一个正方形鱼塘的四周每隔2米栽了一棵树,共栽了50棵树,这个鱼塘的边长是多少?边长50÷2÷4=米面积×平方米
你这两道题是经典的植树问题,你在计算的时候看清楚是一头栽还是两头栽,一头栽就直接除,两头栽就加一棵。第一题你把它看作一条直线,他是一头栽树的,所以直接把它的周长先算出来:30×4=120米,然后再除以间隔就行。120÷5=24棵。第二题是两头栽,所以除一下加一棵就行。1000÷20+1=51棵。但是这道要小于20米的,这样算起来刚好是20米,所以要再加1棵就行了。所以最终的结果是52棵。
这个鱼塘的边长是24米。
分析:根据已知条件先求出正方形的边长,然后在求出边长,也就是鱼塘的边长。
正方形的周长是:(50-1)×2
=49×2
=96米
边长是:96÷4=24米
扩展资料:
此题运用到植树问题,分直线型植树和环形植树
1、环形植树:间隔数=植树环路长÷间隔长(树与树之间的距离)
2、直线型植树
间隔数=路长÷间隔长
两端都种的:树的棵数=间隔数+1
一端植树的:树的棵数=间隔数
两端都不植的:树的棵数=间隔数-1
6×4-4=20(棵), 或6×4=24(棵), 或6×4-2=22(棵), 答:一共要种20棵或24棵或22棵. 故答案为:20或24或22.
养塘鲺(塘子)10厘米以下鱼苗培育,鱼花以肥水下塘最佳。塘鲺是以动物性饵料为主的杂食性鱼类 。塘鲺生长及养殖产量的高低,与饲料中所含粗蛋白质多少有关。粗蛋白含量高,生长快、产量高; 一般要求粗蛋白质含量在25%~30%以上。否则,生长慢,产量低。如用精饲料养殖,一般投饵量为鱼体重的5%。如投喂粪等粗饲料,以吃饱为主,即所投饲料在1h内吃完为好。
池塘养殖过程中,每年的清塘处理都会使池塘土壤中的碳、氮比例失衡,比值变高。而实验表明低浓度氮的土壤会阻碍微生物对有机物质的分解。所以对于那些有机物质浓度高的酸性池塘,除了用生石灰碱化外还需要施肥处理,以强化土壤活性,提高池塘土壤的氧化还原能力,防控硝酸的还原。只有通过养殖前期的肥水工作才能获得一个好的池塘养殖环境。肥水好处:肥水可以培养水体中藻相和菌相,稳定ph值,提高池塘水体的正常溶氧,减轻蟹苗放入后的应激反应。肥水能促进浮游动植物快速繁殖,通过它们能很好地折射光线,弱光的塘底更适合蟹苗喜欢隐藏的特性,为其提供了觅食和活动以及蜕壳的环境。肥水可以修复池塘的生态环境,平衡因清塘、翻耕和过水所流失的营养盐和微量元素,降低蟹苗对生活环境变化的敏感度,使其能迅速适应环境和吃料。肥水可以净化水质,提高池塘水体的自净能力,有利于水草的生根发芽和生长。同时也给藻类的多样性提供了增殖的能量,起到了防止青苔在无竞争条件下的快速生长。肥水是奠定后期生态养殖成功的基础,施肥所提供的充足碳源和氮源使微生物能大量增殖,维持了池塘的良好生态环境,保证了河蟹后期的顺利成长。
"养虾先养水"早已成为广大对虾养殖者与技术人员的共识。对虾生于斯长于斯,虾与水的关系就如同人与空气的关系。没有健康适宜的养殖水环境,再营养全面的饲料,再细心的管理都不可能获得最终养殖的成功。放苗前,养殖户都知道进行肥水并且都明白肥水工作的重要性,但是实际生产中,往往事倍功半,有的水难肥,有的水肥起来几天后水色又变差,肥水效果往往不理想。如何做好肥水,笔者有以下几点建议,可供参考。一、放苗前肥水原则1、所肥水体及肥料中营养素(氮、磷、钾及其它微量元素)应全面全且相互平衡。2、无机肥(化肥)是速效产品,肥水虽快,但持续时间较短;有机肥属长效产品,肥水虽慢,但持续时间较长。二者相互合理结合起来使用可达到即快又稳定的良好肥水效果。3、无机肥使用时要根据阳光情况,少量多次。光强,光照时间长多施,反之少施多次。否则阴雨天施肥后大量的肥沉入池底,有可能使"青苔"大量繁殖。4、基肥量要足,必须考虑到池塘中已有营养物质(如淤泥)及所施基肥营养结构与数量,底泥多时少施,底泥少或者新塘要适当多施。5、池底淤泥较少时单施微生物制剂(EM菌)肥水效果较差,这些菌施下去后没有东西可供其分解变成肥料。6、放苗后施追肥宜少量多次,少用、慎用尿素等氮肥,否则氨氮含量有可能增高。7、水体中实际的氮磷含量超过10:1时硅藻易大量繁殖;氮磷比3:1-7:1,甚至接近10:1时绿藻易大量繁殖;但氮磷比接近1:1时有毒甲藻、鞭毛藻易繁殖。8、肥水后水体透明度应在30cm左右。绿色水(淡绿色、翠绿色、黄绿色或者绿豆色)比褐色水(茶色、茶褐色)相对稳定,想培育相对稳定的水就应尽量调整施肥的品种和数量,培育绿色水。
1,转化多余有机质2,增加水体中的溶解氧3,增加水体中的饵料4,抑制青苔的生长5,增加水体的缓冲能力6,降低水体中溶解性有害物质的含量
答:影响家畜繁殖能力的因素有以下几个方面:1 遗传的影响 对于猪来说, 虽然每窝产仔数的遗传力估计值是低的, 但每窝产仔数受不同类型的遗传影响是非常大的.品种平均值的差异可高达每窝3~4 头仔猪.中国的多数猪种的产仔性能比国外品种明显为高.另外, 实践证明近交会明显引起繁殖性能的下降, 而杂交往往能提高每窝产仔数.公畜精液的质量和受精能力与其遗传性力估计值是低的, 但每窝产仔数受不同类型的遗传影响是非常大的.品种平均值的差异可高达每窝3~4 头仔猪.中国的多数猪种的产仔性能比国外品种明显为高.另外, 实践证明近交会明显引起繁殖性能的下降, 而杂交往往能提高每窝产仔数.公畜精液的质量和受精能力与其遗传性也有着密切关系.而精液的品质和受精能力往往是影响受精卵数目的决定因素.一头精液质量差、受精能力低的公畜, 即使与产生最大数目正常卵子的母畜配种, 也可能发生不受精, 或者受精卵数显著低于排出卵子数的现象, 因而使母畜的繁殖力降低.其所生后代有可能具有繁殖力低的遗传特性.我们可用直接观察受精的方法来确定公牛受精能力的差.2 环境的影响 环境条件可以改变许多动物的繁殖过程.日照长度的改变, 与季节性发情动物的开始发情有关.日照长度和温度是母羊、母马发情的主要环境因素.在卵巢的正常活动下, 日照对母羊的排卵数有着显著的影响, 有试验证明, 绵羊随配种季节的进展, 产双羔的比例逐渐增加, 并在配种中期达到高峰.其原因是日照时间的缩短对母羊分泌垂体促性腺激素的能力有逐渐增强的刺激, 从而促使促性腺激素的分泌量逐渐增加, 促进了卵巢的活动, 有利于卵泡的发育和排卵, 排卵数目也相应增加.日照不仅能影响母畜的性周期, 也影响公畜的生殖机能和精液品质.实验证明, 延长日照时间, 特别是在日照短的季节用人工的方法增加光照时间, 可改进公牛、公马和公猪的精液品质.对小公猪有促进其性成熟的作用.用孕马血清诱发母猪发情产仔的实验证明, 夏天比冬天处理的产仔数显著增多.环境温度对公、母畜的繁殖都有明显的影响, 通常高温比低温对繁殖的危害为大.对于公畜来说, 睾丸本身具有一定调节温度的能力以维持其产生精子的机能.当在炎热的夏季或高温高湿的环境下, 外界温度的升高往往会超过睾丸自身调节温度的范围, 致使睾丸温度上升, 造成公畜精液品质急剧下降.只有当环境温度恢复后, 睾丸才能逐渐恢复正常的生精机能.若在这一段时间进行配种, 母畜的受胎率将是很低的, 有些学者称这种现象为“夏季不孕症”.3 营养的影响营养也是影响家畜繁殖力的重要因素.一般认为, 营养不足会延迟青年母畜初情期的到来, 对于成年母畜会造成发情抑制、发情不规律、排卵率降低、乳腺发育迟缓, 甚至会增加早期胚胎死亡、死产和初生仔畜的死亡率.某些矿物质和微量元素的缺乏也会影响母畜的繁殖力, 只采食粗饲料的牛容易缺磷.缺磷能引起卵巢机能不全, 从而延迟初情期.对成年母牛可造成发情症状不全, 发情周期不规律, 最后导致发情完全停止.绵羊由缺磷所引起的繁殖机能紊乱与牛相同.根据已有的资料分析, 显著缺钙并不会引起生殖器官的发育障碍或性周期的紊乱, 但钙的进食量过高会影响磷的利用.铜过低可能抑制家畜发情和使繁殖力减退, 增加胚胎早期死亡,这主要是由于铜对卵巢的机能有特殊影响的缘故; 缺锰会引起猪卵巢机能紊乱, 会造成发情和妊娠延迟、习惯性流产等, 每日服用 2 mg 锰, 能防治这种缺乏症; 某些个别地区由于土壤中缺硒, 也会引起母畜的早期( 妊娠3~4 周) 胚胎死亡.维生素不足可以使多胎动物排卵数减少.缺乏维生素 A 和 E 可使发情不规律, 胚胎发育迟缓和初生仔畜生命力降低.母牛缺乏维生素 A 时,可造成犊牛生命力低, 胎儿吸收或发育不正常, 阴道上皮角质化而变得易感染.此外, 牧草中植物性雌激素的含量过多也常常会影响母羊的正常繁殖力, 但适当的含量可能对母畜有良好的影响.例如母牛或母马等常常在吃青草后改进了配种效果, 即可能与此有关.4 配种时间的影响假若精子和卵子均属于正常, 则影响繁殖力的主要因素变为配种时间是否适时, 也即排卵时是否有足够的精子达到受精部位( 输卵管壶腹)与卵子相遇.卵子排出后若不能及时与精子相遇而完成受精过程, 则随着时间的延长, 衰老过程的加深, 其受精能力会逐渐减弱, 最后丧失受精能力.在这种情况下, 某些衰老的卵子即使能与精子受精, 也往往会影响早期胚胎的生活力或者使异常受精现象增多.由此可见, 每种家畜在发情期内, 都有一个配种效果最高的阶段.这种现象对排卵时间较晚的母畜, 如母牛特别明显, 生产实践也充分证明此点.此外, 马和猪的发情持续期也比较长, 因此适宜的配种时间对卵子的正常受精更为重要.实践证明, 随着猪的开始发情与交配之间的间隔时间的增长, 含两个以上雄原核卵子的数目也增加.如在发情开始后延迟至 44 h 配种, 会有 4%的异倍体胚胎, 造成发育后期变性.精子的衰老也是影响繁殖力的因素之一.特别是随着人工授精技术的普及, 尤应注意这一问题.一般来说, 除超低温保存外, 无论采用哪种精液处理和保存方法, 精子都会随保存时间的延长使受精能力降低或更容易造成胚胎死亡.使用保存时间过长的液状精液受精时, 其卵子透明带内的精子数要比新鲜精液者为少.5 泌乳的影响母畜产后发情的出现与否和出现的早晚与泌乳期间的卵巢机能、新仔畜的哺乳、乳用家畜的产乳量及挤奶次数都有直接的关系.母牛的出现伴有发情症状的排卵一般在产后的 30~100 天.但由于挤奶和哺乳的方法的不同会出现一定的差异.例如, 挤奶牛在产后 30~70 天即可发情, 而哺乳母牛出现发情的时间往往长达 90~100 天, 而每天多次挤奶又比每天只挤两次者推迟.母猪在产后泌乳期间尽管有时出现发情, 但症状往往既不明显也不发生排卵, 当哺乳 5~7 周断奶, 7 天后即可出现发情.总的来说, 哺乳会延迟产后发情.当母牛泌乳量大、受胎率低时, 在生产中往往是由于空怀期长, 泌乳量下降速度慢, 泌乳期延长的结果.而挤奶次数增加和吮乳刺激, 会使母牛卵巢机能恢复期延长.6 管理的影响家畜的繁殖主要受人类活动的控制, 良好的管理工作应建立在对整个畜群或个体的繁殖能力全面了解的基础上.合理的放牧、饲喂、运动或调教、使役、休息、厩舍卫生设施和交配制度等一系列管理措施, 均对家畜的繁殖力有一定的影响.而管理不善, 不但会使一些家畜的繁殖力降低, 而且往往会造成家畜的不育.对于母牛的管理工作, 若能适当提高产前( 分娩前 8 周) 和配种前母牛的饲养水平, 提前或适当延长青年和老年母牛的配种期, 及早进行妊娠鉴定分群管理, 采用同期发情等技术措施, 可进一步发挥母牛群的繁殖潜力.在现代化畜牧业中, 所谓科学的饲养管理, 其本身就包括提高家畜的繁殖效率.科学的饲养管理, 不仅表现在最大限度地满足家畜的生长、发育、生产、繁殖、营养、卫生等方面的需要, 也表现在对家畜的生存环境和生命活动的人为控制的水平.就家畜与自然环境条件的关系来说, 随着畜牧业发展水平的提高,自然环境条件影响越来越小, 人为的控制越来越加强.人为控制家畜的生存环境和干预它们生命活动的水平将不断发展, 家畜的繁殖力也将不断提高.注意以上事项有助于提高家畜的繁殖能力.现在有利用酶抑制剂提高家畜繁殖力.下面介绍一种提高雄性家畜繁殖力的方法1.松针:含有丰富维生素、氨基酸、微量元素的松针抗生素,对种公畜有提高精液分泌量的作用.种公畜日粮添加 4% 的松针粉,可提高采精量8%~10%.2.麦芽:大麦籽实经人工催发长~厘米的短芽后含维生素E 较多,对雄性家畜有提高生殖机能、改善精液品质的作用.用量:猪每天150克,家兔40克.3.淡水虾:产于河沟、池塘中的雌雄虾都可应用.对性欲不旺的种公猪,每天100克,煮熟连汤喂给,连服2~3次,可收到一次交配成功的效果.4.桑蚕蛹:含丰富的蛋白质、脂肪、钙、磷和12种氨基酸,对雄性家畜有强化性欲、提高精子活力等作用.用量:家兔占日粮的3%~5 % .
星虫动物繁殖生物学研究进展星虫(Sipunculida)是一小类不分节、蠕虫状的海产体腔动物。目前,世界上已记录星虫共约16属250多种,我国已发现2科8属36种。星虫动物门下只设立一个星虫纲一个星虫目,其下分为4科,分别为Golfingiidae科,Phascolosomatidae科,Sipunculidae科和Aspidosiphonidae科。其中Golfingiidae科的种类最多,占总种数近半。星虫动物主要栖息于潮间带至浅海的沙、泥沙底质及岩礁、珊瑚礁、藻场的沉积沙泥环境中,营埋栖生活,温带至热带海域均有分布。绝大多星虫种类具有经济价值,不仅是底栖经济鱼类和甲壳类优质的天然饵料,不少种类还是海珍食品。光裸方格星虫(Sipunculusnudus)加工成干品,俗称“沙虫子”、“海肠子”,是名贵的海产珍品。可口革囊星虫(Phascolosomaesculenta)可熟制成胶冻小食品,俗称“土笋冻”,是闽南特有的传统风味小吃,美名远扬。在印度洋~太平洋的热带部分地区,广泛分布有可食用的星虫动物[1]。经济价值较大的星虫动物由于其营养丰富,味道鲜美,有着广阔的人工养殖开发前景。目前国内外在星虫的分类、形态、组织学及繁殖生物学方面已有不少研究工作,但其人工育苗技术迄今未见报道。作者综述星虫繁殖生物学的研究进展,以期为星虫动物的人工育苗和增养殖开发提供参考资料。1星虫的繁殖过程星虫动物的繁殖过程可以归纳如下:大多数星虫种类为雌雄异体,但雌性和雄性的外形很相似。星虫的性腺不显著,位于吻部收缩肌的基部,其配子早期从性腺释放出来,靠从体腔液中吸取营养液得以发育。发育成熟的配子经肾管围食膜从体腔进入肾管中,在肾管内停留一段时间后,产到海水里,进行体外受精。星虫的受精卵发育形式为螺旋卵裂,其胚胎以内陷方式或外包方式发育成原肠胚,此后有的种类可直接发育成幼星虫,如Phascolion cryptus等,而大部分种类须经历营卵黄营养的自由游动的担轮幼虫(trochophore larvae)阶段,之后再经历第二个幼体阶段,一般称为漂浮幼体(pelagosphaera larvae)。漂浮幼体由担轮幼虫发育而来(只有一个种例外),通常以浮游生物为食物,一般个体较大(几毫米长),历时较长,能够远距离地漂浮生活。漂浮幼体以发达的后纤毛环取代了前期担轮幼体的前纤毛环,进行漂浮和摄食。漂浮幼体的头部和后纤毛环能够缩回躯干内,此时星虫幼体的体形为球状,因此有的学者也将漂浮幼体称为海球幼体。漂浮幼体变态为幼星虫的形体变化包括躯干伸长,尾器消失,头部伸长形成吻部和触手。此后稚星虫转为底栖生活。2星虫的繁殖季节关于星虫动物繁殖季节的调查研究,目前已报道三属五种,即Sipunculus nudus L,Phascdosomavulgare,Golfingia pugettensis,Phascolosoma agassizii,[2~6]。法国Roscoff海域的产卵季节是6~9月份。在美国华盛顿州太平洋沿岸的San Juan群岛产卵季节为10~12月份。同样位于San Juan群岛的种群的产卵季节在6~8月份,而在加洲Monterey海的种群其产卵季节是3~5月份。澳大利亚昆士兰的产卵时间为12月至翌年2月份。产自我国厦门市鳌冠沿岸的光裸方格星虫于每年5~9月份产卵,而产自中国广西北海市白虎头和高德海区潮间带的光裸方格星虫种群则于4~9月份产卵。上述表明,星虫的繁殖季节不仅与种类有关,亦与分布纬度有关。3星虫的雌雄性比绝大多数星虫为雌雄异体,但外形无明显的分辨特征。通常通过解剖检查体腔液中的精子和卵子来确认雄性和雌性。关于星虫的雌雄性比研究报道不多。目前只报道中国厦门鳌冠沿岸的光裸方格星虫8月份的性比为1:1[7]。此外,作者对厦门同安湾海区产的光裸方格星虫和可口革囊星虫两种星虫繁殖季节的6月份标本进行解剖,取体腔液区分雌雄,得出前者的性比为1:,后者为1:1。同种星虫性比测定的差异可能与不同繁殖月份有关。4星虫的生殖细胞星虫是一种变异性较大的海洋底栖生物,地理环境的不同,同种的成体大小也有明显差异。因此,成熟卵细胞的大小也是有差别的。例如美国佛罗里达坦帕湾(Tampa Bay)的光裸方格星虫成熟卵细胞的平均直径为120μm[8],而中国厦门鳌冠沿岸的为155μm[7],在广西北海市白虎头和高德海区潮间带的为170μm[2]。无论哪一种星虫,其体腔卵细胞的卵黄膜变化都是很明显的,因为卵黄膜储存有足够的营养物质,以供未来胚胎和幼体发育所需。Rice[8]将的卵黄膜分为外、中、内3层,而Sawada[9]则将的卵黄膜分为内、外两层,并注意到在成熟期内层卵黄膜和质膜之间填充有扩散物质。郭学武[7]则认为卵黄膜在初期有2层,随着卵细胞的生长,外层卵黄膜通过卵黄膜微孔转移到内层卵黄膜和质膜之间,形成3层卵黄膜。至卵细胞成熟时,卵黄膜又复为两层,这是由于原来的外层卵黄膜,完全转移而成为内层卵黄膜的缘故。关于星虫动物雌性生殖细胞的发育阶段,Gonse[10]曾对此在光镜观察的基础上进行研究,他将戈芬星虫(Golfingia vulgaris)体腔中的卵细胞分为6个不同的发育阶段。而Sawada[9]根据电镜研究的结果,将体腔卵细胞分为5个不同的发育阶段。吴斌[2]在切片染色后显微镜观察的结果,将光裸方格星虫的体腔卵细胞分为5个不同的发育阶段。上述研究结果主要依据组织学特征得出。也有一些学者根据卵细胞的其它特征,如细胞的形状、卵黄密度等来划分卵细胞的发育期,如Phascolosoma lurco[5],[11]。而关于雄性生殖细胞的结构和发育,目前研究得还不够深入,基本上局限于光镜的水平上。Rice[11]、Gonse[10]、Green[4]等学者认为,星虫动物雄性生殖细胞,是在初级精母细胞期被排出精巢的,精母细胞在体腔液中进行两次分裂,变成精细胞,精细胞分化为精子,并以精子团的形式存在于体腔液中。星虫的精子团可能和其它许多具有精子团的体腔动物一样,是一种被寄在细胞,即cytephore[12]。吴斌[2]研究我国北部湾产的光裸方格星虫,指出雄性生殖细胞是以精细胞团的形式存在于体腔中,全年都有精细胞团存在,在非繁殖季节精细胞团较小,只有60~100μm,精细胞结合紧密。在繁殖季节精细胞团较大,有150~200μm,精细胞结合松散。精细胞从精细胞团上脱落后游离于体腔中分化为成熟的精子,精子头部3~5μm,尾长约30μm。体腔内的精子不能游动,不具受精能力。这些情况与郭学武[7]对厦门产的光裸方格星虫的研究报道一致。上述关于星虫体腔液中精子是以团聚形式存在或以散在形式存在是否与种类有关,尚待进一步深入研究。5星虫动物胚胎学及发生学星虫动物胚胎学的研究应追朔到Gerould[13]的工作,他早在1907年就对受精卵卵裂的细胞谱系进行研究,指出的受精卵从第三次卵裂开始,即表现为螺旋式分裂,而且发现在48细胞期出现环节动物式交叉,即动物极有4个细胞形成玫瑰花形,另有4个交叉细胞(cross cell)与其形成间辅式排列。每个玫瑰细胞(rosette cell)各有两个中间细胞(intermediate cell)与其相接排列成一线,而其余32个细胞以2圈形成一环带,是未来顶极及前担轮的基细胞。星虫卵裂的螺旋现象,是从第四次分裂才开始出现的。其后Rice[14]的研究也有与此一致的报道。至于48细胞期的环节动物式交叉的遗传学基础,尚待深入研究。星虫卵裂时,还出现一种特殊现象,即四细胞之后小分裂球可能会大于大分裂球,这种现象在6种星虫中被发现,即:,Phascolopsis gouldi,Themiste lageniformis,,Phascolioncryptus和[11,13,15~18]。6星虫早期幼体发育及组织学曾经以来漂浮幼体被认为是自由游动的成体星虫,并被归为现已不存在的Pelagosphaera属。而关于星虫动物早期幼体发育的研究直到20世纪60年代之后才开始有了较大进展。这一时期,一些学者以活的浮游幼体为材料,纠正了过去不少分类学的谬误,并对漂浮幼体的形态、发育过程与生态习性有了准确的描述和解释[19~21]。Hall和Scheltema[19]根据漂浮幼体的形态结构,把它们分成了10个不同的类型,分别为A,B,C,E,F,J,L,O,P,S型。星虫的漂浮幼体是海洋浮游生物的组成部分。近年来不少学者在研究浮游生物时也对漂浮幼体的形态、分布和分类等进行了研究。野外如果采集到星虫的一种漂浮幼体,却不易鉴别其成体归属哪一种星虫,因此很有必要通过漂浮幼体培养变态为稚星虫的实验观察来确认星虫动物的漂浮幼体类型。70年代以来,美国学者Rice[11]在星虫动物胚胎学,幼体形态学,行为、组织学及发生学等方面做了大量的研究工作,先后报道了15种星虫的研究成果,总结出星虫的早期幼体发生模式,即4条途径:(1)直接发生,不经过具纤毛的幼虫阶段;(2)间接发生,营卵黄营养的担轮幼虫直接发育为蠕虫状星虫(vermiform stage);(3)间接发生,营卵黄营养的担轮幼虫变态为营卵黄营养的漂浮幼体,后者再发育为蠕虫状星虫;(4)间接发生,营卵黄营养的担轮幼虫变态为营浮游生物营养的漂浮幼体,后者经过较长时间的浮游生活后,身体长大,经过第二次变态成为幼星虫(juvenile form)。蠕虫状星虫还需经过一段时间的发育,才成为幼星虫。这4个不同途径,反映了星虫动物进化过程中的不同方向。Rice[22]认为,星虫祖先是含有高卵黄的卵子,并有着一个短暂的营卵黄营养和底层浮游习性的幼体期。由这种初级的发育方式,逐渐向二个方向分化,即增加卵黄而成为直接发育,或减少卵黄而延长浮游生物性营养期,即所谓间接发育。不同星虫种类的担轮幼虫具有不同的形态和生活习性。对于光裸方格星虫,由于其发育成为前担轮的基细胞沿卵黄膜内面极度扩张的结果,形成了光裸方格星虫担轮幼虫的独特结构,即前担轮纤毛布满整个幼体表面[7]。而其它星虫的担轮幼虫,则在幼虫的某一部位形成担轮带,环绕幼虫一圈,如,Golfingia elongata,等[13,16]。担轮幼虫的特征是顶上的一簇毛以及一个由带纤毛的前毛轮细胞的突出的赤道带。担轮幼虫的变态导致第二期幼体形成,即漂浮幼体。在漂浮幼体阶段,后担轮作为主要的运动器官代替了前担轮,口和肛门开口完成消化道,体腔扩大,尾部附着器官形成。一些星虫动物的被膜(卵黄膜)在胚胎发育及担轮幼虫生长的过程中起着重要作用,它作为营养膜几乎完全被吸收,剩余的少部分参与了漂浮幼体腹沟的形成[3]。这和软体动物担轮幼虫的变化情况明显不同。但有些星虫种类在发育过程中由于营养物质过剩,被膜消失。如Phascolion cryptus的被膜后部形成幼体的部分表皮,前部则消失[11],和的被膜在担轮幼虫变态时消失[13],而的被膜,变成漂浮幼体的表皮(cuticle)[23]。7星虫人工繁殖及其展望有关星虫的人工繁殖,目前国外尚未见报道。国内有见于郭学武[7]使用升温法和干湿法进行人工催产获得幼体,吴斌[2]用解剖肾管取得精卵混合受精的方法获得漂浮幼体等报道。近年作者致力于我国常见的两种经济价值较大的星虫——可口革囊星虫和光裸方格星虫的人工育苗技术研究,已取得催产受精、胚胎发育、担轮幼虫及漂浮幼虫发育等人工培育的初步成果,同时还与泉州市东石种苗场合作开展可口革囊星虫的土池人工育苗,获得稚星虫并进行养殖试验。我国近年来,由于过度采捕、环境变迁和环境污染,光裸方格星虫和可口革囊星虫资源明显衰退。为此,继续深入开展星虫繁殖生物学及人工育苗技术研究不仅可以填补这方面的空白,还可以为星虫增养殖开辟产业前景。参考文献:[1]Barnes R Zoology[M].Philadelphia:SaundersPress,.[2]吴斌.光裸方格星虫(Sipunculus nudus L.)生殖细胞及胚胎发育[J].广西科学,1999,6(3):222–226.[3]Gonse chez Phascolosoma vulgaraⅡ.Recherches biometriques sur les ovocytes[J].Acta Zool,1956,37:225-233.[4]Green annual reproductive cycle of Phascolosomalurco(Sipuncula)[A].Rice M E,Todorovie InternSymp Biol Sipuncula and Echiura[C].Belgrade:NaucnoDelo Press,–168.[5]Rice M biology and development inSipuncula[D].Seattle:University of Washington,.[6]Towle A,Giese A annual reproductive cycle of theSipunculid Phascolosoma agassizii[J].Physiol Zool,1967,40:229–237.[7]郭学武,李复雪.光裸星虫生殖周期的研究[J].热带海洋,1993,12(2):69–75.[8]Rice M on the development of CaribbeanSipuncula with a review of development in the phylum[A].Rice M E,Todorovie Intern Symp Biol Sipunculaand Echiura[C].Belgrade:Naucno Delo Press,–160.[9]Sawada N,Noda Y,Ochi electron microscope study onthe oogenesis of Golfingia ikedai[J].Mem Ehime Univ Sci,1968,B6(1):25–39.[10]Gonse chez Phascolosoma vulgareⅠ.Definition cytologique des stades de croissance desovocytes[J].Acta Zool,1956,37:193–224.[11]Rice M in three species of Sipuncula:Phascolosoma agassizii,Golfingia pugettensis,and Themistepyroides[J].Cellule,1974,70(2):295–313.[12]Franzén?.On spermatogenesis,morphology of thespermatozoon,and biology of fertilization amonginvertebrates[J].Zool Bidr Upps,1956,31:355–482.[13]Gerould J on the embryology of the development of Phascolosoma[J].Zool Jah,1907,23:77–162.[14]Rice M [A].Giese A C,Pearse J of marine invertebrates[C].New York:Academic Press,–127.[15]?kesson study of the nervous system of theSipunculideae with some remarks on the development of thetwo species,Phascolion strombi Montagu and Golfingiaminuta Keferstein[J].Unders?kningar?ver?resund,1958,38:1–249.[16]?kesson observations on pelagosphaera larva[J].Galathea Rep,1961,5:7–17.[17]Rice M comparative study of the development ofPhascolosoma agassizii,Golfingia pugettensis,and Themistepyroides with a discussion of developmental patterns in theSipuncula[J].Ophelia,1967,4:143–171.[18]Williams J of a rock burrowing Sipunculidinhabiting stony coral[J].Amer Zool,1972,12:723.[19]Hall J R,Scheltema R of North AtlanticSipunculida larvae[J].Amer Zool,1966,6(3):338.[20]J?gersten the morphology and behaviour ofpelagosphaera larva(eSipunculoidea)[J].Zoologiska BidragFr?n Uppsala,1851,36:27–35.[21]Murina V data on the structure ofpelagospheres-Sipunculida larvae[J].Zool Zhur,1965,44:1610–1 619.[22]Rice M development and metamorphosis inSipuncula[J].Amer Zool,1976,16:562–571.[23]Rice M histogenesis of thePelagosphera larva of Phascolosoma agassizii(Sipuncula)[A].Smithsonian contributions to zoolology,number 132[C].Washington:Smithsonian Institution Press,–51.
介绍 育种程序的主要目标是使性状的平均值沿正向分布的性状或具有两个(或多个)离散类(例如生存)的性状在所需方向上移动,以增加所需性状级别的频率。从一代到下一代的总体平均或班级频率的变化称为选择反应。正态分布特征的选择响应如图所示。 应用不同的育种策略可以获得选择反应或遗传增益。对于一个长期的育种目标,唯一适合育种核心的策略是某种类型的纯种繁育来进行加性遗传改良。可以用于生产商品鱼苗的育种策略比在核内进行的育种限制要少。如果可以进一步提高商品鱼苗的生产率,则可以使用任何种类的杂交,倍性操纵和性别操纵。应当避免任何商业性生产鱼苗的育种策略,这些策略会限制细胞核中附加遗传性能的进展(例如,在杂交计划中使用高度自交系,请参见下文) 所有的育种计划都应该从收集、比较和选择最好的遗传材料开始(更多细节见第16章)。试验品系和选择最适合农业生产品系的价值可能相当于几代品系内选择,如Bentsen等人所示。(1998)罗非鱼。图显示了选择基础群体重要性的另一个例子,图说明了大西洋鲑鱼品种之间以及同一品种内全同胞家庭之间屠宰时体重的差异(Gjedrem,1979b)。品系之间以及品系内全同胞家系之间的巨大差异说明了用最好的遗传物质开始育种计划的重要性。品系内全同胞家系间的差异也说明了通过选择进一步改良的可能性。 无限大群体中的近交定义为彼此之间的联系比某个群体中随机交配的个体更紧密相关的个体的交配。大多数水产养殖计划中实际使用的种群是有限种群,因为它们的成员数量有限。所有有限的种群都会经历某种程度的近交,这取决于为每个后代贡献后代的个体数量。种群的近亲繁殖通过第6章中定义和描述的近亲繁殖系数(F)来衡量。近亲繁殖系数表示从种群祖先的特定点开始累积的近亲繁殖量。近亲繁殖系数只有在选择了过去的特定时间后才有意义,超过该时间将不考虑祖先,并且此时所有等位基因都被认为是独立的。 知道任何育种结构的有效种群大小(Ne),每代近交率(ΔF)可以得出: 式中,Ne是每一个新世代用作亲本的父系和母系数量的函数(影响有效种群规模的其他情况见第6章): Nm和Nf分别是雄性和雌性的数量。假设父本和母本之间没有遗传关系,当使用50个父本和50个母本时,Ne=100和ΔF=或。对于大多数性状来说,这可能是一个可接受的近交率。 近交率在很大程度上取决于数量较少的性别。如果将父本数减少到30,则必须将母本数增加到150,以使Ne =100。如果父本数是20,则无论使用多少母本,Ne都不能超过80。品系均值之间的方差增加,品系内方差减小,换人话就是说,品系分化和品系内遗传均匀。在选择的封闭种群中,不可能阻止近交世代的增加。Pante等人。 (2001b)得出结论,系谱信息对于准确估计近亲繁殖的比率和水平是必要的,因为有效人口规模(Ne)不能很好地估计近亲繁殖的比率和水平。如果近亲繁殖的程度过高,则应使用一些无亲缘关系的动物作为亲本,以减少近亲繁殖的问题。有关更多信息,请参见第6章。 生物统一 近交可以是开发用于研究目的的品系的强大技术。高近交系是遗传稳定的,这对于将“标准”近交系用于实验目的是重要的,特别是对于要用于生物测定和其他实验的实验动物而言(Komen,1990)。 自交系与杂交 在实际的育种工作中,仅当生产自交系以便利用非加性遗传变异进行杂交时,才有意进行近交。近亲繁殖几乎是有害的,育种者通常力求尽可能避免近亲繁殖。 近交衰退是近交繁殖的结果。近交衰退主要导致与繁殖能力(繁殖力、卵大小、孵化率)或生理效率(鱼苗畸形、生长率、存活率)有关的性状所显示的平均表型值的降低。 近交衰退是指近交群体和基础群体之间的平均表现差异。由于与繁殖和生理效率有关的性状经常表现出近交衰退,因此在育种计划中保持近亲繁殖率在较低水平上是很重要的。 Gjerde等人(1983年)研究了三个水平的近亲繁殖(F=,和)对虹鳟鱼存活率和生长率的影响,表。平均近交衰退(所有水平的近亲繁殖)分别为发眼卵10%、孵化卵和鱼苗。近交与近交衰退之间没有线性关系。鱼种的生长没有表现出明显的近交衰退,而成鱼的生长则随着近交的增加而表现出越来越大的生长衰退。近交系数每增加10%,近交抑制系数分别为、和(近交水平分别为、和)。 由连续一代(F=)、两代(F=)和三代(F=)全同胞交配获得 su等人。(1996)在虹鳟鱼中还发现,近交系数每增加10%,雌性产卵年龄延迟,产卵量减少。近亲交配对雄性卵大小和产卵年龄无显著影响。近交每增加10%体重,近交衰退在之间,近交衰退有随体重增加而加重的趋势。 在对斑点叉尾鮰的实验中,Bondari和Dunham(1987)报告说,近亲繁殖(25%)增加了卵孵化所需的天数,但对产卵重量或孵化率没有显著影响。 近亲繁殖衰退的典型水平如表所示。在这一点上,需要强调的是,一轮全同胞交配的近交系数为,一轮半同胞交配的近交系数为。 如前所述,只有在产生近交系以利用非加性遗传变异进行杂交时,才有意的进行近亲繁殖。总的来说,生产、维持和替换自交系所需的资源和时间将通过改善纯种育种的加性遗传性能而得到更好的利用(Gjedrem,1985;Gjerde,1988)。 避免近交的育种方法可分为三大类: 利用大量随机交配群体 利用系统化的杂交方案消除近亲交配 利用品系杂交生产杂交种 使用大量的随机交配种群是最简单的方法,只需要育种者采取措施确保大量的鱼为下一代提供后代。 杂交育种是一种著名的遗传改良方法,在水产养殖中也有应用。杂交是指物种、品种、种群、品系或自交系之间的交配。杂交育种的主要目标是利用非加性遗传方差(杂种优势)。当自交系未经选择,其所有杂交的平均值应等于从中衍生出来的杂交群体的平均数。因此,近交后杂交不会产生任何改善,如果要进行任何改善,则必须在某个阶段进行选择。因此,杂交应被视为是对加性遗传改良计划的补充。 杂种优势也称为杂种活力,可以定义为后代在一个或多个性状上超过其父母的平均水平的现象,这是近亲衰退的逆转,通过相关个体交配获得的。这两种现象几乎普遍分布在动植物中,尤其与生殖适应有关。通常有两种方法用于估计杂种优势。第一个是将杂交后代与亲本品系/品系的平均值进行比较,第二个是将杂交后代与最佳亲本品系/品系的平均值进行比较。如果父母来自不同的基因库,则杂种的杂合度增加,因此杂种优势有望提高。给定性状的杂种优势增加的程度取决于亲本种群之间的遗传距离。 通过杂交和选择获得的相对收益取决于所讨论的一个或多个性状的加性和非加性变异的大小。如果非加性方差较大,则可以通过杂交获得大量收益(请参见第节)。 一般配合力是指一个亲本品种与其它许多品种的一系列杂交组合子代性状平均值。例如A品种和其它B、C、D、E等品种杂交后,子代产量都比较高,表示A品种有较高的一般配合力。特殊配合力是指一个品种A和其它B、C、D、E等品种杂交后所得只有一个组合AB的产量性状平均值较高,其它组合如AC、AD、AE的子代一般或较低,这种AB组合表现的能力即为特殊配合力高。 GCA= 加性效应 SCA=上位性和显性效应 一般配合力的差异是由于基础群体中的加性方差(A)和A×A互作造成的。特殊配合力差异可归因于非加性遗传方差和上位性。表显示了当四个群体杂交时如何估计一般配合力和特殊配合力。 群体A和群体B的一般配合力(GCA)可估算如下: A×B和B×A的特殊配合力(SCA): 一般来说,很难测定特定配合力的差异,也难以在育种计划中利用这些影响。制造和维持自交系几乎是商业上利用SCA的唯一手段,尽管SCA的一些用途可以通过杂交来实现。但如果不制作和测试特定的杂交组合,就无法测定一个杂交组合的特定配合力。 (邓飞老师测定) 正反交反复选择是一种既利用一般配合力又利用特殊配合力的杂交方案。Comstock等人给出了RRS的理论基础。(1949)和迪克森(1952)。RRS 从两个群体开始,A系和B系。 杂交是相互的,一些A系母本与B父本配对,一些B系母本与A父本交配。然后对杂交后代的性状进行测量,以改善性状,并根据后代的表现来判断亲本。只选择最好的亲本,其余的亲本,以及所有杂交后代,只用于测试亲本的配合力。之后舍弃。被选中的个体必须再次与自己的亲本交配,以产生下一代接受测试的父母。它们像以前一样再次交叉,循环重复。根据Falconer和Mackay(1996)的说法,RRS计划被家禽的商业育种家使用,并在玉米上取得了很好的结果,但是与其他选择方法的直接比较并不令人鼓舞。 当杂合子优于纯合子时,这种现象称为显性现象,见图(Falconer和Mackay,1996)。通过两个不同等位基因固定的品系得到一个所有个体都是杂合子的f1基因,这是产生一组杂合子个体的唯一途径。在非近交群体中,对于特定的等位基因对,不超过50%的个体可以是杂合的。因此,如果一对特定等位基因的杂合子在优点上优于纯合子,那么近亲繁殖和杂交将是比不进行近亲繁殖选择的更好改进手段 此外,只有当对期望的性状或性状组合存在过度优势时,近亲繁殖和杂交才能达到没有近亲繁殖的选择所不能达到的效果。过度显性的存在及其重要性已经被广泛讨论,但实验证据普遍表明,对于大多数被研究的性状来说,过度显性现象并不重要(Falconer和Mackay,1996)。 双列杂交 双列杂交是一种常用的自交系或不同品系或群体间杂交的试验设计,即每一个品系/群体与另一品系杂交。对于p 个品系,此过程产生最多p2组合。双列杂交通常用于在开始育种计划之前建立基础群体。杂交经常被用来将来自陌生群体的新基因导入本地品系。这通常是一种简单且非常廉价的方法来改良本地品系。然而,在引进新品种之前,应在现有的当地条件下对种群进行测试。 GIFT项目(养殖罗非鱼遗传改良)的基础群体为双列杂交。将4个亚洲养殖品系和4个非洲野生品系进行完全双列杂交(8×8=64个组合),研究其生长性能和存活率的杂种优势大小。结果见表(Bentsen等人,1998年)。 在三向杂交中,两个品系(例如需要高生产力的品系)的F1与第三个品系杂交。在四向杂交中,两条不同品系的F1杂交。回交只涉及两个品系,F1与第一个杂交中使用的一个品系交配。 杂交在畜牧生产中应用广泛,生产肉用的大多数动物都是三元杂交或回交的后代。在水产养殖中,这些方法很少使用。 测试潜在种群的双列杂交通常是建立一个合成种群的起点,就像大西洋鲑鱼、虹鳟鱼和罗非鱼所做的那样。 合成群体是由不同数量的亲本群体、品种、或品系组成的。当培育一个综合种群时,育种者试图创造一些新的结合了亲本种群优势的群体。通过一系列选定的自交系或不同的群体,让F1和后代随机交配,或者通常是计划交配,创造出新的群体。 预期合成种群比亲本品系具有更多的杂合性,它们应显示出一些杂种优势。在合成种群数量减少之后,近交可以并经常减少这种杂种优势。另外,如果重组造成的损失很重要,那么这些损失在合成种群的后代中会很明显。 在确定杂交是否在特定物种的育种策略中占有一席之地的第一步是评估不同品系或物种之间所有可能的杂交,以确定所讨论的经济性状。如果可用品系的数量很大,就必须选择最有可能产生有价值结果的杂交组合。利用来源迥异的品系以及结合使用具有有利特性的品系可能是有利的。在以色列,杂交育种项目目前正在进行中,使用普通鲤鱼的品系杂交(Wohlfarth等人,1983年)。 其次,应开发自交系,并在自然条件下测试杂交,以找到最有价值的农业杂交品种。该育种系统特别旨在利用非加性遗传变异。这里的实际困难之一是由于高死亡率(近交抑制)而使自交系难以保持运转。 Bakos(1979; 1987)报告了将鲤鱼近交系用于杂交计划的结果。 第三,也是最后一个,如果可能的话,应该对一个往复递归选择(RRS)程序进行评估,以确定一般和特定组合能力的相对重要性。 RRS只能用于多次产卵的生物,因此不能用于例如太平洋鲑鱼。在大西洋鲑鱼中进行捕捞也将非常困难,因为大多数雄性在第一次产卵后死亡,而大量雌性则死亡。罗非鱼和虹鳟鱼等其他物种可能更适合应用RRS计划。 在育种计划中使用选定品系之间的杂交的一个显著优势是,这使育种者能够保护他们的遗传改良材料。只出售杂交动物,纯种的种畜不会被释放。 Chevassus(1979)回顾了鲑类物种间杂交的现状。他的结论是,在大多数情况下,杂种都是在相同的环境中养殖的,子代因为亲本物种表现出中等或充其量与亲本中较好的一个相同的生长。这与Refstie(1983a)对四种鲑鱼(大西洋鲑鱼、褐鳟鱼、海鳟鱼和北极红点鲑)杂交后的结果一致。杂交鱼的生长和存活率都没有超过大西洋鲑鱼的表现结果。 一些实验发现,在成活率方面有较好的结果,杂交种往往与生命力最顽强的杂交组合相似甚至更优越。 Benzie等人(1995)在将斑节对虾(Penaeus Monodon)和斑节对虾()这两种虎虾杂交时,在生长率上没有发现杂交活力的迹象。杂交种的生长速率与纯斑节对虾相近或低于纯斑节对虾。 Gjerde和Refstie(1984)调查了5个挪威品系大西洋鲑鱼杂交的杂种优势效应。无论是生长率还是存活率,他们都没有发现显著的杂种优势效应(表)。同样,Friars等人也是如此。(1979)发现大西洋鲑鱼鱼苗生长率无杂种优势效应。然而,在虹鳟鱼中,Gall(1975)和Ayles和Baker(1983)报道了虹鳟鱼品系杂交在体重上的显著杂种优势。 对常见鲤鱼品种进行了系统杂交。欧洲、俄罗斯、中国和日本的野生品系和驯化品系杂交的生长速度、存活率和耐冷性的杂种优势意义已被反复报道(表)(Hulata,1995)。 Wohlfarth(1993)总结了以色列20多年来对鲤鱼的研究收集的实验数据,并得出结论:“生长杂种优势在鲤鱼中是一种常见但不普遍的现象。”通常,当亲本之一是Dor-70时,没有发现杂种优势。Dor-70是一种长期的群体选择实验,目的是为了更快的生长。Gjerde等人。(1999)估计了罗湖鲤鱼的体重和存活率的杂种优势,并得出结论,印度罗湖鲤鱼种群的杂交似乎没有什么实际意义。 已经提到的罗非鱼的GIFT杂交实验(Bentsen等,1998)表明,在表现出明显杂种优势的22个杂交中,只有7个表现优于最佳纯品系,最大增益约为11%。一般而言,与体重的累加加反作用相比,对体重的非累加的遗传作用适度。 总体而言,与加性和互惠效应相比,非加性遗传效应对体重的影响是较小的。 Wohlfarth(1993)和Bentsen等人。(1998)报告的结果表明,非加性遗传效应的表达可能比加性效应对环境变化更敏感。由于基因型与环境的交互作用影响了非加性遗传性能,因此杂种优势可能在某些农场环境中表现不佳。在这种情况下,可能必须为某些农场环境生产专门的杂交种。 Knibb等人。(1997)发现海鲷品种间杂交产生的杂种优势很少,这是由于缺乏近亲繁殖和遗传分化。Knibb(2000)回顾了几项杂交试验的结果,得出结论:在所有物种中,杂交种通常都类似于其亲本的平均值。考虑到大量尝试生产新的杂交鱼,很少有(明显少于1%)能够持续商业化生产。 寻找不育的杂种可能变得非常重要,因为这种杂种不会将食物转移到性腺中,因此具有优越的生产性状。由于罗非鱼已经在几个种间杂交中获得了单性后代,这种单性(雄性)培养被认为是解决罗非鱼在几乎任何池塘条件下高繁殖力所造成的种群过剩的最佳解决方案。此外,男性的生长速度也比女性快。Pruginin等人。(1975)列出了几个100%产生雄性后代的杂交组合,而Hulata等人则列出了几个杂交组合。(1983)建议使用后代测试来确保罗非鱼获得100%的雄性后代。据报道,以色列的尼罗罗非鱼和奥利亚罗非鱼之间有希望杂交产生几乎所有的雄性后代(Hulata,1995)。 在一个群体内进行加性遗传改良的育种方法或策略被称为纯种育种,也是在很长一段时间内进行持续遗传改良的选择方法。必须避免近亲交配,选择拥有大多数阳性(理想)基因的个体作为下一代的父母。拥有大多数正基因等位基因的个体通常表现出良好的生产效果。这些“好基因”和特性会遗传给它们的后代。拥有大多数阳性基因的个体被认为具有很高的育种价值。 个体的繁殖价值不能直接测量。也不能100%准确测量。因此,真正的育种价值将是未知的,并且在很大程度上被系统和随机的环境效应以及基因间相互作用引起的影响所掩盖,基因型-环境相互作用的讨论见第14章。 育种值主要可以通过记录基因的产物,即性状的表型值(或使用第19章所述的与QTL连锁的遗传标记)来估计。表型记录可以从个体本身获得,也可以从作为全同胞和半同胞、子代或父母的亲属那里获得。相关个体的记录可以使用,因为个体及其亲属拥有共同的基因。一般来说,来自近亲的信息比来自远亲的信息更有价值。因此,全同胞的记录比半同胞的记录更有价值,因为与同父异母的同胞相比,个体与其全同胞共享的共同基因比例更大。关于后代的记录是特别有意义的,因为个体的繁育价值被严格定义为根据其后代的平均值判断的个体的价值。
开题报告填写事项一、填写必须实事求是,字迹要端正、清楚。二、本报告的第一至第六部分由研究生本人填写(字数不少于2000字)。其余部分由指导教师、开题报告评议小组、教研室(研究室)主任、院长、研究生处填写。三、硕士研究生开题报告日期规定为进校后第三学期完成。四、开题报告评议小组由学院统一集中组织,对开题报告通不过者要在1至2个月内补做,重新审核合格后,才允许正式进入课题,否则取消进入论文阶段资格。五、此表留存研究生处学位办一份。 本课题所涉及的内容(包括实验数据、计算机程序、导师未公开发表的研究成果及心得等),除在毕业论文中所发表的以外,本人保证:未经导师正式同意,五年内不以任何形式向第三方公开。研究生(签字) 导 师(签字) 年 月 日 一、课题的来源及意义本课题主要来源于导师的研究课题。现代科学技术发展使得复合化成为材料发展的必然规律。近年来,纳米复合材料的研究发展迅速,无论是从学术研究角度考虑,还是从工业生产实际出发,人们都已开展了大量的实验研究工作。所谓纳米复合材料(Nanocomposites)是80年代初由Roy等人提出的,是指复合材料中分散相尺度至少有一维小于100nm的复合材料。由于纳米粒子具有小尺寸效应、大的比表面产生的界面效应、量子效应等特殊性能,故能赋予纳米复合材料许多特殊的性能,为设计和制备高性能、多功能新材料提供了新的机遇。纳米复合材料被誉为“21世纪最有前途的材料”,成为材料科学研究的热点之一。聚合物/层状硅酸盐(Polymer/Layered Silicate,PLS)纳米复合材料是纳米复合材料领域重要研究方向之一。PLS纳米复合材料既具有高分子材料的质轻、耐腐蚀、绝缘性好、易加工等特点,又具有无机材料的高强度、高模量、高耐热性等优点,有着广阔的发展前景。PLS纳米复合材料除具有一般纳米复合材料的性能外,还因其特有的纳米尺度上的片层结构使得复合材料的耐热性、尺寸稳定性、气体阻隔性及阻燃性等得到明显提高。PLS纳米复合材料的研制与开发为提高传统聚合物材料性能、拓宽聚合材料的应用范围起到了极大的促进作用。根据复合物的微观结构,可以把复合物分成四类:相容性差的粒子填充复合物;普通的微粒填充复合物;插层型纳米复合材料;剥离型纳米复合材料。只有第三、第四类复合物实现了纳米尺度上的插层复合,且第四类复合物即剥离型纳米复合材料由于无机物在聚合物基体中实现了充分均匀的分散,其纳米尺度效应显著、界面结合强度更高。此类复合材料具有优异的力学性能和耐热性,并且材料的阻隔性均有所提高,是当前研究的主方向。PLS纳米复合材料以其优良的性能越来越受到广泛地重视。目前,PLS纳米复合材料已从基础研究阶段向工业化生产阶段发展,日本的丰田公司(TOYOTA)、宇部公司(Unitsika)、美国的南方粘土(Southernay)等已经研制开发出PLS纳米复合材料的商业化产品。本课题利用省内层状硅酸盐矿物(膨润土)和高分子原料,对聚合物原料进行改性,对膨润土原料进行深加工处理。研究聚合物、层状硅酸盐二者之间的复合机理、结晶过程、界面特征以及结构性能之间的关系,研究加工制备工艺过程对PLS纳米复合材料性能的影响以及最佳制备工艺参数的确定。用合理的加工技术方法,制备出性能优良的剥离型纳米复合材料。这既是本课题的特色和创新之处也是纳米复合材料的研究发展趋势所在。二、简述该领域目前的国内外研究水平和发展趋势聚合物/层状硅酸盐纳米复合材料是当今众多无机纳米粒子改性复合材料中最有潜力的一类纳米复合材料,也是目前研究最多、最有希望工业化生产的聚合物纳米复合材料。自从1987年日本丰田公司的研究开发中心首次报道用插层聚合的方法制备了尼龙6/粘土纳米复合材料以来,由于聚合物/粘土纳米复合材料实现了纳米相分散、强界面作用和自组装并具有较常规聚合物/无机填料复合材料无法比拟的优点(如优异的力学、热学性能和气体阻隔性能等),因此倍受关注。据报导,预计今后PLS纳米复合材料的产值每年会增长约100%。到2009年,产值会达到15亿欧元/年,产量会达到50万吨/年。PLS纳米复合材料将会遍及人们生活的各个方面,飞机、汽车、包装、电子电器、建材、家俱等产业将广泛受益于这种新型材料。1、 国外PLS纳米复合材料研究现状自从20世纪80年代末期,Okada等人报道了PA6/层状硅酸盐纳米复合材料以来,迄今这一领域已得到长足的发展,成为目前聚合物材料的一个新热点。到目前为止,日本丰田研究中心、美国康耐尔大学、密歇根大学以及中国科学院化学研究所国内外众多研究单位都在这一领域进行深入的科学研究。1987年,丰田中心研究和发展公司的Fukushima和Inagaki仔细地研究了聚合物/层状硅酸盐复合材料后,用季铵盐取代粘土片层间的无机离子,成功地改善了粘土与聚合物基体的相容性,研制出PLS型尼龙6/硅酸盐纳米复合材料,材料的热变形温度较纯尼龙6有大幅度提高,同时力学性能与阻隔性能均有不同程度的提高。丰田中心研究和发展公司的Usuki、Fukushima用已内酰胺的原位聚合法制备了剥离型的尼龙6/蒙脱土纳米复合材料(季铵盐改性的蒙脱土事先被均匀地分散于已内酰胺中),并制备出聚酰亚胺/蒙脱土纳米复合材料,发现只需添加2%(质量分数)的粘土,材料的气体阻隔性及线胀系数显著降低,适合PI在微电子领域的应用,这极大地引起了材料科学家的关注。美国Comell大学的R A Vaia和E P Giannelis等对聚合物熔体插层进行了热力学分析,认为该过程是焓驱动的,因而必须加强聚合物与粘土间的相互作用以补偿整个体系熵值的减少。在此理论的指导下,他们通过聚合物熔体插层制备出PS/粘土,聚氧乙烯/粘土纳米复合材料,并对层间聚合物的受限运动行为进行了研究。Usuki等人深入研究了有机插层剂对插层复合的影响,并制备出一系列PLS纳米复合材料,并首先报道了“两步法”制备聚酰胺6/蒙脱土纳米复合材料,即先用12~18烷基氨基酸作插层剂对钠基蒙脱土进行阳离子交换处理,然后将阳离子交换后的蒙脱土与ε-己内酰胺复合,在常规条件下聚合,得到聚酰胺6/粘土纳米复合材料。西欧一些国家也先后制定了发展纳米复合材料研究的计划。一些国外的大公司特别是生产聚合物的厂家纷纷加入聚合物纳米材料的开发应用。目前,丰田汽车公司已成功地将Nylon 6/clay纳米复合材料应用于汽车上。由于层状硅酸盐是纳米尺度分散于聚合物基体中,可以成膜、吹瓶和纺丝。在成膜和吹瓶过程中,硅酸盐片层平面取向形成阻挡层,因此可用于高性能包装和保鲜膜。2、国内PLS纳米复合材料研究现状我国的PLS纳米复合材料研究开始于90年代,现已取得了许多成果,并已列入国家“863规划”和“九五计划”的重点研究开发课题。中科院化学所对聚合物基粘土纳米复合材料的研究,发明了“一步法”制备Nylon 6/粘土纳米复合材料(nc-PA6),即将蒙脱土阳离子交换、己内酰胺单体插层以及单体聚合在同一个分散体系中完成,在不降低产品性能的前提下缩短了工艺流程,降低了成本。黄锐等利用刚性粒子对聚合物改性的研究在学术界极有影响;另外,四川大学高分子科学与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的制备手段。中科院化学所工程塑料国家重点实验室取得的成就有:单体插层缩聚制备了尼龙6/粘土纳米复合材料,可大幅度提高其热变形温度,扩大了材料的应用范围,并对插层剂的碳链长度与有机蒙脱土的层间距的关系进行了研究,在此基础上开发了PET/粘土、PBT/粘土纳米复合材料,提高了材料的热性能和阻隔性,其中PET/粘土纳米复合材料的结晶速度较PET提高了约5倍。此外还通过聚合物溶液插层及熔体插层分别制备出硅橡胶/蒙脱土及PS/粘土纳米复合材料,其中硅橡胶/蒙脱土纳米复合材料具有良好的耐磨性,各项物理、力学性能指标得到很大提高,可代替气相白炭黑填充硅橡胶,具有实用前景。相信在不久的将来,PLS纳米复合材料将会广泛应用于高分子材料及其它领域。3、存在的问题及研究发展趋势PLS纳米复合材料的不断涌现以及大量研究结果的报道,让我们看到了这类复合材料具有的优异特性,使得层状无机物插层改性聚合物制备高性能纳米复合材料成为国际上最新技术热点之一,但也存在以下几个问题。① PLS纳米复合材料的研究尽管十分热门,但由于其插层复合机理复杂、结构与界面特征复杂,微区尺寸小,再加上量子效应、表面效应等,对它的研究还不够深入,特别是运用热力学、动力学和结晶学知识研究不够。对其结构、形态特征与材料性能的关系研究较少,合成方法大多基于合成宏观材料上的改进,存在着一定局限性;② 剥离型PLS纳米复合材料比其它类型的复合材料具有更优异的性能,但对原材料加工处理、制备方法要求严格,对其制备工艺及过程研究不够;③ 高聚物与纳米材料的混合、分散缺乏专业设备,用传统的设备往往使纳米粒子得不到良好的分散,要研究出新的混合分散技术方法及设备。三、课题所要研究的内容及实施方案(主要研究内容及预期成果,拟采用的研究方法、技术路线、实验方案的可行性分析。)1、研究内容(1)了解相应聚合物的物理化学性质,合成方法,用途及研究现状;了解PLS纳米复合材料所具备的优良性能,熟悉国内外PLS纳米复合材料的应用现状、研究进展、存在的问题及解决的措施; (2)研究层状硅酸盐(膨润土)矿物学特征和纳米结构特征(层间距、层面特征和边缘特征),熟悉测试表征方法;并掌握对测试结果分析的技术方法;(3)深入研究膨润土提纯、钠化、有机化的各种方法、反应机理;了解钠基土及有机土的应用价值和研究现状;制定合理的实验方案,对膨润土进行提纯,通过实验选择合适的反应条件和合适的钠化剂和表面修饰剂进行钠化、有机化,制备出亲油或亲水亲油的纳米膨润土;(4)了解剥离型PLS纳米复合材料制备方法及性能特点,从动力学、热力学、结晶学、流变学等方面探讨纳米材料复合过程和机理;(5)选择聚对苯二甲酸丁二醇酯(PBT)、聚氨酯(PU)两种聚合物,对其进行改性(接枝方法和离子化方法)制定合理的加工制备方案、确定最佳实验流程及实验参数,制备出剥离型PLS纳米复合材料;(6)从制备方法、表面改性剂的选择、加入第三组分等方面研究有机膨润土在聚合物中的分散形态;并探讨多相体系中物相界面结构特征,制备出剥离型纳米复合材料。 (7) 研究PLS纳米复合材料结构和性能之间的关系。进行产品结构分析、力学性能和阻燃性能对比测试分析。2、预期成果(1)制备出优良的有机膨润土,制备出改性性能良好的聚合物;(2)制备出剥离型PLS纳米复合材料;(3)预期在核心期刊发表2篇论文或申报1项发明专利;(4)完成毕业论文的编写,顺利通过答辩。3、研究方法及技术路线(1)实验研究流程图(2)实验研究过程(方案)① 层状硅酸盐的选择及改性处理目前为止,能够在PLS纳米复合材料中得到应用的有膨润土、高岭土、海泡石等少数几种属于层状硅酸盐的矿物质。这其中最根本的原因是绝大多数的层状无机矿物质无法利用插层处理的方式扩张其片层之间的重复间距。因此,虽然他们具有层状的结构,各相邻的片层之间也具有一定的空间,但却不足以容纳旋转半径为上百埃的聚合物分子链插入到各片层之间,形成所谓的插层复合材料;而仅仅允许离子、小分子等小的介质进入其中。对于膨润土、高岭土等粘土矿物, 由于他们具有较大的初始间距以及可交换的层间阳离子,使得我们可以利用离子交换的方式将他们的层间距扩大到允许聚合物分子链插入的程度,从而可以利用它们制备出性能优异的插层纳米复合材料。本课题利用省内矿产资源优势膨润土,其主要成分为蒙脱石。蒙脱石的基本结构单元是有一片铝氧八面体夹在两片硅氧四面体之间靠共用氧原子而形成的层状结构,属于2:1型层状硅酸盐。每个结构单元的尺度为1nm厚、长宽均为100nm的片层,层间有可交换性阳离子,如Na+、Ca2+、Mg2+等金属离子,因此容易与烷基季铵盐或其他有机阳离子进行交换反应生成有机膨润土。由于膨润土本身的亲油性较差,聚合物的单体或分子链又多为亲油性物质。因此,膨润土使用前必须经过有机化改性处理。膨润土改性处理方案。A、膨润土的提纯实验方案:将膨润土与水(固液比为1:10)配成悬浮液,再经高速旋转的离心机沉降分离,并且加入适量的分散剂(六偏磷酸钠),进一步分离粒度较细的碎屑矿物(长石、碳酸盐等),得到粒度小于5µm的膨润土浆料或悬浮液,再将该悬浮液抽滤、洗涤、干燥、打散解聚,即可得到高纯度的膨润土产品。测其吸蓝量,CEC,膨胀倍,胶质价等性能指标。B、钙基膨润土的钠化钠化原理:当膨润土-水系统中存在两种离子时,就存在一个动态的吸附-解吸平衡,即离子吸附与交换过程。如当膨润土-水系统中同时含有Ca2+、Na+时就会发生如下离子交换平衡: Ca-膨润土+2Na+ 2Na-膨润土+Ca2+钠化剂的选择、用量、钠化温度及钠化时间对钠化效果都有一定的影响,通过实验,确定最佳反应条件。C、膨润土的有机化在制备PLS纳米复合材料时,常采用有机阳离子(插层剂)进行离子交换而使层间距增大,并改善层间微环境,使粘土内外表面由亲水转变为疏水,降低硅酸盐表面能,以利于单体或聚合物插入粘土层间形成PLS纳米复合材料。因此插层剂的选择是制备PLS纳米复合材料的关键步骤之一。它必须符合以下几个条件:(1)容易进入层状硅酸盐晶片(001面)间的纳米空间,并能显著增大粘土晶片间层间距;(2)插层剂分子应与聚合物单体或高分子链具有较强的物理或化学作用;(3)价廉易得,最好是现有的工业品。在不同用量、酸碱性、反应温度等条件下,选择阳离子(十六烷基三甲基溴化铵)、阴离子(十二烷基硫酸钠)及阴阳双离子为插层剂,制备有机土,通过测试确定最佳反应条件。② 聚合物改性③ PLS纳米复合材料的制备A、复合材料的类型从微观结构上看,复合材料可分为四类,如下图。在第一类复合物中(a),蒙脱土颗粒分散在聚合物基体中,但聚合物与蒙脱土的接触仅限于蒙脱土的颗粒表面,聚合物没有进入蒙脱土颗粒中。第二类复合物(b)中,聚合物进入蒙脱土颗粒,但没有插层进入硅酸盐片层中。在插层型复合物(c)中,聚合物不仅进入蒙脱土颗粒,而且插层进入硅酸盐片层间,使蒙脱土的片层间距明显扩大,但还保留原来的方向,片层仍然具有一定的有序性。在剥离型复合物(d)中,蒙脱土的硅酸盐片层完全聚合物打乱,无规则地分散在聚合物基体中,此时蒙脱土片层与聚合物实现了纳米尺度上的均匀混合。四类复合材料中只有后两种才算是纳米复合材料,而且第四类剥离型复合材料比第三类插层型复合材料具有更理想的性能,是众多材料科学家追求的目标,也是本课题研究的重点。 B、制备方法插层复合法(Intercalation Compounding)是制备PLS纳米复合材料的方法。按照复合的过程,插层复合法可分为两大类。(1)插层聚合法(Intercalation Polymerization),即先将聚合物单体分散、插层进入层状硅酸盐片层中,然后原位聚合,利用聚合时放出的大量热量,克服硅酸盐片层间的库仑力,使其剥离(exfoliate),从而使硅酸盐片层与聚合物基体以纳米尺度相复合;(2)聚合物插层(Polymer Intercalation),即将聚合物熔体或溶液与层状硅酸盐混合,利用力化学或热力学作用使层状硅酸盐剥离成纳米尺度的片层并均匀分散在聚合物基体中。从制备方法来看,PLS纳米复合材料的制备可分为单体插层原位聚合与大分子直接插层;从实施途径来说有溶液法和熔体法。它们互相组合成四种具体制备过程:大分子熔体直接插层;大分子溶液直接插层;单体熔体插层原位本体聚合;以及单体溶液插层原位溶液聚合。制备PLS纳米复合材料流程图如下:C、有机土加入量的选取有机土加入量的多少直接影响着制品的质量和性能,有机土的加入量过高时,体系的粘度增大,很难脱泡及浇注;有机土加入量过低时,有机土在体系中的分散不好,起不到增强和增韧的效果。对于有机土加入量的多少,在研究领域内众口不一。我们采用不同含量(2-5%)的有机土进行插层复合,寻找最佳加入量。D、实验方案以PBT、PU聚合物为例,选用合适的插层方法,在不同的配料比下插层复合,测其力学性能、阻燃性能、热稳定性能等,从热力学、动力学等方面研究复合机理及影响复合过程的因素,得到性能优良的剥离型PLS纳米复合材料。(3)PLS纳米复合材料主要性能测试与表征① 甲醛容量法测膨润土阳离子交换容量(CEC),测吸蓝量计算膨润土中蒙脱土的含量,带塞量筒测其膨胀倍、胶质价;② 扫描电镜(SEM)测聚合物及PLS纳米复合材料的微观形貌;③ 傅立叶转换红外光谱(FTIR)分析,根据谱图的吸收峰判断有机化改性效果及插层效果;④ X射线衍射分析仪(XRD)测试膨润土的层间距和复合材料的剥离程度;根据谱图用Jade软件确定蒙脱土的化学成分及含量;⑤ 差热-热失重分析仪(TG-DTA)测定膨润土的转化温度及复合材料的热稳定性;⑥ 电子万能实验机测拉伸强度和断裂伸长率,判断聚合物及PLS纳米复合材料的力学性能。4、实验研究方案的可行性分析(1)实验室有一系列的实验仪器:如真空泵、磁力搅拌器、恒温水浴锅、高温炉、干燥箱、开练机、双螺杆机和造粒机等;学校测试中心有扫描电镜、X-射线衍射仪、傅立叶转换红外光谱仪、差热-热失重分析仪、原子力显微镜等测试用仪器;(2)导师长期从事这一领域的研究工作,有扎实的理论基础和丰富的实践经验,有师生组成的研究团队;(3)学校图书馆可以查到大量的中外文文献资料和学术专著,可供参考;(4)与企业合作,有丰富的实践基地和广阔的应用前景;(5)已做了一些实验前期工作,制得的复合材料力学性能显著提高,且热稳定性很好;(6)实验方案叙述合理,技术路线可行,理论基础清楚明了,实验研究条件基本具备,加上前期研究工作的进展,故本实验研究方案是可行的。四、课题研究的创新之处(研究内容、拟采用的研究方法、技术路线等方面有哪些创新之处。)(1)PLS纳米复合材料作为一个崭新的研究领域,对其研究尤其剥离型复合材料的研究可以说仍处于初级阶段,理论上不够成熟,制备技术不够完善,对材料的复合机理,材料的结构及结构与性能间的关系等方面还有待于进一步探索。本课题从热力学、动力学等方面研究聚合物与层状硅酸盐(膨润土)复合的界面特征、内部结合机理,并探讨复合过程、材料结构对其力学性能、阻隔性能、流变性能、结晶性能等的影响。(2)剥离型PLS纳米复合材料的发展水平仍处在实验研究或专利阶段,工业化项目极少,在高性能工程塑料、高性能树脂基体中的研究报道还较少。本课题从表面改性剂的选择、加入第三组分、高性能纳米膨润土的制备、聚合物的改性、合理制备方法的选择等方面进行系统实验研究,制备出性能优异的剥离型纳米复合材料。五、工作量及工作进度安排(包括文献查阅、方案设计与实现、计算与实验、论文书写等)起止日期 课题阶段工作进程查阅文献资料、学术专著、参考书等,同时做了大量实验前期工作及一定的实验研究工作;写开题报告并进行答辩,准备实验所需试剂和仪器;研究钠基土、有机土的结构及结构与性能的关系,设计实验方案;通过实验和性能表征确定钠化、有机化过程最佳反应条件;在最佳反应条件下制备大量有机土,用XRD、FTIR、TG-DTA等表征,做好实验记录;以PBT、PU聚合物为例,了解其物理化学性能、合成机理、合成方法及应用现状;选择合适的反应装置、合成方法,用单体合成所需要的聚合物;查阅大量当前最新的中外文文献,了解纳米复合材料的研究现状及先进的制备方法;选择不同的有机土加入量(2-5%),用聚合物熔融插层法,聚合物熔液插层法,单体插入原位聚合法等不同的方法,控制反应条件,制备PLS纳米复合材料;对制品进行力学性能、热学性能、阻隔性能等方面的测试,确定有机土的最佳加入量,找出即使制品性能优异、成本低又环保的制备方法;用SEM测试产品的形貌,证实其剥离程度;用XRD测试有机土的层间距,分析其改性效果;复合材料中界面层的性质可以用示差扫描量热法(DSC)来表征;热失重分析(TGA)可以研究有机物对蒙脱土的改性程度及纳米复合材料的耐热性;选择最好的制备方法,将聚合物与有机土进行复合,研制出纳米复合材料制品并详细表征其各种性能;撰写论文,准备答辩。六、国内外主要参考文献(列出作者、论文名称、期刊名称、出版年月) 序号 参考文献名称 梁宏斌,倪靖滨.聚合物/纳米复合材料研究进展[J].化学工程师,2006,3:26-28.陈光明,李强,漆宗能.聚合物/层状硅酸盐纳米复合材料研究进展[J].高分子通报,1999,4:1-9.韩建竹,夏英.聚合物/蒙脱土纳米复合材料的研究进展[J].高分子通报,2006,12:66-70.李春生,周春晖,李庆伟.聚合物/蒙脱土纳米复合材料的研究进展[J].化工生产技术,2002,9(4):22-26. 陈国华,李明春.聚合物/粘土纳米体系[J].高分子材料科学与工程,1999,15(3):9-12.Jitendra K Pandey,et a1.Polymer Degradation and Stability,2005,88:234舒中俊,陈光明,漆宗能.聚合物/粘土纳米复合材料及其特殊阻燃性[J].2000,28(3):24-26.张秀英,李国昌,王萍等.利用山东膨润土生产有机膨润土研究[J].2007,27(1):35-36.潘兆橹,万朴应用矿物学[M].武汉:武汉工业大学出版社,1993.杨雅秀.中国粘土矿物[M].北京:地质出版社,1994.周建工,鲁安怀.利用低品位天然钙基膨润土制备低成本有机粘土实验研究[J].北京大学学报(自然科学版),2006,42(4)457-467.陈兴华.聚合物/层状硅酸盐纳米复合材料的最新研究进展[J].广西轻工业,2007,(1):35-37.黄锐,王旭,李忠明.纳米塑料-聚合物/纳米无机物复合材料研制、应用与进展[J].中国轻工出版社,2002,(4):10-12.祝启砷,黄志良,王西文等.膨润土提纯增白与钠化改型联合处理工艺[J].中国矿业,2002,11(5):44-46.漆宗能,尚文字.聚合物/层状硅酸盐纳米复合材料理论与实践[M].化学工业出版杜,2002.ChenTian Y.Synthesis and Characterization of Novel Segmented Polyurethane/Clay Nan composites.Polymer,2000,41(4):1345-1349.Cho,, JKwon, .Polymer Sci.2001,(79):1025-1028.G-M.Kim D-H,Lee,B.Hofmann,et a1.Influence of nanoflllers on the deformation process in layered silicate/polyamide-12 nanoeomposites.Polymer,2001,42(3):95-110.Hao Fong,Weidong Liu,Chi-Shan Wang,et a1.Generation of electro spun fibers of nylon 6-montmorillonite nanocomposite.Polymer,2002.43(3):775-780.Cheon II Park,Park et a1.Polymer.2001,42:7465-7475. Fornes T D,Yoo P J,et a1.Polymer.2001,42:9929-9940.Cho J W,Paul D R.Polymer,2001,42:1083-1094.Kaempfer D.Thomann R.el a1.Polymer.2002.43:2909-2916.Dennis H R,Hunter D L,a1.Polymer.2001,42:9513-9522.Marosi G,Keszei S Matko S,Bertalan G.Fire and Polymer,2006,4:117.Sorathia U,Lynon R,Gann R G.Fire Technology,1997,33(3):351.,,Okamoto,et a1.New polylactide-layered silicate nanocomposites.Concurrent improvements of material properties,biodegradability and melt theology [J].Polymer,2003.44(3):857-866.宋军,倪卓,王宝辉,等.聚丙烯/蒙脱土纳米复合材料的制备和性能[J].现代塑料加工应用,2005,17(2):14-16.苏海霞,曾幸荣.聚吡咯/有机蒙脱土纳米复合材料的制备及其导电性[J].化学与黏合,2005,27(3):127-130.郑华,张勇,彭宗林,等.三元乙丙橡胶/蒙脱土纳米复合材料的制备与性能研究[J].世界橡胶工业,2005,32(6):l1-13.吴德峰,周持兴.聚对苯二甲酸丁二醇酯/蒙脱土纳米复合材料的结晶结构及流变行为[J].高分子材料与工程,2005,21(5):132-136.1、 至少列举国内外参考文献20篇;2、 教科书、工具书不能作为参考文献;3、 专著等参考书的数量小于总数量的三分之一;4、 近五年出版的参考书数量不小于总数量的三分之一;5、 外文参考文献的数量不小于总数量的三分之一。
我最近也在写``这个是我们老师给的格式``照着这个格式找些符合的资料填上就好了本科毕业设计(论文)开题报告的基本要求本科毕业设计(论文)开题报告的内容和要求毕业设计(论文)开题报告的结构包括(1)选题的背景和意义,(2)研究的基本内容和拟解决的主要问题,(3)研究方法及措施,(4)研究工作的步骤与进度,(5)主要参考文献等项目。下面对有关项目作一些说明:(1)选题的背景和意义主要说明所选课题的历史背景、国内外研究现状和发展趋势。历史背景部分着重说明本课题前人研究过,研究成果如何。国内外研究现状部分说明本课题目前在国内外研究状况,介绍各种观点,比较各种观点的异同,着重说明本课题目前存在的争论焦点,同时说明自己的观点。发展趋势部分说明本课题目前国内外研究已经达到什么水平,还存在什么问题以及发展趋势等,指明研究方向,提出可以解决的方法。开题报告写这些内容一方面可以论证本课题研究的地位和价值,即选题的意义,包括对选题的理论意义和现实意义的说明;另一方面也可以说明开题报告撰写者对本课题研究是否有较好的把握。(2)研究的基本内容和拟解决的主要问题相对于选题的意义而言,研究的基本内容与拟解决的主要问题是比较具体的。毕业设计(论文)选题想说明什么主要问题,结论是什么,在开题报告中要作为研究的基本内容给予粗略的,但必须是清楚的介绍。研究基本内容可以分几部分介绍。(3) 研究方法及措施选题不同,研究方法则往往不同。研究方法是否正确,会影响到毕业设计(论文)的水平,甚至成败。在开题报告中,学生要说明自己准备采用什么样的研究方法。比如调查研究中的抽样法、问卷法,论文论证中的实证分析法、比较分析法等。写明研究方法及措施,是要争取在这些方面得到指导老师的指导或建议。(4) 研究工作的步骤、进度。课题研究工作的步骤和进度也就是课题研究在时间和顺序上的安排。毕业设计(论文)创作过程中,材料的收集、初稿的写作、论文的修改等,都要分阶段进行,每个阶段从什么时间开始,到什么时间结束都要有规定。在时间安排上,要充分考虑各个阶段研究内容的相互关系和难易程度。对于指导教师在任务书中规定的时间安排,学生应在开题报告中给予呼应,并最后得到批准。学生在实际操作中,时间安排一般应提前一点,千万别前松后紧,也不能虎头蛇尾,完不成毕业设计(论文)的撰写任务。(5) 主要参考文献。在开题报告中,同样需列出参考文献,这在实际上是介绍了自己的准备情况,表明自己已了解所选课题相关的资料源,证明选题是有理论依据的。在所列的参考文献中,同样应具备不少于2篇的外文文献。
中科院化学所工程塑料国家重点实验室取得的成就有:单体插层缩聚制备了尼龙6/粘土纳米复合材料,可大幅度提高其热变形温度,扩大了材料的应用范围,并对插层剂的碳链长度与有机蒙脱土的层间距的关系进行了研究,在此基础上开发了PET/粘土、PBT/粘土纳米复合材料,提高了材料的热性能和阻隔性,其中PET/粘土纳米复合材料的结晶速度较PET提高了约5倍。此外还通过聚合物溶液插层及熔体插层分别制备出硅橡胶/蒙脱土及PS/粘土纳米复合材料,其中硅橡胶/蒙脱土纳米复合材料具有良好的耐磨性,各项物理、力学性能指标得到很大提高,可代替气相白炭黑填充硅橡胶,具有实用前景。相信在不久的将来,PLS纳米复合材料将会广泛应用于高分子材料及其它领域。
各个学校都有不同的要求,手里有我自己的,也有别的学校的,你要要的话Email: 可以传给你做个参考!
在两个或两个以上不同性质的生态系统(或其他系统)交互作用处,由于某些生态因子(可能是物质、能量、信息、时机或地域)或系统属性的差异和协合作用而引起系统某些组分及行为(如种群密度、生产力和多样性等)的较大变化,称为边缘效应。亦称周边效应。成因:1. 温度效应:经研究证实在温育中的热力学梯度可能是根本原因。孔板的聚苯乙烯本身为不良热导体,在实验室的常规ELISA测定中,将板从室温(通常在25℃左右)置于37℃温箱,板也升温时,在外周孔与中心孔之间可能存在一热力学梯度。2. 蒸发效应:虽然通常细胞培养箱中都会放置一盘双蒸水以维持培养箱中的湿度,但仍难达到多孔板中的湿度,特别是在培养箱经常开关的情况更是如此。由于位置效应,边缘孔的湿度较中间孔更低,水分挥发的现象就更为严重。这样就容易造成四周培养基的体积会明显少于中间孔,而四个角落的孔尤为严重。解决办法:1. 预孵育:使用水浴或在将反应溶液加入至板孔中时,边缘效应解决方案 (3张)将板和溶液均加热至温育温度(如37℃),就可以很容易地排除“边缘效应”,并且可提高测定的重复性。另外,有研究发现将铺好的细胞在室温先放置一个小时,待细胞完成沉降和贴壁后再放回37℃培养箱继续培养,也可显著改善边缘效应。2. 使用防挥发盖:已有人针对多孔板挥发效应导致的边缘效应,开发了一种防挥发的多孔板盖。该多孔板盖可以在多孔板上方形成饱和的水蒸气层成为一个蒸汽屏蔽,将多孔板内环境与实验室环境隔绝,从而更好的维持多孔板处在一个相对稳定的状态下。3. 放弃周边孔:在上述方法不能解决时,为了得到更可靠的试验结果,最直接简单的方法就是不用这些周边的孔。这虽然不能说解决了边缘效应,但最大可能的减少了边缘效应对试验结果的影响。
边缘效应是指在两个或两个以上不同性质的生态系统交互作用处,由于某些生态因子(物质、能量、信息、时机或地域)或系统属性的差异和协合作用而引起系统某些组分及行为的较大变化。
边缘效应在其性质上可分为正效应和负效应,正效应表现出效应区(交错区、交接区、边缘区)比相邻生态系统具有更为优良的特性,如生产力提高、物种多样性增加等、反之。称为负效应。
成因
1、温度效应:经研究证实在温育中的热力学梯度可能是根本原因。孔板的聚苯乙烯本身为不良热导体,在实验室的常规ELISA测定中,将板从室温(通常在25℃左右)置于37℃温箱,板也升温时,在外周孔与中心孔之间可能存在一热力学梯度。
2、蒸发效应:虽然通常细胞培养箱中都会放置一盘双蒸水以维持培养箱中的湿度,但仍难达到多孔板中的湿度,特别是在培养箱经常开关的情况更是如此。由于位置效应,边缘孔的湿度较中间孔更低,水分挥发的现象就更为严重。这样就容易造成四周培养基的体积会明显少于中间孔,而四个角落的孔尤为严重。
以上内容参考 百度百科-边缘效应