种类型细胞所组成的完整个体。

如将胡萝卜根的韧皮部小块在含有椰乳的培养基中培养,这些在正常情况下不分裂的细胞会长成组织团块,脱落下来的游离细胞能形成幼芽。

更直接的证据是从培养的烟草,髓部小块形成的组织团块上取脱落的细胞,单个分离培养能得到有根和叶的幼芽,再移植到土壤中,会长出开花的植物。即从单个植物体细胞长出了整棵植物,证明体细胞的核具有全能性。

扩展资料:

细胞分化是稳定的变化:

正常情况下,细胞分化是稳定、不可逆的。一旦细胞受到某种刺激发生变化,开始向某一方向分化后,即使引起变化的刺激不再存在,分化仍能进行,并可通过细胞分裂不断继续下去。这种变化不同于各种生理活动,如激素刺激等所引起的细胞变化,后者在刺激作用消失以后,细胞又将恢复到原来的状况。

细胞生物学的研究热点:细胞生长与细胞分化、细胞增殖与细胞周期的调控、细胞的衰老与死亡、细胞工程、干细胞及其应用。

1、细胞的生长,主要是指细胞体积的增大,细胞分化完成后并不是所有的细胞都有生长的过程,大多数的组织器官都是通过不断的细胞分裂以增加细胞数量的方式来实现器官生长,只有很少数细胞(像神经元细胞)是通过增大细胞体积的方式来实现器官生长的,随着个体的不断发育,神经元细胞,特别是轴突的部分也要不断的伸长。

2、细胞增殖是生物体的重要生命特征,细胞以分裂的方式进行增殖。单细胞生物,以细胞分裂的方式产生新的个体。多细胞生物,以细胞分裂的方式产生新的细胞,用来补充体内衰老或死亡的细胞。

多细胞生物可以由一个受精卵,经过细胞的分裂和分化,最终发育成一个新的多细胞个体。必须强调指出,通过细胞分裂,可以将复制的遗传物质,平均地分配到两个子细胞中去。可见,细胞增殖是生物体生长、发育、繁殖和遗传的基础。

3、细胞工程是生物工程的一个重要方面。总的来说,它是应用细胞生物学和分子生物学的理论和方法,按照人们的设计蓝图,进行在细胞水平上的遗传操作及进行大规模的细胞和组织培养。当前细胞工程所涉及的主要技术领域有细胞培养、细胞融合、细胞拆合、染色体操作及基因转移等方面。通过细胞工程可以生产有用的生物产品或培养有价值的植株,并可以产生新的物种或品系。

5、细胞衰老(cell aging)是指细胞在执行生命活动过程中,随着时间的推移,细胞增殖与分化能力和生理功能逐渐发生衰退的变化过程。细胞的生命历程都要经过未分化、分化、生长、成熟、衰老和死亡几个阶段。衰老死亡的细胞被机体的免疫系统清除,同时新生的细胞也不断从相应的组织器官生成,以弥补衰老死亡的细胞。细胞衰老死亡与新生细胞生长的动态平衡时维持机体正常生命活动的基础。

参考资料来源:百度百科-干细胞

参考资料来源:百度百科-细胞工程

参考资料来源:百度百科-细胞衰老

干细胞的研究和进展论文

研究的目的要说明问题是如何发现的,即该研究的研究背景是什么,是根据什么、受什么启发而搞这项研究。也要说明该选题在理论上的创新性,来突出自己选题与各个主流观点的差异。而研究的意义,要对所研究问题的实际用处有所了解从生活实际出发进行解读。

[1]党建红,金志军.脐血干细胞的生物学特性及其应用.国际妇产科学杂志2011;38:89-92.[2] 瞿勇,缪应雷. 干细胞移植在炎症性肠病中的治疗. 世界华人消化杂志2010; 35:3772—377.[3] 魏蕊,洪天配.干细胞技术治疗糖尿病的研究进展与应用前景. 世界华人消化杂志2011;19:441—450.[4] 王紫菲,赖文玉,柯琼,等.Nestin.GFP小鼠胚胎干细胞的建系及体外神经分化. 中山大学学报(医学科学版)2011;32:155-162.[5] 林育辉,何晓青,倪晓彬,等.hBcl一2和hVEGF165双基因重组腺病毒载体转染大鼠骨髓间充质干细胞的实验研究. 广东医学2011;32:548-551.[6] 袁源,但齐琴,刘佳.人脐带干细胞携带NGF基因脑内移植对脑损伤大鼠神经行为学的影响.中华行为医学与脑科学杂志2011;20:298-301.[7] 杨志宏,田诗政.骨髓问充质干细胞在皮肤创面修复中应用的研究进展.中国美容医学2011;20:161-163。[8] 何乐人,庄洪兴.血管内皮祖细胞在整形外科方面的研究进展.中国美容医学2009;18:1213-1217.[9] 徐红珍,苏俭生. 骨组织工程常用间充质干细胞的研究进展. 中国美容医学2010;19:620-622.[10]仝朋飞,杨大平. 脂肪来源干细胞在脂肪移植中的作用及其临床应用进展. 中国美容医学2010;19:1097-1099.[11] 洪晓娅,徐靖宏. 脂肪干细胞在皮下软组织充填中的研究进展. 中国美容医学2008;17:1540-1542.

近期的科学研究新进展,科学家们已经十分接近量产血球细胞了!这个新进展将能解决血液供给不足,以及骨髓疾病患者的问题,将彻底改变需要频繁输血的疾病治疗模式。

近年来,干细胞的相关研究逐渐扩展,除了生物科学的研究外,更尝试应用于人类医学治疗上。干细胞与体内一般细胞不同,他具有特殊的编程,可以透过自然或诱导的方式,分化成为其他细胞。主要可分为两种,一为胚胎干细胞,具有较强的分化能力,可分化成为多种不同的细胞。另一种为成体干细胞,分化能力较为受限,仅能分化成特定几种细胞,用于修复组织或是汰换掉旧的细胞。2006年时,科学家首次将小鼠的细胞,经过诱导后转变成为iPS多能性干细胞。自此之后开启干细胞领域的大量研究。而从此时开始,科学家就不断尝试利用干细胞来生产新的血液细胞,然而,这是首次这么接近将干细胞分化成为完整功能的血球细胞。

利用干细胞生产血液细胞的目标,是希望可以透过提取患者自身的细胞,将其转变为iPS多能性干细胞后,利用此干细胞不断分化产生新的血液细胞,这样患者就可以自己生产无限供给的血球,不需要倚靠其他健康人们的捐赠。另外,这样的作法也能应用在一般的血液捐赠上,可以使用一般健康捐血者的细胞并将其转变为iPS多能性干细胞,这样将能大幅增加血液供给,提供需要输血的病患使用。来自波士顿儿童医院的Rio Sugimura研究员表示,遗传性的血液疾病患者,甚至可以利用基因编辑的方式,修复遗传缺陷,并成功制造出健康的血球细胞。

第一个发表相关研究的论文中,研究人员使用了iPS和胚胎干细胞,给予他们特殊的化学信号,使干细胞转化为血球前驱细胞,接着再给细胞转录因子,使其成为真正具功能的血球细胞。研究人员发现需要五种转录因子,分别为RUNX1、ERG、LCOR、HOXA5和HOXA9,来强制细胞进入正确的分化程序。波士顿儿童医院的研究负责人Gee Daley表示:「我们非常接近能够产生真正的人类血球细胞,这项工作是20多年努力的结果。」

第二篇研究的作法略有不同,来自纽约威尔康奈尔医学中心(Weill Cornell Medicine)的一个小组不再使用iPS多能性干细胞或胚胎干细胞,而是使用从小鼠肺壁获取的成体干细胞,培养于含有四种转录因子Fo *** 、Gfi1、Runx1和Spi1,且模拟人类血管内环境的培养皿中,此方法能够将成体干细胞直接分化为血球细胞,无需经过iPS的过程。带领团队完成研究的Shahin Rafii表示,他们的实验方法有如直航班机,可以挑过中间的复杂程序。而Daley团队的技术则是转机后才到达目的地。虽说如此,但目前结果仅止于动物实验,哪一种方法在人体中会有更好的效果暂时还不得而知。不过可以期待的是,未来人类或许可以透过简单的方式,自给自足需要的血液供给,在医疗上不再需要仰赖他人捐赠,并且可以修复遗传性的血液或骨髓疾病。

细胞自噬的研究进展论文

1、 自噬的定义: 细胞自噬是真核生物中进化保守的对细胞内物质进行周转的重要过程。该过程中一些损坏的蛋白或细胞器被双层膜结构的自噬小泡包裹后,送入溶酶体(动物)或液泡(酵母和植物)中进行降解并得以循环利用。2、 自噬的过程: 从一张图片开始: 步骤1:细胞接受自噬诱导信号后,在胞浆的某处形成一个小的类似“脂质体”样的膜结构,然后不断扩张,但它并不呈球形,而是扁平的,就像一个由2层脂双层组成的碗,可在电镜下观察到,被称为Phagophore,是自噬发生的铁证之一。 步骤2:Phagophore不断延伸,将胞浆中的任何成分,包括细胞器,全部揽入“碗”中,然后“收口”,成为密闭的球状的autophagosome,我把它翻译为“自噬体”。电镜下观察到自噬体是自噬发生的铁证之二。有2个特征:一是双层膜,二是内含胞浆成分,如线粒体、内质网碎片等。 步骤3:自噬体形成后,可与细胞内吞的吞噬泡、吞饮泡和内体融合(加了个“可”字,意思是这种情况不是必然要发生的)。 步骤4:自噬体与溶酶体融合形成autolysosome,期间自噬体的内膜被溶酶体酶降解,2者的内容物合为一体,自噬体中的“货物”也被降解,产物(氨基酸、脂肪酸等)被输送到胞浆中,供细胞重新利用,而残渣或被排出细胞外或滞留在胞浆中。3 、自噬的特性: 1)自噬是细胞消化掉自身的一部分,即self-eating,初一看似乎对细胞不利。事实上,细胞正常情况下很少发生自噬,除非有诱发因素的存在。这些诱发因素很多,也是研究的热门。既有来自于细胞外的(如外界中的营养成分、缺血缺氧、生长因子的浓度等),也有细胞内的(代谢压力、衰老或破损的细胞器、折叠错误或聚集的蛋白质等)。由于这些因素的经常性存在,因此,细胞保持了一种很低的、基础的自噬活性以维持自稳。 2)自噬过程很快,被诱导后8min即可观察到自噬体(autophagosome)形成,2h后自噬溶酶体(autolysosome)基本降解消失。这有利于细胞快速适应恶劣环境。 3)自噬的可诱导特性:表现在2个方面,第一是自噬相关蛋白的快速合成,这是准备阶段。第二是自噬体的快速大量形成,这是执行阶段。 4)批量降解:这是与蛋白酶体降解途径的显著区别 5)“捕获”胞浆成分的非特异性:由于自噬的速度要快、量要大,因此特异性不是首先考虑的,这与自噬的应急特性是相适应的。 6)自噬的保守性:由于自噬有利于细胞的存活,因此无论是物种间、还是各细胞类型之间(包括肿瘤细胞),自噬都普遍被保留下来(谁不喜欢留一手呢?)。4 、自噬过程的调控: 从上面总结的自噬特点中可以看出,自噬这一过程一旦启动,必须在度过危机后适时停止,否则,其非特异性捕获胞浆成分的特性将导致细胞发生不可逆的损伤。这也提醒我们在研究自噬时一定要动态观察,任何横断面的研究结果都不足以评价自噬的活性。目前,已经报告了很多因素能诱导细胞发生自噬,如饥饿、生长因子缺乏、微生物感染、细胞器损伤、蛋白质折叠错误或聚集、DNA损伤、放疗、化疗等等,这么多刺激信号如何传递的、哪些自噬蛋白接受信号、又有哪些自噬蛋白去执行等很多问题都还在等待进一步解答中。 关于传递自噬信号的通路目前比较肯定的有: 抑制类 1)Class I PI3K pathway(PI-phosphatidylinositol,磷脂酰肌醇)与IRS (Insulin receptor substrate)结合,接受胰岛素受体传来的信号(血糖水平高抑制自噬) 2)mTOR pathway(mammalian target of rapamycin) mTOR在人类中的同源基因是FRAP1(FK506 binding protein 12-rapamycin associated protein 1),是一个丝/苏氨酸蛋白激酶。能接受多种上游信号,如Class I PI3K、IGF-1/2、MAPK,能感受营养和能量的变化,rapamycin是最典型最常用的自噬激动剂. 激活类 1)Class III PI3K 结构上类似于Class I PI3K,但作用相反。3-MA是Class III PI3K的抑制剂,因此3-MA可以作为自噬的抑制剂. 5 、自噬的研究方法: 正常培养的细胞自噬活性很低,不适于观察,因此,必须对自噬进行人工干预和调节,经报道的工具药有: (一)自噬诱导剂    1)Bredeldin A /Thapsigargin / Tunicamycin :  模拟内质网应激 2 )Carbamazepine/L-690,330/ LithiumChloride(氯化锂): IMPase  抑制剂 (即Inositolmonophosphatase,肌醇单磷酸酶) 3 )Earle's平衡盐溶液:  制造饥饿 4 )N-Acetyl-D-sphingosine(C2-ceramide):Class I PI3KPathway抑制剂 5 )Rapamycin:mTOR抑制剂 6 )Xestospongin B/C:IP3R阻滞剂 (二)自噬抑制剂 1 )3-Methyladenine(3-MA):(Class III PI3K) hVps34 抑制剂 2 )Bafilomycin A1:质子泵抑制剂 3 )Hydroxychloroquine(羟氯喹):Lysosomal lumenalkalizer(溶酶体腔碱化剂)除了选用上述工具药外,一般还需结合遗传学技术对自噬相关基因进行干预:包括反义RNA干扰技术(Knockdown)、突变株筛选、外源基因导入等。 细胞经诱导或抑制后,需对自噬过程进行观察和检测,常用的策略和技术有: 1)观察自噬体的形成 由于自噬体属于亚细胞结构,普通光镜下看不到,因此,直接观察自噬体需在透射电镜下。Phagophore的特征为:新月状或杯状,双层或多层膜,有包绕胞浆成分的趋势。自噬体(AV1)的特征为:双层或多层膜的液泡状结构,内含胞浆成分,如线粒体、内质网、核糖体等。自噬溶酶体(AV2)的特征为:单层膜,胞浆成分已降解。(autophagic vacuole,AV) 2)在荧光显微镜下采用GFP-LC3等融合蛋白来示踪自噬形成:(常用) GFP-LC3单荧光指示体系:由于电镜耗时长,不利于监测(Monitoring)自噬形成。我们利用LC3在自噬形成过程中发生聚集的现象开发出了GFP-LC3指示技术:无自噬时,GFP-LC3融合蛋白弥散在胞浆中;自噬形成时,GFP-LC3融合蛋白转位至自噬体膜,在荧光显微镜下形成多个明亮的绿色荧光斑点,一个斑点相当于一个自噬体,可以通过计数来评价自噬活性的高低。双荧光指示体系:汉恒生物科技(上海)有限公司已开发出用于表达mRFP-GFP-LC3融合蛋白的病毒产品。mRFP用于标记及追踪LC3,GFP的减弱可指示溶酶体与自噬小体的融合形成自噬溶酶体,即由于GFP荧光蛋白对酸性敏感,当自噬体与溶酶体融合后GFP荧光发生淬灭,此时只能检测到红色荧光。 3)利用Western Blot检测LC3-II/I比值的变化以评价自噬形成。 自噬形成时,胞浆型LC3(即LC3-I)会酶解掉一小段多肽,转变为(自噬体)膜型(即LC3-II),因此,LC3-II/I比值的大小可估计自噬水平的高低。 (Note:LC3抗体对LC3-II有更高的亲和力,会造成假阳性。方法2和3需结合使用,同时需考虑溶酶体活性的影响) 4) 利用Western Blot检测p62蛋白来评价自噬以及自噬流的强弱:起初自噬所降解的底物被认为是随机的,但是后来的研究表明有些蛋白是选择性降解的,在这些蛋白之中研究的最为透彻的是p62蛋白,p62蛋白水平的多少与自噬流的强弱有着反比例关系。 5)MDC或者Cyto-ID染色:包括自噬体,所有酸性液泡都被染色,故属于非特异性的。 6)Cell Tracker TM Green染色:主要用于双染色,但其能染所有的液泡,故也属于非特异性的。 6、自噬体的发生: 目前认为,自噬体的膜不是直接来源于高尔基体或内质网,而是在胞浆中重新生成的,但具体的机制尚不清楚。当beclin-1被活化后,胞浆中先形成很多个membrane source(自噬体膜发生中心),在它们不断扩展的过程中(phagophore到autolysosome),VMP1蛋白由内质网和高尔基体转位到自噬体膜上(VMP1又叫TMEM49,已知唯一与自噬有关的  跨膜 蛋白),同时,MAP1-LC3由胞浆型(即LC3-I)转位到自噬体膜(即LC3-II),LC3这一转变过程可被Western Blot和荧光显微镜检测到,现已成为监测自噬体形成的推荐方法。7、自噬与细胞死亡的关系:       有必要说明一下的是,细胞死亡是一个非常复杂的过程,为了研究方便,需进行分类,但我们思考时不要局限于这些 人为的分类,而应注重于现象本身来研究其背后的机制。       一直以来人们从不同角度、用不同方法来观察细胞的死亡,并把细胞的死亡方式分为2类:坏死和凋亡,因为两者有着明显的区别,其中最主要的区别之一就是细胞膜的通透性——坏死细胞的细胞膜丧失了完整性,内容物被释放出来,染料可自由进入细胞,而凋亡细胞保持完整,无内容物释放,染料也被排斥。很多实验亦根据这一原理来设计以区分坏死和凋亡,这将在后面一一介绍,如同刚刚说明的那样,这些实验只能说明细胞膜的通透性(必要条件,不是充分必要条件),而不能用来证实坏死细胞或凋亡细胞。一般认为坏死是被动的,不可控的,而凋亡是主动的,可控的。为了强调这一点,凋亡被定义为程序性细胞死亡(program celldeath,PCD)。但无论是坏死还是凋亡,都是一个过程,是需要时间的(尤其是凋亡,从启动到完成,细胞要执行很多反应),而且细胞死亡后都有“尸体”。在研究自噬与凋亡的关系时,人们发现细胞死亡前胞浆中存在大量的自噬体或自噬溶酶体,但这样的细胞缺乏凋亡的典型特点,如核固缩(pyknosis), 核破裂(karyorhexis)、细胞皱缩(shrinkage)、没有凋亡小体的形成等,被称为自噬样细胞死亡(autophagic celldeath,ACD),它是一种新的细胞程序性死亡,为了与凋亡区别,被命名为Type II cell death,相应的,凋亡为Type I cell death,坏死为Type III cell death。尽管这样,但对于自噬是否是细胞死亡的直接原因目前还存在很大的争议。到底是Cell death  by  autophagy(自噬引起死亡)还是Cell death  with  autophagy(死亡时有自噬发生,但不是直接原因)?对此,自噬研究领域“大牛”级专家Levine Beth在一篇nature的Review中表达了自己的观点。由于在形态学上2者无明显区别,但通过阻断自噬,观察细胞的结局可区分开来:Cell death  by  autophagy细胞存活,而Cell death  with  autophagy细胞死亡。8、自噬与肿瘤的关系:       与凋亡(在肿瘤细胞中一般都存在缺限)不同,自噬是被优先保留的。无论是肿瘤细胞还是正常细胞,保持一种基础、低水平的自噬活性是至关重要的。因为细胞中随时产生的“垃圾”(破损或衰老的细胞器、长寿命蛋白质、错误合成或折叠错误的蛋白质等等)都需要及时清除,而这主要靠自噬来完成,因此,  自噬具有维持细胞自稳的功能 ;如果将自噬相关基因突变失活,如神经元会发生大量聚集蛋白,并出现神经元退化。同时,自噬的产物,如氨基酸、脂肪酸等小分子物质又可为细胞提供一定的能量和合成底物,可以说,  自噬就是一个 “ 备用仓库 ” 。如Atg-5缺陷的小鼠在出生后喝上第一口奶之前就会饿死。更重要的是,自噬活性可在代谢应激(饥饿、生长因子缺乏、射线、化疗等)时大大增强,表现为胞浆中迅速涌现大量自噬体,这一现象被称为“自噬潮”(autophagic flux),广泛用于自噬形成的监测。自噬潮为细胞度过危机提供了紧急的营养和能量支持,有利于细胞的存活。 鉴于自噬的上述作用,自噬可为肿瘤细胞带来几大好处: 1 )肿瘤细胞本身就具有高代谢的特点,对营养和能量的需求比正常细胞更高,但肿瘤微环境往往不能如意,如肿瘤发生初始期到血管发生之前、肿瘤长大发生血管崩塌时、肿瘤细胞脱离原发灶游走时等都会出现营养不足或供应中断,而此时提高自噬活性可以有助于度过这一危机。 2)当化疗、放疗后,肿瘤细胞会产生大量的破损细胞器、损坏的蛋白质等有害成分,而此时提高自噬活性可及时清除这些有害物质,并提供应急的底物和能量为修复受损DNA赢得时间和条件。由于自噬减少了肿瘤细胞在代谢应激时发生坏死的机会,而对于肿瘤细胞群体而言,需要一部分细胞发生坏死,以引发适度的炎症(有利于血管的长入、吸引免疫细胞分泌生长因子等)。研究发现,很多类型的肿瘤在代谢应激时会“组成性”活化PI3K信号以抑制自噬(由于凋亡通路已受阻,抑制自噬会促进坏死),但具体机制尚不清楚。自噬与肿瘤的关系可能是双重的。①对不同的细胞,自噬的作用可能不同。②相同的细胞在不同的外部因素作用时,自噬的作用可能不同。③在肿瘤发生发展的不同阶段,自噬的作用可能不同。肿瘤生长的早期阶段自噬增强,是由于此时肿瘤的血管化作用不足,癌细胞的营养供给有限,需要通过自噬为自身提供营养。肿瘤进入发展阶段后基因变异积累,使包括 Beclin 1在内的众多抑癌基因失活,自噬活力降低。④对单个细胞和对整个肿瘤阻滞的作用可能不同。自噬功能不全的细胞易于坏死,但是坏死组织产生的细胞因子(包括部分生长因子)反而会促进肿瘤的生长。上述各种假设均有待证实。肿瘤为细胞分化障碍性的疾病已得到肯定,但自噬在肿瘤细胞的分化抑制过程中起着什么样的作用,自噬水平提高是抑制分化甚至导致去分化还是促进分化等问题尚未解决。 9、在研究自噬相关蛋白时,需对其进行定位。由于自噬体与溶酶体、线粒体、内质网、高尔基体关系密切,为了区别,常用到一些示踪蛋白在荧光显微镜下来共定位: Lamp-2:溶酶体膜蛋白,可用于监测自噬体与溶酶体融合。 LysoTrackerTM探针:有红或蓝色可选,显示所有酸性液泡。 pDsRed2-mito:载体,转染后表达一个融合蛋白(红色荧光蛋白+线粒体基质定位信号),可用来检测线粒体被自噬掉的程度(Mitophagy)。 MitoTracker探针:特异性显示活的线粒体,荧光在经过固定后还能保留。 Hsp60:定位与线粒体基质,细胞死亡时不会被释放。 Calreticulin(钙网织蛋白):内质网腔   Note:这些蛋白均为胞浆蛋白,爬片或胰酶消化的细胞在做免疫荧光前需先透膜(permeabilize),可采用处理 自噬与细胞死亡经常需一起考虑,下面介绍一些检测细胞死亡的方法: 1)△ψmdissipation(线粒体跨膜电位的消失):TMRM发红色荧光,DiOC6(3)发绿色荧光。 2)Phosphatidylserine Externalization(磷脂酰丝氨酸外翻):Annexin V-FITC(绿色)染细胞膜。 3)检测线粒体产生的ROS:无荧光的HE(hydroethidine,氢化乙啶)可被ROS氧化为EthBr(ethidium bromide,溴乙啡啶),发红色荧光。NAO(nonylacridine orange,烷化吖啶橙,可发荧光)能与非氧化的cardiolipin(心磷脂,可被ROS氧化)反应而失去荧光。 4)线粒体IMS蛋白的释放:AIF,细胞色素c,分别用荧光二抗染色。 5)Capase 3a 染色:用荧光二抗染色,胞浆弥散分布。 6)细胞膜完整性检测:DAPI(蓝色)、Hoechst 33342或PI(红色)染核。胞膜完整的细胞(活细胞和早中期凋亡细胞)排斥,可联用annexin V。 10、如何用实验区分Cell death by autophagy和Cell death with autophagy? 第一步:利用上述方法证实细胞死亡 第二步:证实细胞死亡前发生了自噬 第三步:在形态学上区别开“自噬样死亡”与凋亡 第四步:利用遗传学手段(反义RNA干扰Knockdown掉Atg基因或hVps34)或工具药抑制自噬 第五步:细胞存活则为Cell death by autophagy,反之,细胞死亡则为Cell death with autophagy。 自噬的抑制根据自噬形成的过程,自噬的抑制也分为不同的阶段,包括自噬的起始阶段,自噬泡和溶酶体融合阶段,以及溶酶体内的降解阶段。目前常用的一些抑制药物如下:     1)对自噬体形成的抑制:主要是PI3K通路的抑制剂(如3-MA, Wortmannin,LY294002等),这些药物均可干扰或阻断自噬体形成。3-甲基腺嘌呤(3-Methyladenine,3-MA)是磷脂酰肌醇3激酶的抑制剂,可特异性阻断Autophagy中自噬体的形成,被广泛用作Autophagy的抑制剂。另外,渥曼青霉素(Wortmannin)、LY294002 也可用作Autophagy的抑制剂。            2)对自噬体与溶酶体融合的抑制:对自噬体与溶酶体融合过程进行阻断也能起着抑制自噬的作用,这些药物有巴伐洛霉素A1、长春碱、诺考达唑等。巴伐洛霉素A1(Bafilomycin A1)是一种来源于灰色链霉菌的大环内酯类抗生素,分子式C35H58O9,是空泡型H+-ATP酶的特异性抑制剂,具有抗菌、抗真菌、抗肿瘤等作用。当突触小泡经历胞外分泌时,巴伐洛霉素A1可以避免小泡重新酸化。有研究表明,在已发生自噬的肿瘤细胞中加入巴伐洛霉素A1,可使蛋白降解被抑制,自噬体增多而自噬溶酶体数目减少,并且自噬体中的酸性磷酸酶的活性也明显降低,从而证明其阻断了自噬体与溶酶体的融合过程。这种阻断是可逆的,在去除了药物作用后,自噬体仍可以与溶酶体融合形成自噬溶酶体,继续自噬进程。     3)对溶酶体降解的抑制:自噬体与溶酶体融合后最终被溶酶体中的水解酶水解,它首先经过囊泡酸化,达到所需的PH值后经多种蛋白酶作用使囊内容物降解,降解产物在细胞内再循环利用。对溶酶体的降解进行抑制,使得被降解的囊泡内容物大量蓄积于溶酶体内,而不能释放出来进入细胞内再循环利用,这也同样起着抑制自噬的作用。因此,蛋白酶抑制剂,如E64d、Pepstatin A等,在抑制溶酶体降解的过程中发挥着自噬抑制剂的作用。E64d和Pepstatin A均属于蛋白酶抑制剂,二者以1:1的比例联用可以抑制自噬。有研究表明,在结肠癌细胞系中联用E64d及Pepstatin A,可明显抑制溶酶体的降解从而阻断自噬的进展,而自噬体的形成并没有受到明显影响。11 、自噬领域的大牛们:    1)YoshinoriOhsumi博士。日本科学家,克隆了第一个酵母自噬基因Atg1以及LC3,主要成果在酵母模型下自噬研究; 2 )Daniel J. Klionsky博士。美国科学家,主要成果在酵母模型的自噬研究。最早在《Science》上发表综述介绍自噬,2005年创办了第一本自噬杂志《Autophagy》;2007年举办了第一次自噬国际会议,为自噬的宣传做了大量工作。 3 )Noboru Mizushima博士。日本科学家,2001年主要报道了Atg5的功能,被认为是哺乳动物分子机制研究的第一环,以及参与克隆自噬标志物LC3,而且制备了一些ATG基因敲除老鼠以及LC3转基因老鼠; 4 )Beth Levine博士。美国科学家,首先克隆了第一个哺乳动物自噬基因Beclin 1; 5 )Guido Kroemer博士。法国科学家,是细胞凋亡和死亡领域中引用率第一的科学家。在细胞凋亡研究中作出了卓越贡献而且涉猎及其广泛。目前也从事自噬研究,例如p53,Bcl2家族与细胞自噬。 6 )Tamotsu Yoshimori博士。日本科学家,2000年克隆了目前广泛使用的自噬标志物LC3文章的通讯作者,而且也参与了2010年ATG5机制研究,是通讯作者之一。在方法学上也有关键贡献。目前主要研究ATG14和ATG16。值得注意的是,上述三位日本科学家合作紧密,克隆了目前大部分的ATG基因,经常共享文章通讯作者。 7 )Patrice Codogno博士。法国科学家,2000年首先证实了PI3K信号通路在自噬的作用,I型抗自噬,III型促自噬,是自噬信号通路的开拓者。 8 )Ana Maria Cuervo博士。美国科学家,是分子伴侣自噬的开拓者。 9 )David Rubinsztein博士。英国科学家,2004年首次报道了mTOR与自噬的关系,抑制mTOR促进自噬。目前利用rapamycin诱导自噬成为经典模型之一。2010年Nature的报道首次证实了自噬对mTOR的负反馈调节。 12 、自噬信号通路:    1 ) KEGG    2 ) Abcam    3 ) CST    4) Enzo 13、我在做自噬课题中的一些心得: 自噬小体的增多有两种可能:一是形成增加即自噬被诱导;另外一种是自噬体成熟受抑即自噬体不能和溶酶体结合。该怎么来判断呢?自噬体增多,也就是“自噬潮”出现的原因一是形成增多,二是与溶酶体融合受阻(如使用了氢化氯喹或氯喹,另外,溶酶体的酶抑制剂和质子泵抑制剂的使用亦有可能影响溶酶体与自噬体或异噬泡的融合),使自噬体不能降解而积聚,这种积聚造成的自噬体增多的效应要大于自噬体诱导剂效应的数倍之多。鉴于这样的原因,单纯的GFP-LC3荧光斑点增多不足以作为自噬激活的证据,可联用多个方法来判断:   1 )加用自噬体与溶酶体融合的抑制剂,如氯喹,观察自噬潮的变化。   2 )或加用LC3和溶酶体示踪物在荧光显微镜下观察共定位情况。   3 )或Knockdown掉LAMP-2基因(溶酶体膜蛋白)。   4 )检测胞浆长寿蛋白的降解。  WesternBlot 检测LC3时除了上述的原因外,还有几个需考虑到的地方: 1 )抗体的亲和力:有报道认为LC3抗体对II型LC3的亲和力较高 2 )结合于自噬体内层膜的LC3-II在与溶酶体结合后被降解。 3 )自噬过程很快,一个自噬体从产生到降解仅需2~3个小时或更短,其中自噬体形成阶段更迅速,数分钟即可完成,而溶酶体降解阶段耗时相对较长。因此,设置多个检测时间点(time frame)是非常重要的。

右哉 [细胞自噬] 2016-01-07

最近自噬的研究都很火,耐药不耐药,凋亡不凋亡的都开始往上扯了。

这篇文章的题目是:"Ulinastatin Reduces the Resistance of Liver Cancer Cells to Epirubicin by Inhibiting Autophagy",基本上可以作为入门级自噬研究的参考模板了。

文章思路是这样的:首先文章证明了EPI能诱导肝癌细胞自噬,而UTI能抑制这样的自噬;然后UTI能促进EPI诱导的细胞凋亡;接着证明UTI是抑制自噬从而促进了EPI诱导的凋亡;然后证明了UTI是通过NF-kB信号通路起到了这样的作用;最后做了一下成瘤实验。

我们就看第一个Fig,就基本能了解自噬他们究竟做了点啥。

自噬研究基本可以分这样几个层次:

1.证明自噬参与了你的研究表型:****western检测LC3,p62;LC3双荧光测细胞自噬流;电镜观测自噬;

自噬形成时胞浆型LC3(即LC3-I)会酶解掉一小段多肽,转变为(自噬体)膜型(即LC3-II),LC3-II/I比值的大小可估计自噬水平的高低。

但LC3的抗体会对LC3-II有更高的亲和力,所以往往会造成假阳性。所以通常会使用LC3的亚细胞结构定位来辅助实验。比如这篇文章所采用的就是HanBio Inc.(汉恒生物)的****mRFP-GFP-LC3的腺病毒进行分析的。

2.证明自噬在你的表型中起了关键作用:****加自噬抑制剂3-MA,激动剂rapamycin等,然后检测表型(功能);

这里就用到了两种自噬抑制剂:3-MA和CQ(Chloroquine)。

3.找到表型与自噬衔接的分子:****检测自噬通路如pI3K 通路,Beclin-1,ATG家族各成员,看看哪个与表型呈现正相关变化;

4.基因操作3中的分子,检测自噬和表型****:说明该分子在衔接自噬和表型中的作用机制;

这一点需要运用到的也就是柯霍氏法则和回复实验。

…华丽丽的分割线…

李莫愁博士:****而普通的自噬研究,也就是这样一个模式:(感谢汉恒生物的蔡博士为我们整理)

自噬表型研究中,较为常用的就是采用汉恒的mRFP-GFP-LC3融合蛋白的腺病毒,对细胞进行了感染。mRFP 用于标记及追踪LC3,GFP 的减弱可指示溶酶体与自噬小体的融合形成自噬溶酶体,即由于GFP 荧光蛋白对酸性敏感,当自噬体与溶酶体融合后GFP 荧光发生淬灭,此时只能检测到红色荧光。

就像是这样:

(2014,Kidney International,IF=)

(该实验所用自噬工具为汉恒生物Ad-mRFP-GFP-LC3双标腺病毒)

细胞分化研究进展论文

1.来自中国科学院,浙江自然博物馆,英国莱斯特大学等处的研究人员发现了一个成年达尔文翼龙(Darwinopterus)的化石以及一枚与其在一起的蛋,并对这种恐龙进行了雌雄两性比较,从而为判别这些已灭绝动物的性别提供了直接证据。这一研究成果公布在上周出版的Science杂志上。2. 来自哈佛医学院,麻省总医院,澳大利亚墨尔本大学等处的研究人员就利用这一技术进行了大规模测序,并配合功能预测,和实验验证,揭示了线粒体complex I失序症的分子机制,从而提出了一种利用高通量测序方法分析候选基因的新策略。这一研究成果公布在Nature Genetics杂志上。 3.近期来自中国、美国和韩国的科学家在miRNA研究领域又取得一些重要的研究进展,研究成果相继发表在国际顶级期刊Nature 和Cell杂志上,值得关注。4.近日上海交通大学生命科学技术学院力学生物学与医学工程研究所在国家自然科学基金重点项目“血管细胞分化与迁移的力学生物学机制”研究取得重要进展,研究论文发表在本年1月18日的《美国科学院院刊》(PNAS)上5. 近日中科院上海生命科学研究院生物化学与细胞生物学研究所肖磊课题组利用病毒载体在细胞中表达多种重编程因子,诱导绵羊成纤维细胞重编程转化成诱导多能干(iPS)细胞,这是目前世界上首次报道获得的绵羊iPS细胞系。研究论文在线发表在2011年1月11日的《细胞研究》(cell research)杂志上。

做个细胞转录组测序即可。有需要可以联系:

1995年以来我国造血干细胞工程与相关的生物学领域的研究发展迅速。有关造血干/祖细胞基因表达的研究,上海国家人类基因组研究中心陈竺、陈赛娟等为正常和急性白血病人骨髓造血干祖细胞cDNA文库的基因表达建立了一套先进的工作体系。他们在许多白血病细胞系的干/祖细胞中发现了300个新的相关基因。中山大学医学院李树浓、黄绍良等从人的桑葚期胚胎干细胞成功地诱导出造血细胞等。北京输血研究所裴雪涛等从成人和胎儿的骨髓分离出成年源干细胞,又进一步诱导分化为骨、软骨、脂肪和神经原细胞等。他们成功地构建了胎儿和成人间充质干细胞cDNA扣除文库,获得了胎儿和成人间充质干细胞的差异表达基因及在胎儿特异表达基因。中国医学科学院天津血液学研究所、国家血液学重点实验室赵春华等证实从胚胎胰腺、骨髓和肝脏中都可以分离出人间充质干细胞,又证明G-CSF可以使输注的间充质干细胞在体内促造血重建。北京基础医学研究所毛宁等的实验不支持间充质干细胞可以“横向分化“。最近他们发现小鼠胚胎干细胞的体外分化重现了胚胎早期造血发生的生物学程序以及Smad5基因调控在胚胎造血发生中的必要性和多样性,又表明其上游配体TGF-beta家族分子在胚胎发生中的作用和特点。本文针对干细胞可塑性研究作了评论。国际上曾风靡一时的“横向分化“有关的实验都没有用完全纯化的胚层干细胞或组织干细胞来证实。然而,完全纯的胚层或组织定向的干细胞克隆是无法制备的。成年或胎儿全身各类组织中混有一些定向某胚层的或某组织的干细胞,甚至还混有桑葚胚干细胞。它们是胚胎发育过程的每个阶段中停止参与胚胎发育而残留下来的。它们在体内处于静止期,寿命长,长期存留在成人的各种组织中。各胚层和组织干细胞混杂在一起,它们都没有特异的形态、表型和功能,无法分离纯化,甚至和成人组织细胞也很难分开。它们在体外实验适当的条件诱导下可分化为各种组织细胞。在那些想证明组织干细胞“横向分化“的实验中,都无法排除上述可能。本专论指出,只有桑葚胚干细胞是全能的胚胎干细胞,具有向各个胚层分化的潜能,即具有全能分化的可塑 性。当它发育成为各个胚层的或各种组织的干细胞时,它的分化潜能只限于本胚层或本组织,不能向其它胚层其它组织分化。本专论又指出间充质干细胞的制备过程很长,经过许多次的换代。等到出现许多分化抗原标志时,已经是后代的各种不同的成熟间充质细胞了。当然,它们的存在可证实最初培养的是间充质干细胞。大量扩增后所获得的集落主要是各种成熟的间充质细胞,其中也包含一些未来参与分化的间充质干细胞和中胚层干细胞。间充质干细胞和造血干细胞都是来自中胚层。然而它们都是培养中的贴壁幼儿,无法区分也无法分离它们。因此在实验中无法排除所制备的间充质干细胞样品中,绝对没有中胚层或其它胚层干细胞的存在。至今,完全纯化的间充质干细胞是不可能制备的。所以,很可能从间充质干细胞体外诱导出各类不同的,甚至内、外胚层的组织细胞,切不可轻率地推率为“横向分化“。临床支持造血干/祖细胞移植的,主要是成熟而有调控功能的各种间充质细胞。总之,“横向分化“等的推论缺乏实验证据,在生物自然界和人类疾病史中都找不到佐证。想要推翻经无数科学家实践充分证明了的细胞遗传学的最基本原理,必须在生物自然界找到非常充足的科学证据唐佩弦 军事医学科学院基础医学研究所 我国造血干细胞基础研究的新进展兼论干细胞可塑性

相关百科

热门百科

首页
发表服务