GNN起源
GNN是一种连接模型,通过网络中节点之间的信息传递的方式来获取图中的依存关系,GNN通过从节点任意深度的邻居来更新该节点状态,这个状态能够表示状态信息。
对于 GNN 模型,我们引入了按图类型,传播类型和训练类型分类的变体。此外,我们还总结了几个统一表示不同变体的一般框架。在应用程序分类方面,我们将 GNN 应用程序划分为结构场景,非结构场景和其他场景,然后对每个场景中的应用程序进行详细介绍。最后,我们提出了四个开放性问题,指出了图神经网络的主要挑战和未来研究方向,包括模型深度,可扩展性,处理动态图和非结构场景的能力。
动机一:CNN的缺陷
CNN的核心特点在于:局部连接(local connection),权重共享(shared weights)和多层叠加(multi-layer)
这些同样在图问题中非常试用,因为图结构是最典型的局部连接结构,其次,共享权重可以减少计算量,另外,多层结构是处理分级模式(hierarchical patterns)的关键。
传统的深度学习方法被应用在提取欧氏空间数据的特征方面取得了巨大的成功,但许多实际应用场景中的数据是从非欧式空间生成的,传统的深度学习方法在处理非欧式空间数据上的表现却仍难以使人满意。
CNN只能在欧几里得数据(Euclideandata),比如二维图片和一维文本数据上进行处理,而这些数据只是图结构的特例而已,对于一般的图结构,则很难使用