首页

> 学术期刊知识库

首页 学术期刊知识库 问题

光疗技术的研究进展论文

发布时间:

光疗技术的研究进展论文

投影技术的发展,全息投影技术也在不断的发展,它是真正呈现立体的影像。下面是我为大家整理的全息投影技术论文,欢迎大家阅读。全息投影技术论文篇一:《试谈全息投影技术应用研究》 【摘 要】目前,全息成像工艺复杂,制作成本高,暂不能普遍应用到生活娱乐中,而消费者对新的视觉体验形式的需求越来越急迫,因此我们以一种可以方便实现,视觉效果与全息成像相近的的技术来满足消费者的需求,这就是全息投影技术。本文从全息投影技术构成、视觉效果、应用例举等方面论述了全息投影技术应用的可行性。 【关键词】全息投影;展示;应用;全息投影照片 科幻影片中常常出现全息技术,人或物体以及图形文字以三维的形式在空气中显示,就像电影《星球大战》中的全息通讯、《钢铁侠》中的全息电脑、《普罗米修斯》中全息沙盘等等。科幻电影中的技术多数是虚构的,而往往这些虚构的、幻想的技术却表达社会的需求,指引着科研的方向,全息也是一样。 目前,全息成像工艺相当复杂,制作成本高,还不能普遍地应用到在社会生活和娱乐中,因此全息投影有了其生长和发展的空间。全息投影技术不同于平面银幕投影仅仅在二维表面通过透视、阴影等效果实现立体感,它是真正呈现立体的影像,理论上可以360°观看影像。[1]这种全息投影技术可以呈现出图像浮现在空中的效果,但是所投射出的影像需要依靠透明的介质作为载体,并且对空间的光环境要求相对较高。虽然这样,但这种全息投影技术的优点在于实现成本底、制作方便、趣味性高、视觉效果逼近全息等等,在无介质全息技术应用到我们的生活中之前,全息投影技术有较高的应用空间。看似简单的产品只要能够满足人们的需求,那就会有较高的应用价值。 一、全息投影主要构成 全息投影显示设备是多块透明的 显示器 ,通过多块透明显示器的围合,形成的一个锥体,椎体的每一面对应显示影像内容的每一个面,形成了全息投影的两个视觉特点,一是可以全方位的显示立体影像,二是可以使虚拟影像与周围的现实环境融合到一起,形成虚拟与现实的互动。形成“全息”的视觉效果。 全息投影其简单的构成和实现方式是其能够普及应用的优势之一。全息投影的技术构成分两部分,一是硬件,二是软件。硬件部分包括成像、显示、控制、电源等设备,软件部分为内置控制软件和分屏影像。成像设备、显示设备、分屏影像为其核心构成。 成像设备,即可以生成影像的设备,如显示器、显示屏、投影仪、幻灯机等等,理论上来说可以自发光显示图像的设备都可以用作全息投影,但成像设备的优劣会直接影响全息投影影像的视觉效果。成像设备起到将数字影像内容第一次成像的作用,为显示设备提供充足的光线。 显示设备,即前文中提到的“透明显示器”,这里的“透明显示器”其实是一种高反光的透明膜或者透明板,甚至是玻璃。我们不必在意它是由什么原料制成,我们只要求它具备两个特性,一是良好的通透性,二是尽量的高反光。这两点是全息投影能够实现虚拟与现实融合的核心。显示设备可以反射成像设备所投射出的画面和光线,并且由于其透明的特性,将虚拟影像与实体环境空间形成视觉上的融合,给人新的视觉感受。 分屏影像,全息投影所用的影像是在我们常见的平面影像的基础上进行了再设计,通过多个将物体的多视角画面先分别拍摄再组合拼接到一起,同时播放和控制,这样的影像配合全息投影特殊的多面锥体显示器就能呈现出一个多视角可视的影像,影像给观众一种体量感,并且能够清晰分辨其在空间中的位置。 二、全息投影应用举例 目前全息投影技术和批量生产条件相对成熟,但其应用范围还相对较窄,国内主要将全息投影技术应用到小型展柜、小型舞台中。 全息投影在展柜的商业运用中,多是用于展示企业标识、小型电子产品、珠宝首饰的360°展台和270°展台,内容多数是比较简单的旋转动画,当然也有用于展示游戏角色的,角色有比较简单的动作。在舞台的商业运用中,为满足舞台的观赏角度,以180°的单片全息幕居多。应用方式有虚拟表演、虚拟与真人互动、真人表演全息特效等。2011年3月,日本世嘉公司举办了一场名为“初音未来日感谢祭(Miku's Day)”的全息投影演唱会引起了社会的强烈反响和热烈追捧。 经过对全息投影的研究、试验以及调查,本人认为全息投影在如今这个社会经济条件下可以得到更大的应用空间,甚至达到普及的程度,下面笔者试举出一些领域和行业,探讨如果将全息投影应用到这些行业中去,全息投影所带来的作用及其意义。 1.房地产展示 房地产行业可以涉及到的有全息沙盘、全息样板间、三维全息平面图、三维全息结构图等。 目前我国房地产行业所使用的沙盘主要为电子沙盘,对于样板房,房地产行业的普遍是以三维效果图、样板间模型和实地参观考察来向客户展示样板房。而几乎所有的楼盘宣传资料上都配有房屋平面图以及一些效果图。综合来看,房地产行业高速发展,但其展示手段相对传统,将全息投影应用到其中将极大提升展示效果。 如沙盘,传统沙盘和电子沙盘都是以实体模型为主要展示方式,模型固定不可变,不能向客户展示细节。从环保和节能方面看,沙盘模型都是根据每个楼盘订制的,不可重复利用,一旦楼盘售馨就沦为废品,这是对资源的浪费和对环境的污染。再如样板间,有的开发商基于实际情况的考虑,将样板间直接建设在建筑工地中,客户需要看样板间就需要进入建筑工地,而普通客户对于建筑工地的安全常识和意识并不专业,相对增加了危险度。而样板间模型则和沙盘有同样的问题。 全息投影沙盘的模块化硬件可以实现重复使用,而且展示内容以数字影像方式存在,展示内容灵活可变,展示内容量巨大,还可以很好的完成客户与楼盘间的互动。全息投影沙盘可将传统的沙盘展示、建筑动画、样板间展示、房屋结构展示等融合到一起,只用一套全息投影沙盘即可满足整个楼盘的从外至内、从大环境到局部细节的展示。全息投影沙盘唯一的消耗就是电能,不但起到了很好的展示效果,也顺应环保节能的时代趋势。 2.全息投影照片 社会经济高速发展的今天,摄影摄像技术的简化和人们日益增长的审美需求加快了摄影摄像的普及,我们可以轻易的在身边找到摄影摄像设备,我们的生活被无数的影像所包围,有趣的是我们对于胶卷相机和纸制照片的需求越来越少,我们将数字形式的照片放在电脑、电子相框、手机等设备上来欣赏,这可以看出消费者对于新技术的认可和追捧。 在电子相框、MP4等设备的基础上,全息投影照片将传统的二维平面图像转变为动态的、有体感的、可全方位视角观看的图像,消费者可将自己、亲友甚至偶像的全息投影照片放置在全息投影相框中,操作方式同将电子照片放电子相框一样方便简单,但相对于电子照片,全息投影照片的视觉效果和感官体验是全新的、震撼的。 将全息投影应用到摄影中让消费者得到一种全新的视觉体验,给予消费者更高一级的美的享受。全息投影照片可以像站在巨人的肩膀上一样,在高度普及的平面摄影的基础上向社会进行推广,让更多的人得到全息投影带来的视觉享受与体验乐趣。 其实,全息投影的应用还有很多方式,如全息投影博物馆、全息投影伴舞、全息投影视频电话、全息投影智能引导员等,全息投影不光可以单独使用,也可以同 其它 多媒体设备一同配合使用,其应用的目的在于在真正的全息影像技术普及之前以一种方便的、低廉的、新颖的技术,使人们体验到一种有别于平面媒体的视觉享受。 【参考文献】 [1]许秀文,薄建业,杨铭,等.浅析3D、全息、虚拟现实技术[J].中国 教育 信息化高教职教,2011(7). 全息投影技术论文篇二:《试谈分析全息投影技术在演艺活动中的应用》 摘 要:科技的发展推动影视媒体、新媒体的产生和发展,虚拟艺术体验也应运而生。技术的进步,媒体艺术中的虚拟体验也呈现出多元化趋势,人们可以体验到身临其境的真实感。尤其是在演艺活动中开始逐渐应用全息投影技术,制造逼真立体的艺术情境,使观看者的视觉、听觉产生震撼感受。该文针对全息投影技术进行分析, 总结 出全息投影技术在演艺活动中的优势和发展前景。 关键词:虚拟世界;艺术体验;全息投影;三维立体;演艺活动 虚拟艺术体验广泛应用于影视艺术和多媒体艺术中,人们通过沉浸感和存在感强化了体验的真实感。科技的发展推动影视媒体、新媒体的产生和发展,虚拟艺术体验也应运而生。技术的进步,媒体艺术中的虚拟体验也呈现出多元化趋势,演艺活动中开始逐渐应用全息投影技术,许多演唱会晚会等大型演艺活动都运用了全息投影技术,营造虚拟幻象与表演者之间互动的效果,亦真亦假,惟妙惟肖,使表演产生震撼的效果。 1 全息投影技术的应用 全息投影技术创造的是一种以艺术美学标准营造虚拟世界的 方法 。全息投影技术实质是一种虚拟成像技术,主要是利用干涉和衍射原理记录并再现物体真实的三维图像的记录和再现的技术。目前一般通过两种方式实现虚拟成像,一种方式是直接用投影机背投在全息投影膜上,产生虚拟场景或者虚拟影像;另一种方式通过投影机、LED 屏折射光源至45度成像在幻影成像膜,产生全息投影,全息投影技术不仅可以产生立体的空中幻象,还可以营造连续动态的影像。全息投影构建的虚拟世界可以是基于现实的艺术场景,也可以是超现实的、任凭想象的场景,这种营造过程就是艺术场景实现的过程,技术人员通过计算机图形技术和动作捕捉和表情捕捉系统,最终展现出一个或逼真或梦幻或新奇的艺术世界,这种虚拟艺术体验给人们带来新奇有趣,逼真震撼的视听感受。 在媒体艺术中,全息投影产生的虚拟影像给观众带来的感官刺激最直接,这种艺术感官体验可以源自对现实世界的模拟再现,也可以是超现实的,艺术创造者想象中的各种新奇场景的创造,要实现这些场景或者影像的艺术体验是离不开技术支持的。艺术家可以通过全息投影技术构建或者营造各类艺术情境和场景,引导观众进入虚拟情境中,使人产生身临其境的逼真感觉,仿佛真的置身于营造的虚拟世界中。尤其是在演艺活动中,艺术家或者设计者,通过全息投影技术的营造,引导观众进入虚拟情境中,体验前所未有的虚拟艺术体验和感官刺激。 2 影像互动式虚拟体验在演艺活动中的运用 20世纪中期,互动式虚拟体验最早运用于美国军事模拟训练,尤其是空军飞行训练。美国军方为了降低飞行训练中的损失以及人员伤亡,发明了虚拟飞行驾驶系统。模拟出真实的飞行训练过程,进行飞行员训练。随着技术的发展,模拟训练已经延伸到了其他军事训练领域中,可以模拟出复杂的战斗情境,提高实战水平,同时也减少真实训练或者演习中的损失和伤亡。这种互动式虚拟技术的真实体验使得现实世界和虚拟世界之间的建立起了一座互相作用的桥梁。 随着技术的发展以及媒体艺术的发展,虚拟体验与媒体艺术擦出了绚丽的火花。虚拟感官体验创造的虚拟世界非常接近人类观察体验,在技术的推动下衍生出全新的媒体表现形式和艺术情境,这些新奇的艺术创作方式和艺术表达方式为观众营造了更加丰富多彩的实体体验和感受。虚拟艺术体验作为一种传播方式和手段,彻底颠覆了传统形式的影像体验,擦出了新的传播艺术的火花。 例如,2011年在某国际知名服装品牌的新品发布会上,设计者就把全息投影技术搬上了T台秀,模特表演秀中通过全息投影营造出虚拟模特和真人模特交替出现的场景,在灯光和特效技术的配合下,一场惟妙惟肖、亦真亦假的服装表演完美演绎。在T台上人物和艺术场景忽而产生、忽而消失,模特在虚拟和真实交替中完成瞬间换装的效果,给观看者的视觉和听觉产生了意想不到的震撼效果,观看者完全沉浸于这种逼真立体的影像和真人秀中,这场秀给观者带来了前所未有的魔幻效果,在整个艺术传播领域开创了一个全新的场景。 在我国国内演艺活动中,全息投影营造的互动式虚拟情境的舞台也给观众留下深刻印象。湖南卫视2011跨年演唱会中,有一首歌曲表演中就很成功地运用了全息投影技术,《再见我的爱人》这首歌是邓丽君早起经典作品之一,被观众熟知,许多观众都十分怀念邓丽君深情的演绎,湖南卫视的技术人员就通过全息投影技术把立体逼真的邓丽君演唱的场景搬上舞台,场景中看起来如同邓丽君与歌手的同台对唱,并且两人之间还有恰当的动作眼神交流。在舞台上实现了歌手与影像的完美互动,呈现在观众面前的就是真实的表演场景,给观看者的视觉、听觉带来极大的满足。同样,我们记忆深刻的还有2012龙年春晚就在LED的基础上加入全息投影的电视美术布景,晚会的多数歌舞都动用了全息技术。例如,萨顶顶在演唱《万物生》时,营造立体花朵飘落的艺术情境,演唱者和现场观看者就仿佛是置身花的世界一样,设计者将艺术情境完美结合歌曲的意境,完美演绎了万物生的艺术情境。但是,在演艺活动中全息投影技术只是作为亮点出现在演出的某个环节,并没有被用于制作整场演出的舞美效果,全息投影技术的使用是希望引起观众高潮达到最佳的表演效果。 3 全息投影虚拟互动体验的发展趋势 (1)渲染偶像,美化表演意境。虚拟体验从纯粹的感官体验到交互体验再延伸到情感体验,逐渐呈现出体验融合的趋势,虚拟艺术体验的逼真度和沉浸感也进一步提高和加强。艺术工作者可以在演唱会场景设计上营造多个偶像同时演绎的各种酷炫效果,对观看者的视觉、听觉造成震撼冲击,同时也满足观看者对自己偶像的崇拜心理。 (2)重塑经典,赋予艺术强大生命力。虚拟技术为艺术体验提供了新的机遇。在当下强大的科技条件支持下,可以为观众再现那些怀念的经典,虚拟世界的感官真实性,互动性,情感化,特性的逐渐体现。例如,“复活”历史上的巨星,令其完成与当代明星同台对唱等的现场表演,或是弥补某位不能到场的巨星给观众造成的遗憾,还可以把某个不可能再现的经典为观众重现,对其造成极大的视觉与心理震撼。 (3)打造虚拟偶像,衍生虚拟情感。虚拟艺术体验是调动了视觉、听觉、触觉、嗅觉及肢体行为互动等多种感知体验,也可以是意识心理的思维沉浸,意识和思维沉浸在虚拟世界之中,身体却处于现实之中,身体被虚拟世界中的意识驱动,虚拟和现实之间的界限模糊化,全身心投入到虚拟世界中并享受心醉神迷的沉浸体验,这便是虚拟偶像。越来越多的虚拟偶像会随着人们的不同需求而产生,并且延伸到情感体验的高度。 从感官虚拟体验、互动虚拟体验到情感虚拟体验,这些艺术体验和互动都是基于人们对虚拟世界的幻想和憧憬,引发人们感官和情感的存在感和代入感。从唯物的角度来说,虚拟体验和虚拟互动都是基于人们对真实世界中各种客观事物的反映,并且在人们丰富的想象中得到进一步的艺术升华,在演艺活动或者新媒体艺术中完美地展现出来,迸发出无比绚烂的艺术火花,给观看者带来前所未有的美妙体验和感官享受。因此,虚拟艺术体验是一种很好地表达艺术情感的手段。 参考文献: [1] 王燕鸣.论新媒体艺术在虚拟世界中的互动体验[J].大众文艺,2010(2). [2] 肖永生,赵明镜.飞行模拟器视景显示系统的研究与设计[J].科技广场,2009. 全息投影技术论文篇三:《全息投影的简易制作及探究》 摘 要 全息投影是近年来流行的高新技术,能够展示神奇的立体全息影像,给参观者全新的互动感受。全息投影设备价格较高,应用生活中常见的器材,制作一款具有全息效果的实验演示装备,揭示其中的科学原理。 关键词 全息投影;实验器材;虚拟成像 1 前言 2013年9月13日,去世18年的歌手邓丽君“穿越时空210秒”,与男歌手周杰伦同台对唱,别具一格的全息投影技术很快成为新闻媒体报道的 热点 ,引起人们极大的兴趣和关注。全息投影设备价格较高,一般应用于商业展览或影视特效中。对于广大中小学科学教师来说,只要应用生活中常见的实验器材,花费很低的经济成本,同样可以制作简易的全息投影演示实验,带给学生新奇的科学体验与乐趣。 2 全息投影原理 全息投影技术也称虚拟成像技术,利用光的干涉和衍射原理,记录并再现物体真实的三维图像。 第一步是利用干涉原理记录物体光波信息,被摄物体在激光辐照下形成漫射式的物光束;另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在空间上变化的强度,利用干涉条纹间的反差和间隔,将物体光波的全部信息记录下来。记录干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片。 第二步是利用衍射原理再现物体光波信息,这是成像过程。全息图的每一部分都记录物体各点的光信息,能够再现原物的整个图像,通过多次曝光可以在同一张底片上记录多个不同的图像,互不干扰地分别显示出来。 全息投影系统将三维立体画面悬浮在实景半空中,画面的对比度和清晰度高,有空间感和透视感,营造了亦幻亦真的神奇氛围。 依据实现技术手段与途径的不同,全息投影分为两类。 1)透射全息投影:通过向全息投影胶片照射激光,从另一个方向来观察重建的图像。透射全息投影可以使用白色光来照明,广泛应用于信用卡防伪和产品包装等领域,通常在一个塑料胶片形成表面 浮雕 图案,通过背面镀上铝膜,光线透过胶片得以重建图像。 2)反射全息投影。使用白色光源,从和观察者相同的方向照射胶片,通过反射重建彩色图像。镜面全息投影利用控制镜面在二维表面上的运动,制造三维图像。 3 简易全息投影设备制作 应用于商业展览或影视特技的全息投影需要复杂的制作技术与专业设备[1]。为了向青少年普及科学知识,介绍前沿科技新成就,教师利用身边的简易器材,同样可以制作出具有立体效果的全息图像。 实验原理 利用4个半透面对光线的折射和全反射,把屏幕上的视频源文件反射。由于视频源文件同时有图像的前、后、左、右4个面,4个面同时投影形成全息效果。原理图如图1所示。 制作材料与过程 能够形成单屏投影的设备(包括手机、平板电脑)、各种透明薄板(如亚克力板、塑料板、PVC板、手机贴膜等)。由于四棱椎体是最简单的制作,以下详细介绍全息投影制作过程以及注意事项。 1)确定四棱椎体的几何形状与大小。本实验制作的投影设备由透明塑料等材质构成棱锥、覆盖在上方的单屏投影源构成(图2)。光线由投影源发出,在棱锥侧面产生全反射,进入观察者眼睛。如果能够使每个侧面反射的光线恰好构成三维物体的不同侧面,观察者从不同方向观看,就可以看到三维物体的不同侧面[2]。为了保证反射光水平射入眼睛,需要使棱锥的侧面和底面所成的二面角为45°。 由于大家使用的各种手机或平板电脑的尺寸差异较大,给出的参考建议是:构成四棱椎体的等腰三角形底边约等于屏幕的宽度。如测量所用的iPad屏幕宽度为12 cm,则等腰三角形的底边就是12 cm,顶角固定为°,腰长为 cm,腰长=底边×。如果要制作六棱锥投影,则等腰三角形各边的几何关系为腰长=底边×。六棱锥的播放效果更佳,环六棱锥360°无死角观察到清晰逼真的投影图像;四棱锥在投影面交接角度处观察到轻微变形。 2)剪裁和粘贴投影用金字塔。把透明薄板依据上面的规格裁剪出4个等腰三角形,用透明胶条或不干胶依次粘好各三角形的边,做成一个投影金字塔。因为平板电脑的屏幕要放到金字塔的顶尖,设计一个支架把平板电脑架起来,不能挡住金字塔的四面。也可以用黑色纸盒做成暗箱型的支架,周围背景越黑,立体投影的显示效果越好。将平板电脑或手机屏幕朝下,倒扣在金字塔的塔尖上,确保金字塔尖正对视频4个切分画面的中心。 3)播放全息投影视频。利用MikuMikuDance(简称MMD)、会声会影X5与格式转换软件,先用MMD制作出所需图像的正面、背面、左右侧面,再将格式转换成为会声会影视频,便可做出全息视频源。专业高手也可以利用动画制作软件MAYA,设计出人物模型、动作,分出前、后、左、右4个视图,导出播放视频即可。现在网络上有不少3D全息影像素材,使用者可以根据需要下载和播放。 4 结语 由于器材简陋,该实验显示的并不是真正意义上的全息图像,可以看作“伪全息”,虽然视觉上看起来有全息的效果,但其本质还是2D成像。以图3所示美少女为例,视频中的四分屏分别是少女的正面、背面以及左右侧面,这四面分别对应金字塔形投影仪四面的塑料片。四个画面分别映射在4个塑料片上,从塑料片的4个角度来看,会产生“图像就在投影仪中央,能够360°无死角观看”的错觉。因此,制作全息投影时必须选择表面光滑、没有太多划痕的透明薄片,才能有更好一些的视觉效果。播放视频的清晰度也很重要,最好采用清晰度为720P及以上的视频图像。 参考文献 [1]于丽,杨宇.一种三维全息投影屏的制作方法[J].激光与光电子学进展,2013(2):115-118. [2]房若宇.多棱锥三维立体投影装置的制作[J].物理实验,2015(6):23-25. [3]杨毅.论全息投影技术中虚拟角色制作设计[J].科教文汇,2013(10):94. 猜你喜欢: 1. 计算机图像处理在全息学中的应用论文 2. vr技术论文2000字 3. 人工智能综述论文 4. 关于计算机多媒体技术研究专业毕业论文 5. 全息投影技术论文 6. vi设计毕业论文范文 7. texlive如何写论文

医学影像诊断学是医学影像学中的一门重要学科,而医学影像学是临床医学的一个重要分支。下面是我为大家整理的医学影像技术专业 毕业 论文,供大家参考。

《 高职影像专业医学影像物理学的教学探讨 》

摘 要: 根据课程特点、学生现状,我们重视教师素质培养,理清教材层次与学生的关系,运用丰富的 教学 方法 ,变抽象的论述为理论联系实际的形象化教学,提高了医学影像物理学课程的教学质量。

关键词: 高职 医学 影像物理学 教学探讨

近十几年来,大型医学影像设备的迅速发展,极大地提高了诊断治疗水平。随着社会对医学影像专业人才的需要愈加迫切,国内众多本科医学院校都设置了医学影像专业。而随着我国社区医疗的发展,填报高等职业技术学院医学影像专业的学生人数不断增加。以湖北职业技术学院为例,影像专业学生录取人数由每年一个班提高到两至三个班。不论各院校侧重培养高学历医学影像临床诊断专业人才,还是侧重培养高学历医学影像工程技术人才,在专业课程设置过程中,都强调了开设医学影像物理学基础(以下简称影像物理学)这门课程的重要性和必要性。有些本科院校还在临床医学专业开始开设影像物理学为选修课程,目的就是让临床医师具备医学影像的基础理论知识,为将来后续专业课程――医学影像诊断学或医学影像学的开设提供必要的理论基础。

1.高职医学院校影像专业课程设置现状

以湖北职业技术学院为例,高职医学院校影像专业现在招收高中文科和理科学生及中职生。在课程开设上,只在大学一年级开设医学电子学基础这一门理工科课程,相关高等数学知识缺乏,学生的数理基础比较薄弱。医学影像物理学基础是一门交叉学科,又是一门非常重要的专业基础课。教学目的是让学生掌握医学成像理论的物理学基本原理、规律;了解医学成像的物理理论知识;为深刻理解成像过程,评价图像,以及读识图像、挖掘图像蕴藏的生物信息奠定基础。这就需要一定的高等数学、核物理学、量子物理、超声波物理等许多知识来做铺垫。当然更多需要成像技术的相关基础知识。面对这些必要的知识,影像专业高职生在有限的时间、有限的学时里是完成不了的,这是事实。其实,影像物理学是伴随影像专业的建立而诞生的一门新课程,在国内存在尚不足十年。因此,从教材到教学,各校都处于摸索前进的阶段。如何让高职生在无基础的前提下有效学习该门课程,我将自己在几年教学过程中的教学体会写出来,与大家共同探讨。

2.提高教师的专业素质,必须树立专业思想

由于缺乏相关师资力量,目前各院校影像物理学的教学任务大都由物理学教研室的教师承担。但是,物理学和影像物理学两门课程的专业性质差别很大,前者为理科基础课,后者为专业基础课。从事影像物理学教学的教师必须具备一定的医学专业知识,具备较高的专业素质,教学必须树立专业思想,才能将物理学知识和影像学知识有机结合起来,增强学生的学习兴趣,提高该课程的教学质量。因此,授课教师应加强自身专业素质,利用临床进修的机会学习影像知识和实际技术,尽力做好教学工作。

3.教学过程中必须恰当把握知识的深度

影像物理学是先期开设影像专业院校的教学工作者在教学过程中逐步完善而建立的。它是将高等数学知识、物理学知识、成像理论,计算机技术等知识应用于超声成像技术、X-CT成像技术、同位素成像技术、磁共振成像技术中的一门交叉学科。知识的起点很高,学生学习起来有一定的难度,在教学过程中应恰当把握教材知识的深度,讲解需深入浅出,通俗易懂。比如超声场的描述部分,涉及较多的高等数学知识,在教学过程中应注意引导学生注重理解场的分布性质、描述场的量的物理意义,等等,尽量避免学生由于数学知识少而降低对该课程的理解和学习兴趣。磁共振部分,学生需要具备一定的原子核物理、量子力学知识才能准确理解核自旋的能级、跃迁等概念和现象。在教学中应注意搜集一些资料,尽量用较通俗的、经典的、宏观假说进行解释,增强学生对微观世界的感性认识。

4.注意把握影像物理学原理与成像技术、影像设备学有关知识的权重关系

X-CT成像、超声成像、同位素成像、磁共振成像每一部分都有两项主要内容:物理基本原理和成像基本原理。在教学过程中应把主要精力放在讲解物理学基本原理上,这是毫无疑问的,这也是物理专业毕业的教师最容易做到的,但学生的学习兴趣往往集中在成像原理上,对涉及的成像技术、成像设备等知识更表现出浓厚兴趣。虽然成像技术和成像设备在后期专业课程的实践教学中会详细讲解,在这里我们对这部分做简要的介绍,以收到良好的教学效果。这些年来,我校历届学生都表现出对影像物理的极大学习兴趣。这与我们的教学方法有一定的关系。

5.注意提高学生对知识的感性认识

影像物理学各部分知识都是比较抽象的,学生普遍觉得难懂难学。因此,通过各种手段提高学生对知识的感性认识,能对学生的学习起到事半功倍的帮助作用。在教学过程中,我们将陀螺进动实验给学生做演示,讲解原子核中核子的自旋与自旋磁矩的相关知识;借助于声波的传播与反射知识对超声测量实验进行详细讲解;分配一定的学时带领学生到附属医院相关科室参观学习。邀请超声,CT临床诊断教师和技术教师给学生当场讲解仪器的原理、操作方法,以及诊断等,使学生对课堂上学到的知识有一个感性认识,加深理解,收到了很好的效果。

6.实现教材的多层次、立体化

由于该课程属于应用型的知识,学起来难度更大,我们进行了教材的多层次、立体化尝试。课程是教材的基础,教材是课程的载体,教材中要融入现代化的教学技术,实现多样化、配套和协调化。我们的做法是:文字教材与现代多媒体手段紧密结合。

教材体系包括:(1)传统的纸质教材《医学影像物理学》(人民卫生出版社出版);(2)教师授课用的独创的电子教案,其中配以大量的自制和临床实拍图片和自己研发的动画,并提出学生思考的问题;(3)辅助学生自学和研究的学习软件,如《CT与磁共振成像原理》CAI课件(人民卫生电子音像出版社公开出版发行,被列入“十一五”国家重点电子出版物);(4)网页形式课件2部。初步形成了多形态、多用途、多层次的教学资源和多种以教学服务为目的的结构性配套教学出版物的集合。

总之,影像物理学是一门新课,只有不断摸索,不断 总结 经验 ,逐步改进教学方法和手段,才能增强教学效果。通过几年来的努力,一方面学生看到了现在所学的就是将来所用的,提高了学习基础课的兴趣,另一方面学生培养了学习能力,同时对后续课程“医学影像诊断学”的学习奠定了基础。

参考文献:

[1]侯淑莲,李石玉,马新超等.关于医药学院校物理课程的思考[J].大学物理,2005,24,(5):53-56.

[2]包尚联,唐孝威.医学物理研究进展[J].自然科学进展,2006,16,(1):7-13.

[3]童家明,刘成玉,周晓彬等.普通高等学校医药类专业物理理论课教学现状调查[J].大学物理,2005,24,(7):55-59.

[4]侯淑莲.CT与磁共振成像原理[M/CD].北京:人民卫生电子音像出版社,2007.

《 刍议影像融合推动医学影像领域发展 》

内容摘要:科技的进步不仅是带动了工商业的发展,同时也推动了医学发展,计算机技术被广泛用于影像医学中。现在医学上的各种检查仪器越来越精密,功能更加完善,图像信息的存储和传输为医学的研究和诊断提供了更好的依据。医学影像的融合就是影像信息的融合,是借助计算机技术辅助诊断病情的。医学影像的融合是医学影像学新的发展方向,本文对医学影像的融合进行分析,探讨影像融合对医学影像发展的影响和作用。

关键词:医学影像 影像融合 诊断

一、影像融合

医学影像融合其实就是利用计算机技术,将影像信息进行融合。其中包括将图像信息进行数字化处理,再进行数据协同和匹配,得到一个新的影像信息来获得对病情更好的观测,以计算机为辅助手段,使诊断更加准确、具象。

影像融合的发展趋势

影像融合的趋势

医学影像学是近年来发展的比较快的临床学科之一,其中的超声、放射等早就被应用到医学的诊断上,但是,面对不同病人的各种症状,单一的影像检查已经不足以作为诊断的依据。因此,影像融合越来越成为医学中的焦点,人们更希望通过多重的影像检查、比较和分析,使检查结果更准确,更好的辅助临床疾病的治疗。影响融合的发展提高了医学诊断的综合水平,对于推动影像学的发展有重要的意义。而且,医学影像的融合不仅可以对诊断锦上添花,还可以为治疗提供帮助。例如:X线、超声、聚焦和磁共振结合在一起进行治疗。影响融合的发展是势在必行的,而且将推动医学影像学的更新与发展。

影像融合的必要性

1、医学技术的更新与发展需要影响融合

计算机技术被广泛应用于各个领域中,这也包括医学影像学。随着新技术的发展和实施,图像后期处理技术也需要不断的提高,影像的融合技术就是后处理技术的新发展。前后技术的同步才能更好的将影像学的好处发挥出来。

2、影像融合使检查更全面准确

影像学的检查手段是很多的,从B超到射线再到CT等,每项检查都是有针对性的,但是正因为这样又有一定的局限性。每项检查都有单一局限性,只能准确的体现一方面的数据值,不利于诊断病情。影像的融合弥补了这一缺陷。

3、临床诊断需要影像融合

一切的检查手段都是为了最终的临床治疗,影像诊断一样是为临床治疗服务的。影响的融合,集中了多项单一检查的优势,呈现的图像更清晰,更便于医生的判断,使诊断更清晰准确,也就能根据诊断提供更好的治疗方案,辅助临床治疗。

影响融合的方法和技术应用

首先是信息技术的融合。无论是什么样的诊断技术,最后要得到的都是这项技术所能诊断出来的信息。影像的融合首先要实施对信息的融合,图像数据的转换是理解是关键。而图像的转换时将不同检查设备检测的图像信息进行格式的转换和调整,使其更逼真的呈现出检测部位的状态,确保诊断的准确性。

其次是数字化技术的融合。建立图像数据库是比较直观和易于提取信息的。

还有就是计算机技术的应用,这几项技术的融合,使影像融合后的检查更加具体详细。

影像融合的方法:界标 配对 、表 面相 合法、空间力矩配对、交叉相关法。

四、 医学影像融合的临床价值

现代医学已经把用计算机技术对获取的影像信息进行处理的研究成果应用于临床医学的诊断,将各项检查结果通过计算机技术进行分析、处理,将影像融合重新现出清晰度高、高质量的影像。主要有以下几个方面的临床价值:

帮助临床诊断

影像融合后的图像将检查部位的结构和周边组织清楚地呈现出来,通过影像诊断,医生能够更加了解检测部位的组织形态是否发生病变以及病变的程度。很多疾病早期的病变都是不太明显了,一旦没被发现就可能会错过最佳的治疗时机。影像融合后的图像可以通过区域放大将组织的差异标注出来,便于观察和诊断,能够及时的发现病变,减少漏诊的情况。

有助于手术的治疗

影像融合的中,结合了图像重建和三维立体定向技术,这些技术的应用能够清晰的显示出病变部位及其周围组织的状况和空间状态,医生可以根据融合后的图像制定手术方案,并在手术实施过程中提供实时显示,也为术后的观察提供了方便。

有助于医学研究

影像的融合结合了多项检查的优势,提供的影像信息更全面清晰,病理特征更明显,是医学研究中非常有价值的影像学资料,为以后疾病的研究提供更好的依据。

结语:医学影像的融合就是将多项检查的优点,经过一系列计算机技术的融合和处理重新形成新的图像。医学影像的融合是医学影像技术发展的一次伟大的更新,它将各种各种技术综合运用到医学的检查和诊断上,推动了影像学的进一步发展。

参考文献

[1]王静云,李绍林;医学影像图像融合技术的新进展[J];第四军医大学学报;2004年20期

[2]李熙莹;黄镜荣;;图像融合技术研究及其在医学中的应用[A];大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集[C];2004年

[3]吴疆;医学图像融合算法研究[D];西北工业大学;2006年

[4]张孝飞,王强,韦春荣,王至诚,张福北;医学图像融合技术研究综述[J];广西科学;2002年01期

[5]赵敏志;李钢;张仁斌;;图像融合技术现状[A];第六届全国信息获取与处理学术会 议论文 集(3)[C];2008年

[6]康晓东.计算机在医疗方面的最新应用.北京:电子工业出版社,1999,46-70.

有关医学影像技术专业毕业论文推荐:

1. 医学影像毕业论文范文

2. 有关医学影像类毕业论文

3. 医学影像本科毕业论文

4. 医学影像学研究论文

5. 关于医学影像的论文

现代医疗技术的研究进展论文

现代医学技术与医生人文素养的关系论文

医学不仅仅是一门研究人类疾病的科学,也是将医学科学与人文社会学科融合在一起的学科。医学既具有自然科学性又兼有人文社会科学的属性。当今医学发展已由传统的“生物医学模式”,转变成为了“生物-心理-社会医学模式”,医学人文属性原本更加浓烈。然而,处于技术飞速发展时期的当代医学,其人文精神的发展,却被技术主义的高光反衬下暗淡了色彩。医学对技术的高度依赖和追求,忽视了医学自身的仁爱精神和对患者的人文关怀,导致医生人文素养的缺失,表现出的是现代医学技术与医生人文素养之间关系的失衡。 因此,重新审视现代医学技术与医生人文素养的关系显得尤为重要。

1医生人文素养及其内容

人文素养是个复杂且抽象的概念,在不同的语境和层面含义有所不同。简单说,人文素养可以理解为一个人所拥有的知识、技能、理念、情感、意志等多种因素,综合形成的成熟和稳定的价值体系,品格、气质和素质是一个人人文素养的外在表现形式。而医生的人文素养可以理解为医生对健康意义和生命价值的一种人文关怀,以及对患者处境的无限关切,医生的价值观念、道德情感、人格品质、精神追求则是医生人文素养的外在表现形式。 医生人文素养的内容主要包含以下几个方面:

(1)对患者个人尊严和价值的高度重视和尊重。 尽自己最大的努力去保护每位患者追求生命延续和幸福生活的基本权利。

(2)具有崇高的医德。 医生作为一种与生命直接打交道的职业,必须具备良好的医德。医德作为一种职业道德,也是社会道德在医疗卫生行业而具体体现。良好的医德不仅是医生面对患者病痛时表现出内心深处的真实同情和深切关怀,还包括医生在医学实践活动中,具有正直的品德,不断提高自身工作标准,严格遵守行业规定。

(3)具备不断进取的心态。 一方面,要求医生自觉地纯净医疗行业,促进和维护和谐环境;另一方面,要求医生必须对生命要有源自内心的敬畏,以及不断追求并实践人、社会和自然和谐共处的美好局面。

2现代医学技术及其特征

大量先进技术和仪器设备在医学领域的广泛应用,而逐渐形成了医学技术。而现代医学技术是指涉及现代物理、化学、生物等领域尖端技术成果,在医学实践活动中直接应用于人体的医学技术。可以说,现代医学技术是医学技术现代化高度发展的产物,对人类健康发挥着巨大作用,尤其是生物技术、微电子技术与新材料技术的进步,推动者现代医学技术的`空前革命。 技术发展改变着医学技术的特性,现代医学技术体现出以下特征:

(1)医学的全面技术化。 从表面上看,技术等同于医学,技术成了医生全部,而医生的人文素养受到技术的排挤,得不到重视。

(2)现代医学技术成为治病救人的独立工具。 现代医学技术不再仅是医生控制疾病、增进健康的工具,而是能够按自身逻辑独立发展。

(3)现代医学技术削弱了医生个人经验的地位。 医生过多依靠现代医学技术装备,甚至出现没有检测仪器的图像资料和精确数据,医生就无法进行诊断,医生的个人经验被医学辅助诊断技术替代,医生与患者之间的关系演变成了医生与技术之间的关系。

(4)现代医学技术制约了医生的理性。 医生的意识形态受到现代医学技术控制,将更多精力用在了探究和掌握新技术,从而忽视了对自身人文素养的培养。

3现代医学技术和医生人文素养的关系

3.1医生人文素养对现代医学技术的促进作用

(1)医生人文素养指导和规范医学技术的发展及其成果的运用。 医学技术本身只是人类谋求健康的工具和手段,但是在医学技术不断实用的进程中,对过程有效性和方案正确性的追求远远超越了对结果的认知,人们忽略了去探寻采取某种工具与手段所得到的结果一定会合理。然而,人文素养的实质是以人为本,要求人们必须去掌握医学技术实用进程中的客观规律,去认知医学技术这一工具手段所致结果的合理性。因此,只有医生人文素养得到不断的提高,医学技术才能在人类设想的规范和目的内发展。

(2)医生人文素养是医学技术发展的重要条件。 技术的进步,离不开良好、开放人文环境。在尊重科学、热爱科学的人文环境中,医学技术发展的也会得到促进。

(3)医生人文素养极大地影响着医学技术的价值评价和舆论导向以及医学技术活动的方向、目的、效果。 医生对医学技术的应用和评价,都会让人们对医学技术进行理性反思和重新选择。

(4)医生人文素养是医学技术发展的重要精神支撑。 现代工具手段知识含量的提升,离不开人们勇于探索和求真务实等精神品质,而这些精神品质便是来自人文素养。

3.2现代医学技术对医生人文素养的提升作用

(1)现代医学技术成为医生人文素养提升的物质条件。 人类历史的发展证实了科学技术是人类社会文明进步的重要推动力,为人类社会创造出了巨大的物质财富,物质文明作为精神文明的物质基础,人类物质文明的极大丰富为精神文明的持续发展提供了优厚的物质条件。而人文素养作为精神文明的一部分,现代医学技术借助科技的力量,为医生人文素养的提升也提供着源源不断的物质条件。

(2)现代医学技术成为医生人文素养提升的技术支撑。 现代科学技术为人类建立起了知识、文化、信息交换和传播的网络系统,人们在这一系统内能够迅速快捷的分享最新知识和交流先进思想,综合素质得以提升,精神文明建设与社会发展得到促进,人类的主体性和创造性也得到前所未有的肯定和张扬,进而在很大程度上推动人类思维智慧的迅速发展和思想观念的巨大变革,加速人类人文的发展进步。

(3)现代医学技术成为医生人文素养提升的现实支撑。 科学技术的发展是人类认识客观世界,掌握客观规律,改造世界的真实体现。科学技术的发展形成了人类文明和人类发展所需要的基础。因此,没有科技的存在,医生人文素养也是难以实现的。现代医学技术提升了疾病诊断的精确高效,丰富了手术的多样性,促进了患者的个体化治疗,无形地提升了医学领域中的的人文关怀。正如超声刀、微波、射频、腔镜技术、氖气凝结器等高新技术手段的出现,体现出现代医学技术的每次进步都以更迅速有效地缓解患者病痛为目标,以能够让人类更长久健康的生活为最终目的,而医生人文素养也在现代医学技术的进步和实用中得到的体现。

3.3现代医学技术对医生人文素养的削弱作用

(1)医生与技术的关系取代了医生与患者的关系。 当今,现代技术成为医学发展的强劲动力,给患者带去了福音与希望。然而,对于现代医学技术的盲目崇拜和依赖,却造成了医生人文素养缺失,触发人们对医生更多的失望与不满,以致于医学技术越发达,医患关系越发紧张。究其原因,是医生对现代医学技术的过度依赖,减少了他们对疾病诊疗过程的深思熟虑,思维方式也变得呆板僵化,当他们在面对患者时,更多时候只把患者作医疗仪器设备的对象,而忽视对患者心理行为和精神活动等方面的整体关注,在一定程度上医生与患者的关系被医生与技术设备的关系替换,患者不再是医生与技术交流的主体。

(2)医学技术从手段变为目的 。医生为解除患者病痛本应该不断追求医学技术的革新。然而,当医生只关心医学技术的运用时,技术从治病救人的手段却在医生的追逐中转变成了目的,对患者疾病全面和理性的辩证思考却逐渐减少,在一定程度上这不仅会延误患者病情的诊治,还会导致医生人性的逐渐消失。

(3)医生对患者的责任模糊不清 。医学技术的滥用,使得如今的医院成为众多技术组合而成一个共同体,所有医生只是这一共同体上的零部件,医生对患者承担的个人责任被这一共同体所取代。

(4)医学技术过度使用带动医疗费用飞速上涨。 现代医学技术的进步,使得医生诊疗手段朝着依赖现代医学影像和检验等高新技术设备的方向发展,医生对疾病的诊疗过程更加快捷高效。而医生对这些技术的过度推崇,会盲目扩大了这些技术的使用范围,势必会增加患者的经济负担,在某种程度上还会损害患者身心健康,从而导致医疗实践活动中人文价值和人文意义的出现偏差,给医生实现医学的公平与可持续增加了更大的难度,严重阻碍了医生人文素养的提升。总之,医学技术的进步与医生人文素养的传承,作为现代医学发展的推动力,两者相辅相成,缺一不可,相互之间必须保持一种动态平衡和必要张力;充分认识和正确处理现代医学技术与医生人文素之间的密切关系,对于进一步完善现代医学事业,服务社会和大众具有重要意义。

生物材料学作为生命科学和材料科学的前沿性交叉学科,更是优先发展的重点。生物功能材料专业正是根据社会发展的需要,特别是生物医学工程、组织工程和药物释放等交叉学科技术的迅速发展对专业人才的迫切需求而设立的 。生物医用材料的分类生物材料应用广泛,品种很多,有不同的分类方法。通常是按材料属性分为:合成高分子材料(聚氨醋、聚醋、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物及其他医用合成塑料和橡胶等)、天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖等)、金属与合金材料(如钦金属及其合金等)、无机材料(生物活性陶瓷,羟基磷灰石等)、复合材料(碳纤维/聚合物、玻璃纤维/聚合物等)。根据材料的用途,这些材料又可以分为生物惰性(bioinert)、生物活性(bioactive)或生物降解(biodegradable)材料。这些材料通过长期植入、短期植入、表面修复分别用于硬组织和软组织修复与替换。生物医用材料由于直接用于人体或与人体健康密切相关,对其使用有严格要求。首先,生物医用材料应具有良好的血液相容性和组织相容性。其次,要求耐生物老化。即对长期植入的材料,其生物稳定性要好;对于暂时植入的材料,耍求在确定时间内降解为可被人体吸收或代谢的无毒单体或片断。还要求物理和力学性质稳定、易于加工成型、价格适当。便于消毒灭茵、无毒无热源、不致癌不致畸也是必须考虑的。对于不同用途的材料,其要求各有侧重。 常用的医学生物材料 一、医用硅橡胶 医用硅橡胶(silicone rubber)是美容外科中应用较广的生物材料(组织代用品).它是高分子有机化合物聚硅酮的一种橡胶样固体形态,又称二甲基硅氧烷。 二、人工骨 随着生物医学和材料的发展,各种人工制备的生物材料植入骨内替代骨移植,临床应用效果好.这些人工合成或提取的植入材料生物相容性好,对骨形成具有明显的诱导作用,被泛称为人工骨(artificial bone)。 一般而言,临床医学对生物医学材料有以下基本的要求:无毒性,不致癌,不致畸,不引起人体细胞的突变和组织细胞的反应;与人体组织相容性好,不引起中毒、溶血凝血、发热和过敏等现象;化学性质稳定,抗体液、血液及酶的作用;具有与天然组织相适应的物理机械特性;针对不同的使用目的具有特定的功能。物质属性分类根据物质属性,生物医学材料大致可以分为以下几种: 1、生物医学金属材料(biomedical metallic materials)医用金属材料是作为生物医学材料的金属或合金,具有很高的机械强度和抗疲劳特性,是临床应用最广泛的承力植入材料,主要有钻合金(co-cr-ni)、钛合金(ti-6a1-4v)和不锈钢的人工关节和人工骨。镍钛形状记忆合金具有形状记忆的智能特性,能够用于矫形外科、心血管外科。 2、生物医学高分子材料(biomedical polymer)生物医学高分子材料有天然的和合成的两种,发展得最快的是合成高分子医用材料。通过分子设计,可以获得很多具有良好物理机械性和生物相容性的生物材料。其中软性材料常用来作为人体软组织如血管、食道和指关节等的代用品;合成的硬材料可以用来作人工硬脑膜、笼架球形的人工心脏瓣膜的球形阀等;液态的合成材料如室温硫化硅橡胶可以用来作注入式组织修补材料。 3、生物医学无机非金属材料或生物陶瓷(biomedical ceramics)生物陶瓷这类医用材料化学性质稳定,具有良好的生物相容性。生物陶瓷主要包括两类。(1)惰性生物陶瓷(如氧化铝、医用碳素材料等)。这类材料具有较高的强度,耐磨性能良好,分子中的键力较强。(2)生物活性陶瓷(如羟基磷灰石和生物活性玻璃等),这类材料具有能在生理环境中逐步降解和吸收,或与生物机体形成稳定的化学键结合的特性,因而具有极为广阔的发展前景。 4、生物医学复合材料(biomedical composites)生物医学复合材料是由两种或两种以上不同材料复合而成的生物医学材料,主要用于修复或替换人体组织、器官或增进其功能以及人工器官的制造。其中钻合金和聚乙烯组织的假体常用作关节材料;碳-钛合成材料是临床应用良好的人工股骨头;高分子材料与生物高分子(如酶、抗源、抗体和激素等)结合可以作为生物传感器。 5、生物医学衍生材料(biomedical derived materials)生物衍生材料是经过特殊处理的天然生物组织形成的生物医学材料,经过处理的生物衍生材料是无生物活力的材料,但是由于具有类似天然组织的构型和功能,在人体组织的修复和替换中具有重要作用,主要用作皮肤掩膜、血液透析膜、人工心脏瓣膜等。编辑本段应用广泛,增长迅速生物医学材料应用广泛,仅高分子材料,全世界在医学上应用的就有90多个品种、1800余种制品,西方国家在医学上消耗的高分子材料每年以10%~20%的速度增长。随着现代科学技术的发展尤其是生物技术的重大突破,生物材料的应用将更加广泛。表1列举了生物医用材料的一些典型应用,其应用之广泛可见一斑。编辑本段生物医学材料发展的主要动力生物医学材料得以迅猛发展的主要动力来自人口老龄化、中青年创伤的增多、疑难疾病患者的增加和高新技术的发展。人口老龄化进程的加速和人类对健康与长寿的追求,激发了对生物材料的需求。作为世界人口最多的国家,中国已进入老龄化国家行列,生物材料的市场潜力将更加巨大。 生活节奏的加快、活动空间的扩展和饮食结构的变化等因素,使创伤成为一个严重的社会问题。我国创伤住院年增长率达,高居住院人数第2位。美国1998年用于骨骼-肌肉系统损伤患者的治疗费高达1280亿美元,仅骨缺损患者就达123万,其中80%需用生物医学材料治疗。在全球,心脑血管疾病、各种癌症、艾滋病、糖尿病、老年痴呆症等发病率逐年增加,急需用于诊断、治疗和修复的生物材料。 随着生物技术的发展,不同学科的科学家进行了广泛合作,从而使制造具有完全生物功能的人工器官展示出美好的前景。人体组织和器宫的修复,将从简单的利用器械机械固定发展到再生和重建有生命的人体组织和器宫;从短寿命的组织和器官的修复发展至永久性的修复和替换。这一医学革命(特别是外科学),对生命利学和材料等相关学科的发展提出了诸多需求,对生物医学材料的发展产生了重要的促进作用。发展我国生物医学材料的建议生物医用材料学生物医用材料是材料科学与工程的重要分支,其最大特点是学科交叉广泛、应用潜力巨大、挑战性强。随着新材料、新技术、新应用的不断涌现,吸引了许多科学家投人这一领域的研究,成为当今材料学研究最活跃的领域之一。在我国,生物医学材料的研究虽然取得一些令人瞩目的成果,但整体水平不高,跟踪研究多,源头创新少。在产业化方面,生物医学材料及其制品占世界市场的份额不足2%,主要依靠进口,产品技术结构和水平基本上处于初级阶段。结合我国国情和学科发展趋势,按照"有所为,有所不为,重点突破"的原则,我们建议,应在五个方面开展重点研究。 一是生物结构和生物功能的设计和构建原理研究。着重研究具有诱导组织再生的骨、软骨及肌腱等基底材料和框架结构的设计及其仿生装配; 二是表面/界面过程-材料与机体之间的相互作用机制研究。从细胞和分子水平深入研究材料与特定细胞、组织之间的表面/界面作用,揭示影响生物相容性的因素及本质。 三是生物导向性及生物活性物质的控释机理研究。研究可自控或靶向释放蛋白、基因等特异性生物活性物质的材料的设计以及生物导向性原理;用于组织细胞和基因治疗的半渗透聚合物膜的设计、自装配及特异性细胞密封技术; 四是生物降解/吸收的调控机制研究。研究生物降解/吸收材料的分子结构和生物环境对其降解的影响、降解/吸收速度的调控、降解/吸收及代谢机制,以及降解产物对机体的影响。其目标是为组织工程化人工器官生物材料及药物控释材料的自成、改性方法提供理论基础,实现材料参与生命过程和构建生命组织的目的。 五是材料的制备方法学和质量控制体系研究。主要研究生物医用材料及修复体的计算机辅助设计; 通过上述研究的开展,将使我国生物材料的研究水平有较大提高,为我国生物医用材料科学及其产业的发展奠定坚实的基础。编辑本段意义生物医用材料为挽救生命和提高人民健康水平做出了重大贡献,当前正面临重大突破。我国加入 WTO后,生物医用材料产业将面临更大的挑战和更多的机遇,生物材料科学工作者任重而道远。我们相信,在国家的大力支持下,跨部门、跨学科通力合作,通过走自力更生与技术引进相结合的发展之路,在生物材料组织工程化、分子设计、仿生模拟、智能化药物控释等方面重点投人,生物医用材料必将为全面提高人们的生活水乎,造福人类做出更大的贡献。

激光技术的研究进展论文怎么写

激光发展史激光以全新的姿态问世已二十余年。然而,发明激光器的历程却鲜为人知,至于发明者如何从事艰难曲折的探索,就更少人问津了。其实,每一项重大发明,都是科学家们智慧的结晶,里面包涵着他们的汗水和心血。自然,激光器的发明也不例外。 说得准确些,对激光的研究,只是到了20世纪50年代末才出现一个崭新阶段。在此之前,人们只对无线电波和微波有较深研究。科学家们把无线电波波长缩短到十米以内,使得世界性的通讯成为可能,那是30年代的事情。后来,随着速调管和空穴磁控管的发明,科学家便对厘米波的性质进行研究。二次世界大战中,由于射频和光谱学的发展,辐射波和原子只间的联系又重新被强调。大战期间,科学家们发明并研制了雷达(战争对雷达的制造起了推动的作用)。从技术本身来说,雷达是电磁波向超短波、微波发展的产物。大战以后,科学家又开创了微波波谱学,目的是探索光谱的微波范围并把其推广到更短的波长。当时,哥仑比亚大学有一个由汤斯()领导的辐射实验小组,他们一直从事电磁方面以及毫米辐射波的研究。1951年,汤斯提出了微波激射器(Maser全称Microwave Amplification by Stimulated Emission of Radiation)的概念。经过几年的努力,1954年汤斯和他的助手高顿(J. Cordon)、蔡格(H. Zeiger)发明了氨分子束微波激射器并使其正常运行。这为以后激光器的诞生奠定了基础。当时,汤斯希望微波激射器能产生波长为半毫米的微波,遗撼的是,激射器却输出波长为1。25cm的微波。微波激射器问世以后,科学家就希望能制造输出更短波长的激射器。汤斯认为可将微波推到红外区附近,甚至到可见光波段。1958年,肖洛()与汤斯合作,率先发表了在可见光频段工作的激射器的设计方案和理论计算。这又将激光研究推上了一个新阶段。现在,人们都知道,产生激光要具备两个重要条件:一是粒子数反转;二是谐振腔。值得注意的是,自1916年爱因斯坦提出受激辐射的概念以后,1940年前后就有人在研究气体放电实验中,观察到粒子反转现象。按当时的实验技术基础,就具备建立某种类型的激光器的条件。但为什么没能造出来呢?因为没有人,包括爱因斯坦本人没把受激辐射,粒子数反转,谐振腔联系在一起加以考虑。因而也把激光器的发明推迟了若干年。在研究激光器的过程中,应把引进谐振腔的功劳归于肖洛。肖洛长期从事光谱学研究。谐振腔的结构,就是从法——珀干涉仪那里得到启示的。正如肖洛自己所说:“我开始考虑光谐振器时,从两面彼此相向镜面的法——珀干涉仪结构着手研究,是很自然的。”实际上,干涉仪就是一种谐振器。肖洛在贝尔电话实验室的七年中,积累了大量数据,于1958年提出了有关激光的设想。几乎同时,许多实验室开始研究激光器的可能材料和方法,用固体作为工作物质的激光器的研究工作始于1958年。如肖洛所述:“我完全彻底地受到灌输,使我相信,可以在气体中做的任何事情,在固体中同样可以做,且在固体中做得更好些。因此,我开始探索、寻找固体激光器的材料…...”的确,不到一年,在1959年9月召开的第一次国际量子电子会议上,肖洛提出了用红宝石作为激光的工作物质。不久,肖洛又具体地描述了激光器的结构:“固体微波激射器的结构较为简单,实质上,它有一棒(红宝石),它的一端可作全反射,另一端几乎全反射,侧面作光抽运。”遗撼的是,肖洛没有得到足够的光能量使粒子数反转,因而没获成功。可喜的是,科学家迈曼()巧妙地利用氙灯作光抽运,从而获得粒子数反转。于是,1960年6月,在Rochester大学,召开了一个有关光的相干性的会议,会议上,迈曼成功地操作了一台激光器。7月份,迈曼用红宝石制成的激光器被公布于众。至此,世界上第一台激光器宣告诞生。激光具有单色性,相干性等一系列极好的特性。从诞生那天开始,人们就预言了它的美好前景。20多年来,人们制造了输出各种不同波长的激光器,甚至是可调激光器。大功率激光器的研制成功,又开拓了新的领域。1977年出现的自由电子激光器,机制则完全不同,它的工作物质是具有极高能量的自由电子,人们可以期望通过这种激光器,实现连续大功率输出,而且覆盖频率范围可向长短两个方向发展。现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 能发1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年.肖洛和.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960年.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束,激光波长可覆盖从微波到X射线的广阔波段。按工作方式分,有连续式、脉冲式、调Q和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达数千种,最长的波长为微波波段的毫米,最短波长为远紫外区的210埃,X射线波段的激光器也正在研究中。 除自由电子激光器外,各种激光器的基本工作原理均相同,装置的必不可少的组成部分包括激励(或抽运)、具有亚稳态能级的工作介质和谐振腔( 见光学谐振腔)3部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的定向性和相干性。 激光工作物质 是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。 激励(泵浦)系统 是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。①光学激励(光泵)。是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成。②气体放电激励。是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。③化学激励。是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。④核能激励。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。 激光器的种类是很多的。下面,将分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类介绍。 按工作物质分类 根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体(晶体和玻璃)激光器,这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液,其中金属离子(如Nd)起工作粒子作用,而无机化合物液体(如SeOCl)则起基质的作用;④半导体激光器,这类激光器是以一定的半导体材料作工作物质而产生受激发射作用,其原理是通过一定的激励方式(电注入、光泵或高能电子束注入),在半导体物质的能带之间或能带与杂质能级之间,通过激发非平衡载流子而实现粒子数反转,从而产生光的受激发射作用;⑤自由电子激光器,这是一种特殊类型的新型激光器,工作物质为在空间周期变化磁场中高速运动的定向自由电子束,只要改变自由电子束的速度就可产生可调谐的相干电磁辐射,原则上其相干辐射谱可从X射线波段过渡到微波区域,因此具有很诱人的前景。 按激励方式分类 ①光泵式激光器。指以光泵方式激励的激光器,包括几乎是全部的固体激光器和液体激光器,以及少数气体激光器和半导体激光器。②电激励式激光器。大部分气体激光器均是采用气体放电(直流放电、交流放电、脉冲放电、电子束注入)方式进行激励,而一般常见的半导体激光器多是采用结电流注入方式进行激励,某些半导体激光器亦可采用高能电子束注入方式激励。③化学激光器。这是专门指利用化学反应释放的能量对工作物质进行激励的激光器,反希望产生的化学反应可分别采用光照引发、放电引发、化学引发。④核泵浦激光器。指专门利用小型核裂变反应所释放出的能量来激励工作物质的一类特种激光器,如核泵浦氦氩激光器等。 按运转方式分类 由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型。①连续激光器,其工作特点是工作物质的激励和相应的激光输出,可以在一段较长的时间范围内以连续方式持续进行,以连续光源激励的固体激光器和以连续电激励方式工作的气体激光器及半导体激光器,均属此类。由于连续运转过程中往往不可避免地产生器件的过热效应,因此多数需采取适当的冷却措施。②单次脉冲激光器,对这类激光器而言,工作物质的激励和相应的激光发射,从时间上来说均是一个单次脉冲过程,一般的固体激光器、液体激光器以及某些特殊的气体激光器,均采用此方式运转,此时器件的热效应可以忽略,故可以不采取特殊的冷却措施。③重复脉冲激光器,这类器件的特点是其输出为一系列的重复激光脉冲,为此,器件可相应以重复脉冲的方式激励,或以连续方式进行激励但以一定方式调制激光振荡过程,以获得重复脉冲激光输出,通常亦要求对器件采取有效的冷却措施。④调激光器,这是专门指采用一定的 开关技术以获得较高输出功率的脉冲激光器,其工作原理是在工作物质的粒子数反转状态形成后并不使其产生激光振荡 (开关处于关闭状态),待粒子数积累到足够高的程度后,突然瞬时打开 开关,从而可在较短的时间内(例如10~10秒)形成十分强的激光振荡和高功率脉冲激光输出(见技术'" class=link>激光调 技术)。⑤锁模激光器,这是一类采用锁模技术的特殊类型激光器,其工作特点是由共振腔内不同纵向模式之间有确定的相位关系,因此可获得一系列在时间上来看是等间隔的激光超短脉冲(脉宽10~10秒)序列,若进一步采用特殊的快速光开关技术,还可以从上述脉冲序列中选择出单一的超短激光脉冲(见激光锁模技术)。⑥单模和稳频激光器,单模激光器是指在采用一定的限模技术后处于单横模或单纵模状态运转的激光器,稳频激光器是指采用一定的自动控制措施使激光器输出波长或频率稳定在一定精度范围内的特殊激光器件,在某些情况下,还可以制成既是单模运转又具有频率自动稳定控制能力的特种激光器件(见激光稳频技术)。⑦可调谐激光器,在一般情况下,激光器的输出波长是固定不变的,但采用特殊的调谐技术后,使得某些激光器的输出激光波长,可在一定的范围内连续可控地发生变化,这一类激光器称为可调谐激光器(见激光调谐技术)。 按输出波段范围分类 根据输出激光波长范围之不同,可将各类激光器区分为以下几种。①远红外激光器,输出波长范围处于25~1000微米之间, 某些分子气体激光器以及自由电子激光器的激光输出即落入这一区域。②中红外激光器,指输出激光波长处于中红外区(~25微米)的激光器件,代表者为CO分子气体激光器(微米)、 CO分子气体激光器(5~6微米)。③近红外激光器,指输出激光波长处于近红外区(~微米)的激光器件,代表者为掺钕固体激光器(微米)、CaAs半导体二极管激光器(约 微米)和某些气体激光器等。④可见激光器,指输出激光波长处于可见光谱区(4000~7000埃或~微米)的一类激光器件,代表者为红宝石激光器 (6943埃)、 氦氖激光器(6328埃)、氩离子激光器(4880埃、5145埃)、氪离子激光器(4762埃、5208埃、5682埃、6471埃)以及一些可调谐染料激光器等。⑤近紫外激光器,其输出激光波长范围处于近紫外光谱区(2000~4000埃),代表者为氮分子激光器(3371埃)氟化氙(XeF)准分子激光器(3511埃、3531埃)、 氟化氪(KrF)准分子激光器(2490埃)以及某些可调谐染料激光器等⑥真空紫外激光器,其输出激光波长范围处于真空紫外光谱区(50~2000埃)代表者为(H)分子激光器 (1644~1098埃)、氙(Xe)准分子激光器(1730埃)等。⑦X射线激光器, 指输出波长处于X射线谱区(~50埃)的激光器系统,目前软X 射线已研制成功,但仍处于探索阶段[编辑本段]激光器的发明 激光器的发明是20世纪科学技术的一项重大成就。它使人们终于有能力驾驶尺度极小、数量极大、运动极混乱的分子和原子的发光过程,从而获得产生、放大相干的红外线、可见光线和紫外线(以至X射线和γ射线)的能力。激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。 激光器的诞生史大致可以分为几个阶段,其中1916年爱因斯坦提出的受激辐射概念是其重要的理论基础。这一理论指出,处于高能态的物质粒子受到一个能量等于两个能级之间能量差的光子的作用,将转变到低能态,并产生第二个光子,同第一个光子同时发射出来,这就是受激辐射。这种辐射输出的光获得了放大,而且是相干光,即如多个光子的发射方向、频率、位相、偏振完全相同。 此后,量子力学的建立和发展使人们对物质的微观结构及运动规律有了更深入的认识,微观粒子的能级分布、跃迁和光子辐射等问题也得到了更有力的证明,这也在客观上更加完善了爱因斯坦的受激辐射理论,为激光器的产生进一步奠定了理论基础。20世纪40年代末,量子电子学诞生后,被很快应用于研究电磁辐射与各种微观粒子系统的相互作用,并研制出许多相应的器件。这些科学理论和技术的快速发展都为激光器的发明创造了条件。 如果一个系统中处于高能态的粒子数多于低能态的粒子数,就出现了粒子数的反转状态。那么只要有一个光子引发,就会迫使一个处于高能态的原子受激辐射出一个与之相同的光子,这两个光子又会引发其他原子受激辐射,这样就实现了光的放大;如果加上适当的谐振腔的反馈作用便形成光振荡,从而发射出激光。这就是激光器的工作原理。1951年,美国物理学家珀塞尔和庞德在实验中成功地造成了粒子数反转,并获得了每秒50千赫的受激辐射。稍后,美国物理学家查尔斯·汤斯以及苏联物理学家马索夫和普罗霍洛夫先后提出了利用原子和分子的受激辐射原理来产生和放大微波的设计。 然而上述的微波波谱学理论和实验研究大都属于“纯科学”,对于激光器到底能否研制成功,在当时还是很渺茫的。 但科学家的努力终究有了结果。1954年,前面提到的美国物理学家汤斯终于制成了第一台氨分子束微波激射器,成功地开创了利用分子和原子体系作为微波辐射相干放大器或振荡器的先例。 汤斯等人研制的微波激射器只产生了厘米波长的微波,功率很小。生产和科技不断发展的需要推动科学家们去探索新的发光机理,以产生新的性能优异的光源。1958年,汤斯与姐夫阿瑟·肖洛将微波激射器与光学、光谱学的理论知识结合起来,提出了采用开式谐振腔的关键性建议,并预防了激光的相干性、方向性、线宽和噪音等性质。同期,巴索夫和普罗霍洛夫等人也提出了实现受激辐射光放大的原理性方案。 此后,世界上许多实验室都被卷入了一场激烈的研制竞赛,看谁能成功制造并运转世界上第一台激光器。 1960年,美国物理学家西奥多·梅曼在佛罗里达州迈阿密的研究实验室里,勉强赢得了这场世界范围内的研制竞赛。他用一个高强闪光灯管来刺激在红宝石水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使这一点达到比太阳还高的温度。 “梅曼设计”引起了科学界的震惊和怀疑,因为科学家们一直在注视和期待着的是氦氖激光器。 尽管梅曼是第一个将激光引入实用领域的科学家,但在法庭上,关于到底是谁发明了这项技术的争论,曾一度引起很大争议。竞争者之一就是“激光”(“受激辐射式光频放大器”的缩略词)一词的发明者戈登·古尔德。他在1957年攻读哥伦比亚大学博士学位时提出了这个词。与此同时,微波激射器的发明者汤斯与肖洛也发展了有关激光的概念。经法庭最终判决,汤斯因研究的书面工作早于古尔德9个月而成为胜者。不过梅曼的激光器的发明权却未受到动摇。 1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器——氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。 由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破。比如,人们利用激光集中而极高的能量,可以对各种材料进行加工,能够做到在一个针头上钻200个孔;激光作为一种在生物机体上引起刺激、变异、烧灼、汽化等效应的手段,已在医疗、农业的实际应用上取得了良好效果;在通信领域,一条用激光柱传送信号的光导电缆,可以携带相当于2万根电话铜线所携带的信息量;激光在军事上除用于通信、夜视、预警、测距等方面外,多种激光武器和激光制导武器也已经投入实用。 今后,随着人类对激光技术的进一步研究和发展,激光器的性能将进一步提升,成本将进一步降低,但是它的应用范围却还将继续扩大,并将发挥出越来越巨大的作用。

激光通信设备具有通信速率高、体积小、重量轻和功耗低等优势,下面是我整理了激光通信技术论文,有兴趣的亲可以来阅读一下!

卫星激光通信技术

摘 要:激光通信设备具有通信速率高、体积小、重量轻和功耗低等优势,广泛应用在卫星与卫星之间的高速数据传输。文章介绍了卫星激光通信技术的特点及系统组成,详细分析了卫星激光通信的关键技术。最后结合国内外卫星激光通信技术的发展现状和水平,提出了我国大力发展卫星激光通信技术和应用系统的建议。

关键词:卫星激光通信;激光通信;数据传输

引言

目前卫星通信主要是微波通信,随着航天技术应用的逐步深入,微波通信中的频率资源已经显得越来越紧张,且经常性出现频率干扰问题,数据量越来越大,传统的微波通信已经不能满足未来航天通信的需求,因此急需开发新的通信手段来弥补未来通信的不足。

卫星与卫星之间的无线激光通信是一项崭新的卫星通信体制,相对于现有的卫通技术而言,具有以下技术特点和优势:(1)通信速率高,激光通信通信速率能达到10Gbps或者更高。(2)体积小、重量轻、功耗低。(3)不存在频率干扰问题,由于卫星与卫星之间采用点对点无线激光通信,因此基本上不存在干扰问题。(4)隐蔽通信和抗干扰能力更强。由于卫星激光通信具有极窄的束散角,不容易被侦察和被干扰。(5)作用距离更远,是未来深空高速数据传输的理想技术手段。深空探测从环月的几十万千米到几百万千米(甚至更远),对通信频段提出了更高的要求。

1 国内外卫星激光通信发展现状

国外发展现状分析

20世纪60年代,国际上就开始了空间光通信技术的研究,主要进展如下。

欧空局光通信

欧洲空间局(ESA)于1986年提出了SILEX计划,经过几十年的发展先后进行了低轨道卫星与同步轨道卫星之间、GEO与地面的激光通信实验(见图1)。低轨道终端搭载在法国地球观测卫星SPOT4上,高轨道终端OPALE搭载在ARTEMIS卫星上。两颗卫星间隔30000km,相对运动速度为7km/s。2001年11月,ESA完成了通过星间链路将图象从SPOT4经由ARTEMIS传送到地面站的实验,通信速率为50Mbit/s。

德国的TerraSAR-X激光通信终端TerraSAR-X计划搭载一个激光通信终端(LTC)通信速率为(24*255Mbps),可以用来进行星间激光通信(美国的低轨卫星)和星地激光通信,用于实时传输合成孔径雷达上的数据。2008年2月21日,TerraSAR-X卫星与NFIRE卫星成功进行了世界上首次星间相干激光链路实验,链路距离3700~4700km、链路持续时间50~650s、误码率优于10-9、通信数据率高达,该实验的成功标志着星间光通信技术的发展向前迈进了一大步。

日本空间光通信发展

日本从80年代中期就开始星间激光通信的研究工作。1995年6月,日本的ETS-VI卫星与美国的大气观测卫星实现了双向激光通信,在相距32000km的情况下通话8分钟。1995年7月,ETS-VI 卫星成功进行了星地光通信实验,传输距离37800km,传输速率。2004年,日本计划在日本实验太空舱(JEM)“Kibo”上进行光通信实验。实验在Kibo 和多个地面接收站之间进行,传输距离38,000km,下行速率。

另外更引人注目的星地激光通信是日本的LUCE计划, LUCE通信终端(见图2)负载于OICETS卫星上,LUCE装载卫星的顶端。2005年12月9日实现了LUCE 终端与Artemis卫星上的终端之间的激光通信。2006年3月,LUCE 终端与日本国家信息通信技术研究所(NICT) 光学地面站成功进行了双向激光通信试验,示意图见图2。2006年6月7日,LUCE 终端与德国宇航中心移动光学地面站OGS-OP之间实现激光通信试验,在国际上首次实现低轨卫星与光学地面站的激光通信,日本LUCE计划的成功推动了星间激光通信技术的发展。

美国空间光通信

美国于20世纪60年代中期就开始实施空间光通信方面的研究计划。美国近年来报道的大多是激光通信系统地面大气传输实验等方面的研究,但一直以来各研究机构也进行了大量的星间相干光通信体制的理论和实验研究。

2000年,搭载星载光通信终端LCT的卫星STRV-2成功发射,但是由于卫星的位置和姿态控制精度未在设计范围内,没能与地面站建立光通信链路。2003年,美国JPL开始建造光通信望远镜实验室(OCTL),该实验室主要包括一个1m口径的光通信望远镜,用于研究多种激光在空间传输的性能,可实现与低轨到地球同步轨道光通信终端的光通信。

美国转型通信卫星计划将在战时和和平时期为国防部创建更宽的带宽。美国防部已经在新墨西哥州进行了概念试验,成功的实验显示出太空与地面站、太空与飞机之间进行激光通信的可能性,随着结合激光通信的转型卫星计划的出现,美国防部将会在带宽方面获得巨大提升。目前卫星上操作的带宽是几年前的10倍,在配备有宽带间隙填充仪的先进极高频卫星发射后,带宽将扩大10倍,应用激光通信后,带宽将再次扩大10倍。

国内发展现状

我国在激光通信技术的研究从“七五”开始,已经有了近30年的时间,已经在空间激光通信领域取得了一定成果,主要集中在大专院校和部分厂所。这些研究主要是针对某一特定问题而展开的,从不同的角度研究激光通信。单机或者单项技术研究居多,系统层面以及工程应用层面的研究和试验不多,与国外的差距较大。

2 卫星激光通信组成

卫星间激光通信系统主要由发射分系统、接收分系统、光学分系统、捕获跟踪瞄准(简称ATP)分系统和信息处理分系统等组成。如图3所示。

天线分系统

天线分系统主要由望远镜,滤光片,天线方位俯仰转动平台,精跟踪和超前瞄准快速反射镜等设备组成;主要完成信标光和信号光的发射,信标光和信号光的接收和滤波等任务。 天线发射部分完成对发射激光的准直和扩束,使激光光束按照一定的发散角发射出去。天线接收部分主要完成对接收光学的滤波、光束汇聚至相应的探测器上。

发射分系统

发射分系统主要由激光器、调制器、功率放大器及驱动源等设备组成,主要完成信标光产生、信号光产生、数据相干调制和信号光功率放大任务。

在卫星间激光链路中,光源的设计非常重要,它直接影响到天线增益、探测器的灵敏度、通信距离等参量,本系统选用半导体激光器作为光源,并同时使用两只激光器,分别作为信标光源和信号光源。由不同的激光器产生的信号光和信标光分别经准直系统后,具有合适的发散角,然后通过合束器合成,最后经过收发光学天线发射出去。

信标激光器用作系统的ATP探测,为便于双方搜索,减小捕获时间,信标光源应有较大的光束发散角,此外,为保证接收端有足够强的光信号,对信标光激光器的发射功率要求相对较高。

信号激光器应有较好的光束质量和较高的调制频率响应,为得到较大的输出功率,选用半导体激光器+光纤放大器体制。

接收分系统

接收分系统主要由光电探测器、滤波电路和放大电路等设备组成,主要完成微弱光信号的探测和数据信号的解调等任务。

ATP分系统

ATP分系统主要由粗跟踪单元、精跟踪单元、中心控制器、超前瞄准机构以及相关光路组成。主要完成对方信标光的捕获、跟踪和瞄准任务。由于星间距离较远,为了满足作用距离,设计的信号光波束极窄。当收到对方信号时,目标已运动到接收波束之外。双方发射天线波束的超前瞄准功能将克服该现象,确保星地链路通信正常。

粗跟踪单元负责在大视场范围内搜索、捕获目标,并对目标进行粗跟踪,将目标导入精跟踪探测器的视场。精跟踪单元负责抑制平台带来的高频扰动,在小视场内对目标进行精确跟踪,确保系统视轴指向对方视场中心。中心控制器负责协调粗跟踪单元与精跟踪单元之间的工作及测量目标角位置、角速度及角加速度等信息。

信息处理分系统

信息处理分系统主要由A/D转换器、延迟锁定环、信道译码和处理、数据组帧和信道编码、对外接口等部分组成;主要完成位同步环锁定,信道编译码等任务。

3 卫星激光通信的关键技术分析

捕获、跟踪与瞄准技术

在星间激光通信中,ATP分系统的作用是实现对光束的快速捕获并稳定跟瞄。由于两个光通信终端相隔距离较远、时刻处于移动状态,为了确保通信成功,要求ATP分系统的跟瞄精度非常高,因此决定ATP分系统的设计和实现是星间激光通信系统中的一项非常关键且难度很大的工程技术。由于星间激光通信收发设备之间存在相对运动速度,以及存在着角速度和角加速度,与远程无线光通信所要求的极窄视场的捕获、跟踪与瞄准相矛盾。另外,移动平台的姿态调整,跟踪状态下引入的平台姿态变化和平台随机振动等均对窄视场的稳定跟瞄提出了严格的要求。系统信标光的发散角在mrad量级,而信号光的发散角一般在几十μrad量级,解决办法除了提高对对方激光信号的捕获、跟踪、瞄准设备性能以外,还必须从整体系统角度综合平衡各个功能单元的技战术指标。比如:(1)在接收机中使用稳定的激光器、高透射率的光学天线,以提高发射和接收性能。(2)提高ATP自身平台稳定性能和提高平台与设备转动装置的重量比值,以改善信号跟踪与空间瞄准精度。(3)提高信标光引导精度(如程序控制引导)、增加特殊的信标光设备和其他手段的实时引导手段(如微波),以减少目标的快速捕获时间。(4)采用提高相对位置测量精度、降低跟踪误差和复合精密跟踪装置。(5)采用粗精两级复合轴联用方式,以提高跟瞄性能。复合轴控制技术能较大地提高ATP跟瞄的性能。复合轴控制系统具体可分为以下几个部分:粗跟踪系统完成扫描、搜索、捕获目标的任务。粗跟踪传感器采用大视场的CCD,控制单元采用DSP作为核心控制器,实现控制算法和其他功能控制。绝对式编码器构成位置反馈和速度反馈,控制对象为力矩电机。精瞄准系统完成精跟踪的任务,精瞄准机构由精视场探测器(高帧频CCD),数据控制器、线性高压功率运放及两维压电陶瓷模块组成。

高功率光源和高速调制技术

激光通信的需求之一是超高速的数据传输,因此需要高码率的调制技术。在远距离的卫星和卫星通信过程中由于距离较远所以需要高功率的激光光源。在国内外大都采用极性相反的圆偏振光同时传送和波分复用技术增加通信容量,采用激光二极管阵列技术和使用掺铒光纤放大器(EDFA)技术来提高激光器的发射功率。EDFA的工作原理是在石英光纤的纤芯中掺入三价稀土金属铒元素,这种光纤在泵浦光的激励下形成粒子数反转分布,然后在信号光的作用下产生受激辐射,放出与信号光完全相同的光子形成光的放大,进而实现光功率的放大。

高灵敏度、高增益接收技术

星间激光通信系统中,光接收功率与光信号传播距离的平方成反比,因此到达远距离接收端的光能量是非常微弱的。而噪声干扰如日光、星光又相当强,对于大气层内的激光通信,还会受到大气及湍流的影响。为此,除了提高激光器的功率之外,还必须研制高灵敏度的微光探测器,对所接收的信号也要进行滤波处理。

目前探测器的研究方向主要是针对高灵敏度、高增益的雪崩光电二极管探测器(APD)。APD作为激光接收器件具有高灵敏度、可靠性能高等特点,广泛应用在无线光通信系统中,QAPD作为跟踪器件,具有精度高等特点,在空间激光交会雷达、空间光通信等领域得到了较多的应用。

由于光接收端机收到的信号是十分微弱的,又加之在高背景噪声的干扰情况下会导致接收端的信噪比(S/N)降低。为快速、精确地捕获目标和接收信号,通常采取两方面的措施:一是提高接收端机的灵敏度,使其达到μW-pW量级;二是对所接收的信号进行处理,如光信道上采用光窄带滤波器(干涉滤光片或原子滤光器等)以抑制背景杂散光的干扰,在电信道上采用微弱信号检测与处理技术。微光探测可以分为两种:相干探测和非相干探测。目前相干探测可以达到10-11w。非相干探测也可以达到10-8w的级别。 4 结束语

空间激光通信的发展趋势将向网络化、小型化、智能化方向发展,卫星激光通信的应用范围将进一步扩大,将建立GEO-GEO、GEO-LEO、LEO-LEO、LEO-地面等多种形式的激光通信链路。小卫星星座的迅猛发展,使得人们对小卫星星座的星间光通信更加重视,利用小卫星间激光通信实现全球个人移动通信将是未来全球个人通信的发展趋势。

空间激光通信特点鲜明,优点很多,未来军民用前景广阔。但是,作为一种新兴通信模式,空间移动光通信在技术和应用上还有不少难点,需要攻克的关键技术还很多,有必要加强基础元器件和关键元器件的研发投入;有必要加强空间光通信各种应用的系统设计和试验验证工作;有必要加强光通信设备的卫星搭载试验。另外,鉴于国外空间光通信技术的成熟,有必要积极借鉴国外的研究成果。以期在不久的将来初步形成我国激光通信的卫星。

参考文献

[1] To Space optical communication characterization [J].SPIE Vol 5892:58920201-58920216.

[2][3],H,Burris,etc. Overview of NRL's maritime laser communication test facility [J].SPIE Vol 5892:58920601-58920612.

[4]Lawrence Robertson. A Multi-Access Laser Space Terminal System for Transformational Communication [R]. [5]Robert Lange ,Berry Smutny, , Free-Space Optical Link based on homodyne BPSK modulation[J].SPIE Vol 6105:6105A01-6105A09.

[6]王红亚,谢洪波.高速大气激光通信收发模块设计[J].电子测量技术,:94-95.

[7]赵尚弘,吴继礼,李勇军,等.卫星激光通信现状与发展趋势[J].激光与光电子学进展,2011(48).

[8]柯熙政,席晓莉.无线激光通信概论[M].北京:北京邮电大学出版社,2004.

[9]Tzung-Hsien HoStuart,D. Milner, Christopher C. Davis. Pointing, Acquisition and Tracking System with Omnivision [J].SPIE Vol 5892:589201-589212.

[10]Yushan Li, Hazem Refai1, etc. Positioning and Tracking Control System Analysis for Mobile FreeSpace Optical Network [J].SPIE Vol 5892:58921D01-5892D12.

作者简介:杨海涛(1968-),男,汉族,河北省保定市,研究生。

点击下页还有更多>>>激光通信技术论文

光纤激光器研究进展论文

2002年南开大学报道了在掺Yb3 + 双包层光纤器中得到了脉宽4. 8ns 的自调Q 脉冲输出和混合调Q 双包层光纤激光中得到峰值功率大于8kW ,脉宽小于2ns 的脉冲输出。2003年南开大学报道了利用脉冲泵浦获得100kW 峰值功率的调Q 脉冲,以及得到的60nm 可调谐的调Q 脉冲。2003年11月20日报道,上海科学家在激光领域取得新成果,成功开发出输出功率高达107W的光纤激光器。此激光器的全称为“高功率掺镱双包层光纤激光器”,与已有的激光器相比它的维护费用和功率消耗都要低得多,寿命是普通激光器的几十倍。该课题组的负责人之一楼祺洪研究员告诉记者,激光打印有着广泛的应用前景,与市民生活直接相关的如食品的生产日期、防伪标志等,若以激光打印代替油墨打印清晰度高、永不褪色、难以仿冒、利于环保,具有国际流行的新趋势。上海科学家研制的光纤激光器使光纤激光输出功率又上升了一个新台阶,最大输出功率达107W,已经遥遥领先于全国同行。2004年,南开大学又报道了连续泵浦206kW峰值功率的调Q 脉冲。2004年12月3日,烽火通信继推出激光输出功率达100W以上的双包层掺镱光纤后,经过艰苦的攻关再创佳绩,将该类新型光纤的输出功率成功提高至440W,达到国际领先水平。2012年,国内首台拥有自主知识产权的1000W工业级光纤激光器在西安诞生。这一科研成果的产业化,不仅将满足我国工业加工领域对高功率光纤激光器的市场需求,同时也将打破国外高功率光纤激光器的市场垄断局面,推动我国光纤激光加工产业进一步发展。2012年11月,华工科技旗下华工激光与锐科公司共同研制的4千瓦光纤激光器,通过了省级科技成果鉴定。鉴定专家组主任委员、中国光学学会理事长周炳琨院士指出,这项技术填补了国内空白,达到国际先进水平,获得4项国家发明专利。[5]光纤激光器作为第三代激光技术的代表,具有其他激光器无可比拟的技术优越性。不过,我们认为,在短期内,光纤激光器将主要聚焦在高端用途上随光纤激光器的普及,成本的降低以及产能的提高,最终将可能会替代掉全球大部分高功率CO2激光器和绝大部分YAG激光器。

光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。 光纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设等等。 2.光纤激光器的优势 光纤激光器作为第三代激光技术的代表,具有以下优势: (1)玻璃光纤制造成本低、技术成熟及其光纤的可饶性所带来的小型化、集约化优势; (2)玻璃光纤对入射泵浦光不需要像晶体那样的严格的相位匹配,这是由于玻璃基质Stark 分裂引起的非均匀展宽造成吸收带较宽的缘故; (3)玻璃材料具有极低的体积面积比,散热快、损耗低,所以上转换效率较高,激光阈值低; (4)输出激光波长多:这是因为稀土离子能级非常丰富及其稀土离子种类之多; (5)可调谐性:由于稀土离子能级宽和玻璃光纤的荧光谱较宽。 (6)由于光纤激光器的谐振腔内无光学镜片,具有免调节、免维护、高稳定性的优点,这是传统激光器无法比拟的。 (7)光纤导出,使得激光器能轻易胜任各种多维任意空间加工应用,使机械系统的设计变得非常简单。 (8)胜任恶劣的工作环境,对灰尘、震荡、冲击、湿度、温度具有很高的容忍度。 (9)不需热电制冷和水冷,只需简单的风冷。 (10)高的电光效率:综合电光效率高达20%以上,大幅度节约工作时的耗电,节约运行成本。 (11)高功率,目前商用化的光纤激光器是六千瓦。 3.高功率的光纤激光器及其包层泵浦技术 双包层光纤的出现无疑是光纤领域的一大突破,它使得高功率的光纤激光器和高功率的光放大器的制作成为现实。自1988年E Snitzer首次描述包层泵浦光纤激光器以来,包层泵浦技术已被广泛地应用到光纤激光器和光纤放大器等领域,成为制作高功率光纤激光器首选途径。 包层泵浦技术,由四个层次组成:①光纤芯;②内包层;③外包层;④保护层。如图(1)所示,将泵光耦合到内包层(内包层一般采用异形结构,有椭圆形、方形、梅花形、D形及其六边形等等),光在内包层和外包层(一般设计为圆形) 之间来回反射,多次穿过单模纤芯被其吸收。这种结构的光纤不要求泵光是单模激光,而且可对光纤的全长度泵浦,因此可选用大功率的多模激光二极管阵列作泵源,将约70%以上的泵浦能量间接地耦合到纤芯内,大大提高了泵浦效率。 包层泵浦技术特性决定了该类激光器有以下几方面的突出性能。 1、高功率 一个多模泵浦二极管模块组可辐射出100瓦的光功率,多个多模泵浦二极管并行设置,即可允许设计出很高功率输出的光纤激光器。 2、无需热电冷却器 这种大功率的宽面多模二极管可在很高的温度下工作,只须简单的风冷,成本低。 3、很宽的泵浦波长范围 高功率的光纤激光器内的活性包层光纤掺杂了铒/镱稀土元素,有一个宽且又平坦的光波吸收区(930-970nm),因此,泵浦二极管不需任何类型的波长稳定装置 4、效率高 泵浦光多次横穿过单模光纤纤芯,因此其利用率高。 5、高可靠性 多模泵浦二极管比起单模泵浦二极管来其稳定性要高出很多。其几何上的宽面就使得激光器的断面上的光功率密度很低且通过活性面的电流密度亦很低。这样一来,泵浦二极管其可靠运转寿命超过100万小时。 目前实现包层泵浦光纤激光器的技术概括起来可分为线形腔单端泵浦、线形腔双端泵浦、全光纤环形腔双包层光纤激光器三大类,不同特色的双包层光纤激光器可由该三种基本类型拓展得到。 OFC-2002的一篇文献采用如图2所示腔体结构,实现了输出功率为、阈值为,倾斜效率高达85%的新型包层泵浦光纤激光器[1]。在产品技术方面,美国IPG公司异军突起,已开发出700W的掺镱双包层光纤激光器,并宣称将推出2000W的光纤激光器。 4.新型的光纤激光器技术 早期对激光器的研制主要集中在研究短脉冲的输出和可调谐波长范围的扩展方面。今天,密集波分复用(DWDM)和光时分复用技术的飞速发展及日益进步加速和刺激着多波长光纤激光器技术、超连续光纤激光器等的进步。同时,多波长光纤激光器和超连续光纤激光器的出现,则为低成本地实现Tb/s的DWDM或OTDM传输提供理想的解决方案。就其实现的技术途径来看,采用EDFA放大的自发辐射、飞秒脉冲技术、超发光二极管等技术均见报道。 5.我国光纤激光器目前研究进展 2002年南开大学报道了在掺Yb3 + 双包层光纤器中得到了脉宽4. 8ns 的自调Q 脉冲输出和混合调Q 双包层光纤激光中得到峰值功率大于8kW ,脉宽小于2ns 的脉冲输出。 2003年南开大学报道了利用脉冲泵浦获得100kW 峰值功率的调Q 脉冲,以及得到的60nm 可调谐的调Q 脉冲。 2003年11月20日报道,上海科学家在激光领域取得新成果,成功开发出输出功率高达107W的光纤激光器。此激光器的全称为“高功率掺镱双包层光纤激光器”,与目前已有的激光器相比它的维护费用和功率消耗都要低得多,寿命是普通激光器的几十倍。该课题组的负责人之一楼祺洪研究员告诉记者,激光打印有着广泛的应用前景,与市民生活直接相关的如食品的生产日期、防伪标志等,若以激光打印代替现在的油墨打印清晰度高、永不褪色、难以仿冒、利于环保,具有国际流行的新趋势。上海科学家研制的光纤激光器使光纤激光输出功率又上升了一个新台阶,最大输出功率达107W,已经遥遥领先于全国同行。 2004年,南开大学又报道了连续泵浦206kW峰值功率的调Q 脉冲。 2004年12月3日,烽火通信报道,继推出激光输出功率达100W以上的双包层掺镱光纤后,经过艰苦的攻关再创佳绩,将该类新型光纤的输出功率成功提高至440W,达到国际领先水平。这是烽火通信在特种光纤领域迈出的重要一步,同时也是我国在高功率激光器用光纤领域的重大突破。掺镱双包层光纤激光器是国际上新近发展的一种新型高功率激光器件,由于其具有光束质量好、效率高、易于散热和易于实现高功率等特点,近年来发展迅速,并已成为高精度激光加工、激光雷达系统、光通信及目标指示等领域中相干光源的重要候选者。双包层掺镱激光器的主要激光增益介质是双包层掺镱光纤,因此双包层掺镱光纤的性能直接决定了该类激光器的转换效率和输出功率。烽火通信作为国内唯一一家进行双包层掺镱光纤研究的单位,在成功推出输出功率达100W以上的完全可商用的双包层掺镱光纤产品后,又加大的研发力度,使得其输出功率实现440W以上,达到国际领先水平。 6.结论 光纤激光器作为第三代激光技术的代表,具有其他激光器无可比拟的技术优越性。不过,我们认为,在短期内,光纤激光器将主要聚焦在高端用途上随光纤激光器的普及,成本的降低以及产能的提高,最终将可能会替代掉全球大部分高功率 CO2激光器和绝大部分YAG激光器。

在经济学的论文中引用参考文献,具有重要的标志功能、评价功能、保护功能和链接功能,可以反映经济学论文的研究基础和科学依据,可供进一步检索有关资料,共享资源。下面我将为你推荐经济学论文参考文献的内容,希望能够帮到你!

[1]刘思华.生态马克思主义经济学原理[M].北京:人民出版社.2006

[2]叶耀丹.马克思主义生态自然观对中国生态文明建设的启示[D].成都:成都理工大学.2012

[3]陆畅.我国生态文明建设中的政府职能与责任研究[D].长春:东北师范大学.2012

[4]俞可平.科学发展观与生态文明[M].上海:华东师范大学出版社.2007:18

[5]朴光诛等.环境法与环境执法[M].北京:中国环境科学出版社.2004:23

[6]罗能生.非正式制度与中国经济改革和发展[M].北京:中国财政经济出版社.2002: 19

[7]党国英.制度、环境与人类文明一关于环境文明的观察与思考[N].新京报.2005-2-13

[8]张婷婷.生态文明建设的科技需求及政策研究[D].锦州:渤海大学.2012

[9]秦书生.生态文明视野中的绿色技术[J].科技与经济.2010(3): 82-85

[10]陈池波.论生态经济的持续协调发展[J].长江大学学报(社会科学版)2004(1):97-102

[11]张首先.社会主义与生态文明[J].理论与现代化.2010(1): 23-26

[12]黄光宇.陈勇.生态城市理论与规划设计 方法 [M].北京:科学出版社.2002

[13]张首先.生态文明研究[D].成都:西南交通大学.2010

[14]马仁忠.地理环境对种族、民族特征的影响[J].宿州 教育 学院学报.2002(4):

[15]冒佩华.王宝珠.市场制度与生态逻辑[J].教学与研究.2014(8):37-43.

[1]陈凌.应丽芬.代际传承:家族企业继任管理和创新〔J〕.管理世界.2003 ( 6): 89-9

[2]伯纳德‘萨拉尼着.陈新平、王瑞泽、陈宝明、周宗华译.税收经济学〔M〕.北京:中国人民大学出版社.2009:143-144.

[3]彼德·德鲁克.大变革时代的管理〔M〕.上海:上海译文出版社.1999版.

[4]陈凌.信息特征、交易成本和家族式组织〔J〕.经济研究.1998(7):27-33.

[5]. Toward an Economic Theory of Income Distribution〔 C〕.Cambridge, MA: MITPress, 1974,123:137-139.

[6]. The Wealth of Nations ( 1776 )〔M〕.Chicago: University of Chicago Press,1976(reprint): 391.

[7]沈建法.城市化与人口管理[M].北京:科学出版社.1999

[8]张志强.徐中民.程国栋.生态足迹的概念及计算模型[J].生态经济.2000(10) : 8-10

[9]张恒义.刘卫东.林育欣.等.基于改进生态足迹模型的浙江省域生态足迹分析[J].生态学报.2009(5):2738-2748

[10]贺成龙.吴建华.刘文莉.改进投入产出法在生态足迹中的应用[J].资源科学.2008 (12) : 1933-1939,2008 (2) : 261-266

[11]郭军华.幸学俊.中国城市化与生态足迹的动态计量分析[J].华东交通大学学报.2009 (5) : 131-134.

[1] 刘毅. 现代性语境下的正当性与合法性:一个思想史的考察[D]. 中国政法大学 2007

[2] 刘毅. 树突状细胞在兔动脉粥样硬化模型中作用的研究[D]. 南方医科大学 2009

[3] 刘毅. 硅基微环谐振腔光信号处理与布里渊光纤激光器的理论和实验研究[D]. 天津大学 2014

[4] 刘毅. 未来移动通信系统中的协作传输技术研究[D]. 北京邮电大学 2010

[5] 刘毅. 基于图割的交互式图像分割算法研究[D]. 南京理工大学 2013

[6] 刘毅. 基于iTRAQ技术对HBV相关性肝癌血浆差异蛋白的鉴定及功能学研究[D]. 重庆医科大学 2014

[7] 刘毅. 整体性治理视角下的县级政府社会管理体制创新研究[D]. 华中师范大学 2014

[8] 刘毅. 几类切换模糊系统的镇定控制设计[D]. 东北大学 2009

[9] 刘毅. 区域循环经济发展模式评价及其路径演进研究[D]. 天津大学 2012

[10] 刘毅. β-抑制蛋白2对哮喘小鼠CD4~+T细胞表达和产生IL-17的影响及其机制研究[D]. 中南大学 2011

[11] 刘毅. SIRT3在原发性肝癌中的表达及其抑瘤作用的研究[D]. 中南大学 2012

[12] 刘毅. 南中国海与东南极中晚全新世气候环境变化记录与研究方法探索[D]. 中国科学技术大学 2012

[13] 刘毅. 晚期糖基化终产物对心肌微血管内皮细胞及糖尿病心肌缺血再灌注损伤的影响及机制[D]. 第四军医大学 2012

[14] 刘毅. 华喦花鸟画研究[D]. 南京艺术学院 2012

[15] 刘毅. 三甲基芹菜素阻断多种心脏钾通道与增加迟钠电流的作用研究[D]. 华中科技大学 2012

[16] 刘毅. 面向人群的并行多目标疏散模型研究[D]. 武汉理工大学 2012

[17] 刘毅. 采用外周血进行肿瘤分子诊断的转化医学研究[D]. 中国人民解放军军事医学科学院 2012

猜你喜欢:

1. 会计毕业论文参考文献

2. 人力资源会计论文参考文献

3. 国际贸易论文

4. 经济学论文参考文献

5. 有关经济学论文参考文献

光子硅研究进展论文

导读

背景

光子学(photonics)是研究作为信息和能量载体的光子的行为及其应用的学科。光子学及其发展的相关技术即光子技术,具有丰富的内涵和广阔的应用前景。如果你使用智能手机、笔记本电脑、平板电脑,那么就有望从光子学的研究中获益。

创新

近日,美国特拉华大学电气与计算机工程系助理教授 Tingyi Gu 领导的一支团队正在开发光子器件方面的前沿技术,该技术可以使得器件之间以及使用者之间的通信速度更快。

最近,该研究小组设计出一种“硅-石墨烯”器件,它能以亚太赫兹的带宽,在一皮秒之内发射无线电波。这样不仅可携带更多信息,而且速度也更快。他们的研究近期发表在《美国化学会应用电子材料(ACS Applied Electronic Materials)》期刊上。

论文第一作者、研究生 Dun Mao 表示:“在这项研究中,我们仔细研究了用于未来光电子应用的集成石墨烯的硅光子器件的带宽限制。”

技术

硅是大自然产生的一种非常富足的材料,通常作为电子器件中的半导体使用。然而,研究人员们已经耗尽了仅由硅制成的半导体器件的潜能。这些设备受制于硅的载流子迁移率(电荷通过材料的速度)以及间接带隙(限制了释放和吸收光线的能力)。

现在,Gu 的团队将硅与一种具有更多有益特性的材料(二维材料石墨烯)相结合。二维材料以只有一层原子而得名。与硅相比,石墨烯具有更好的载流子迁移率以及直接带隙,使得电子传输得更快,并且电气和光学特性更好。通过将硅与石墨烯相结合,科学家们将可以继续利用已经在硅器件中使用的技术,硅与石墨烯的结合使运行速度变得更快。博士生 Thomas Kananen 表示:“通过研究材料的特性,我们能否比现在做更多的事情?这就是我们想要搞清楚的。”

为了将硅与石墨烯相结合,团队采用了一种他们正在开发的方法。一篇发表在《npj 2D Materials and Application》期刊上的论文描述了这种方法。团队将石墨烯放置到一个特殊的地方,即所谓的“p-i-n结”。它是材料之间的一种接口。通过将石墨烯放置在“p-i-n 结”上,团队以一种可以提升响应率和器件速度的方法优化了这个结构。

这个方法很健壮,而且便于其他研究人员采用。这一工艺产生在12英寸的超薄材料晶圆上,并利用了小于一毫米的元件。某些元件是在商业制造厂生产。其他的工作在特拉华大学的纳米制造设施进行,材料科学与工程系副教授 Matt Doty 是该设施的主任。

Doty 表示:“特拉华大学纳米制造设施(UNDF)是一个员工支持的工厂,它使用户可在7纳米的长度级别制造设备,约为人类发丝直径的万分之一。UNDF成立于2016年,为从光电子学到生物医学再到植物科学的一系列领域带来了新的研究方向。”

价值

硅与石墨烯结合之后,可作为光电探测器使用,可以感知光线,并制造电流,并且比现有方案的带宽更大和响应时间更少。所有这些研究意味着未来将带来更便宜、更快速的无线设备。博士后研究员、发表在《npj 2D Materials and Application》期刊上的论文第一作者 Tiantian Li 表示:“它可以使得网络更强、更好、更便宜。这是光子学的关键点。”

现在,团队正在思考拓展这种材料的应用途径。Gu 表示:“我们正在寻找更多的基于类似结构的元件。”

关键字

参考资料

【1】

【2】Dun Mao, Thomas Kananen, Tiantian Li, Anishkumar Soman, Jeffrey Sinsky, Nicholas Petrone, James Hone, Po Dong, Tingyi Gu. Bandwidth Limitation of Directly Contacted Graphene–Silicon Optoelectronics. ACS Applied Electronic Materials, 2019; 1 (2): 172 DOI:

采用超导硅片作为不可信的中继服务器,实现安全的量子通信。利用波导集成超导单光子探测器(中间有发夹形状的红色导线)特有的低死区时间特性,实现了最佳时bin编码贝尔态测量(四个光子之间呈蓝色和灰色波状曲线,用红球表示)。这反过来又提高了量子通信的安全密钥率。资料来源:南京大学 集成量子光子学(IQP)是实现可扩展的、实用的量子信息处理的一个很有前途的平台。到目前为止,IQP的大多数演示都集中在提高基于体积和光纤元件的传统平台实验的稳定性、质量和复杂性上。一个更苛刻的问题是:“在IQP中是否存在传统技术无法实现的实验?” 这个问题得到了由南京大学的马晓松、张拉宝和中山大学的蔡新伦共同领导的团队的肯定回答。据《Advanced Photonics》报道,该团队使用基于硅光子学的芯片和超导纳米线单光子探测器(SNSPD)实现了量子通信。该芯片的优异性能使他们能够实现最佳时bin Bell态测量,并显著提高量子通信中的密钥率。 单光子探测器是量子密钥分配(QKD)的关键元件,是实现实用和可扩展量子网络的光子芯片集成的理想器件。通过利用光波导集成SNSPD独特的高速特性,单光子探测的死区时间比传统的正入射SNSPD减少了一个数量级以上。这使得该团队能够解决量子光学中一个长期存在的挑战:时间bin编码量子位元的最佳贝尔态测量。 (a)实验装置示意图。MDI-QKD的服务器使用超导硅光子芯片进行最佳贝尔态测量,该芯片允许Alice和Bob在不受探测器侧通道攻击的情况下交换安全密钥。(b)当Alice和Bob发送相同的状态(蓝点)或不同的状态(红点)时,重合中的破坏性和建设性干涉计数。(c)不同损失下的安全关键利率。资料来源:郑等,doi: 。 这一进展不仅对量子光学的基础研究具有重要意义,而且对量子通信的应用也具有重要意义。该团队利用非均匀集成的超导硅光子平台的独特优势,实现了测量设备无关的量子密钥分配服务器(MDI-QKD)。这有效地消除了所有可能的检测器侧通道攻击,从而大大提高了量子密码的安全性。结合时间复用技术,该方法获得了一个数量级的MDI-QKD密钥速率的增加。 通过利用这种异构集成系统的优势,该团队在125mhz时钟速率下获得了高安全密钥率,这可以与目前最先进的MDI-QKD在GHz时钟速率下的实验结果相媲美。“与GHz时钟速率MDI-QKD实验相比,我们的系统不需要复杂的注入锁定技术,这大大降低了发射机的复杂性,”马博士团队的博士生郑晓东说,他是《先进光子学》论文的第一作者。 “这项工作表明,集成量子光子芯片不仅提供了一条小型化的道路,而且与传统平台相比,还显著提高了系统性能。结合集成的QKD发射器,一个完全基于芯片的、可扩展的、高关键速率的城域量子网络应该在不久的将来实现。”马说。

相关百科

热门百科

首页
发表服务