学好数学,并不是一两天的事情。我认为,最关键的是要培养起你对它的兴趣。因为热管如果你讨厌它,不感兴趣,甚至头疼、害怕,那你很难在数学上努力了。像这样,对数学没兴趣、不努力,就很难学好它了。 当然,光有兴趣还不够。还得努力去学好它。最起码得背熟书上已学过的概念、公式,有时间最好预习一下新课,使第二天上新课掌握得更快、更多、更好。上课简单记些笔记,把要点记下来,晚上回家多复习,总结一下,温故知新。对不理解的题目,要问老师,问懂为止。当有比老师更简单的解题方法,可以提出,和老师、同学一起讨论。不要担心自己可能会错而不敢提出,有问题提出,是个锻炼的好机会。老师是启发我们的人,并不是“拐杖”,关键得靠自己努力、多动脑。可以平时多做一些课外较灵活的题。有时一道难题怎么也做不出来,想了几天做出来了,就会有一种成功的喜悦。 仔细、认真也不可缺少。解答每一题都要认真仔细,思想集中。一张数学试卷,大部分题都需计算。计算就要仔细,有些题有陷阱,必须得仔细。卷子做完了得仔细检查。 做题时得根据最后问题找出关键条件,认真理解。一般来说,每句话、每个条件都有作用,应好好利用来解答题目。 第一部分:什么样的人数学容易学好 一、智力背景广阔的人 教育家苏霍姆林斯基说过,“必须识记的材料越复杂,必须保持在记忆里的概括、结论、规则越多,学习过程的‘智力背景’就应当越广阔。”换句话说,学生要能牢固地识记、理解并灵活运用公式、规则、结论等,他就必须阅读和思考过许多并不需要识记的材料。 调查过程中我们发现,数学成绩优秀的大学生往往拥有广阔的智力背景,喜欢阅读一些文学名著、传记历史,也喜欢阅读一些数学方面的书,比如《速算秘诀》《中学生数理化》以及图书馆、书店里的趣味智力书籍。此外推荐和数学相关的书目:《好玩的数学系列》《训练思考能力的数学书》《故事中的数学》。 除建立广阔智力背景外,阅读对提高审题能力和学习兴趣也大有帮助。 二、喜欢“偷懒”的人 你相信吗?喜欢“偷懒”的人数学往往学得好,他们的个性特征也往往是崇尚简单。为什么?因为这一类人遇事都会这样想:“有没有更简便的方法啊?”经常这样思考,就会逐渐具备一眼抓住重点和关键环节,一眼就看到最便捷的解题办法的能力。 三、生活经验丰富的人 学好数学需要过的一关是情景理解。数学是解决实际问题的学科,没有生活经验,往往难以将数学知识转化为解题方法。调查过程中我们发现,数学学习好的人有以下生活经验: 1.经常跟长辈一起体验、甚至帮助长辈处理一些家务事,比如卖东西、买东西、逢年过节算账目等等。 2.有实践的兴趣。休闲时间,很多人都会去打球、逛街,而我们调查的这部分大学生更愿意去做一些有实践意义的事情。有一位大学生就提到,自己上初中的时候,曾和一个好友一起用自行车和卷尺丈量过新校区的面积。 第二部分:怎样学数学 一、恰当的学习方法和学习习惯 数学是多功能学科,逻辑性、系统性都很强。学习掌握数学知识,应该有比较科学的学习方法。方法得当,可以“功夫不负有心人”事半功倍;方法不对,就会“费力不讨好”,事倍功半。学习有效果,就会越学越有兴趣;学习成绩总是提不高,就会慢慢丧失学习信心。是否掌握较为科学的学习方法,是学习成败的关键。根据整理的优秀大学生的数学学习经验精髓,我们认为,较为科学的学习方法和习惯,主要体现为下述五个基本环节。 1、做好课前预习,掌握听课主动权。凡事预则立,不预则废。 2、专心听讲,做好课堂笔记。听课要提前进入状态。课前准备的好坏,直接影响听课的效果。 3、及时复习,把知识转化为技能。复习是学习过程的重要环节。复习要有计划,既要及时复习当天功课,又要及时进行阶段复习。 4、认真完成作业,形成技能技巧,提高分析解决问题的能力。教育权威杨乐院士在回答中学生如何学好数学的问题时,就是很简短的三句话:一是在理解的基础上多实践,二是在理解的基础上多积累,三是循序渐进。这里所说的实践,就是做题,就是完成作业。 5、及时进行小结,把所学知识条理化、系统化。学完一个课题或是一个章节,就要及时进行小结。每一环节的落实程度如何,都直接关系到下一环节的进展和效果。一定要先预习后听讲,先复习后作业,经常进行阶段小结。 每天放学回家,应该先复习当天功课,次完成当天作业,后预习第二天功课。这三件事,一件也不能少,否则就不能保证第二天有高质量的听课效果。 [小贴士:巧用错题本 在平时的学习中,老师都要求学生备用一个错题本,便于学生课下复习使用,但平时教师仅仅强调学生课下复习浏览自己的错题本,却很少要求看别人的错题本。其实,经常借阅同学们的错题本很有必要。借阅时注意: 第一借阅比自己水平高的同学的错题本,这样便于丰富、拓宽自己的知识领域。第二,看比自己水平较低的同学的错题本,便于经常给自己敲响警钟。借阅同时,要做好自己的读书笔记,便于自己平时参阅。在开始阶段至少一周要有两次重现阅读,过两周后可一周,这样循序渐进。此方法可运用于其他各个学科。] 二、良好的学习动机和学习兴趣 学习动机是推动学生学习的直接动力,能使学生积极主动地进行学习。影响学生的学习动机和学习兴趣是多方面的,本次调查中提到的有:老师和家长鼓励性的话语,通过一些小技巧从小培养数学学习兴趣,如数学顺口溜、趣味数学问题、数学讲故事。自己用数学知识解决实际问题后或取得成绩后,获得的成就感和荣誉感,如计算出了书本的面积、轮胎的周长、获得竞赛奖项。 华罗庚说:“有了兴趣就会乐此不疲,好之不倦,因之也就会挤时间来学习了。” 三、坚强的意志 有了正确的学习动机,并不意味着学生就能顺利完成整个学习过程,在学习数学的过程中,他们还会遇到许多大大小小的困难。而使学生树立坚定的信心,勇敢地面对困难,继而战胜困难,获得知识和技能,则需要坚强的意志。不少学生学习成绩不佳并不是智力或其它方面有问题,而是他们缺乏克服困难的坚强意志,遇到困难就“打退堂鼓”,所以学习成绩总上不去。培养学生顽强的意志和坚强的毅力应从提高学生学习的自觉性和坚韧性两方面着手。自觉性是指学生对学习数学的目的和意义有深刻的认识,从而能自觉地进行刻苦学习。当学生认识到当前学习与祖国未来和自己的未来的关系,明确自己所担负的责任时,才能排除外界干扰与诱惑,使学习成为自觉的行动。学习目的越明确,对学习意义认识越清楚,学习的自觉性也就越强。坚韧性是指在完成学习任务时,坚持不懈地克服困难的品质。学生在学习的过程中,总会遇到一些困难,而满怀信心地迎接困难,奋力拼搏战胜困难,就是意志的坚韧性的表现。这是一种十分可贵的品质。有了这种品质,在学习遇到困难或挫折时,才不会灰心丧气;在取得好成绩时,也不会骄傲自满,而是善于总结经验教训,探索学习的规律和方法,奋勇前进。这种意志的品质,对培养创造型人才是非常必要的。 四、自信心与勤奋 自信心与勤奋也是对数学学习有着重要影响的两种非智力因素。树立自信心,相信自己通过努力能够学好数学,这对于后进学生更为重要。因为如果学生对学习丧失了信心,那么它就失去了战胜困难的精神力量。数学知识、技能的获得,数学能力的提高,离不开学生的勤奋与努力。所以培养学生勤奋好学、刻苦钻研精神是非常重要的。数学家张广厚说:“在学习数学的道路上没有任何捷径可走,更不能投机取巧,只有勤奋地学习,持之以恒,才会得到优秀的成绩。”可见勤奋能弥补学生某些智力的不足,促进学生数学能力的发展。 五、积极向上的心态 情感是人类对客观事物的一种态度与心理体验。在我们的研究中发现,凡是数学成绩始终保持良好的大学生,在小学和中学时代,都经常与老师进行感情交流,建立良好的师生关系,并且能和同学不断的交流学习中遇到的问题,不断切磋,分享经验,共同进步。 这里我举一个例子:李铭数学成绩相对较好,同学们有数学问题请教他的时候,他总是耐心帮助帮助同学,通过这个过程,他不但帮助了同学,而且自己对数学知识的理解也更深刻了。“你有一个苹果,我有一个苹果,交换一下,仍是一个苹果;我有一种思想,你有一种思想,交换一下,将成为两种思想。”而李铭的同桌,自认为自己的学习非常好,怕别人学习到自己的某方面知识和能力,记笔记都要用手挡着,怕被别人看到,所以他的知识只能是自己的和老师传递到他这里的,很快就落后了李铭很多。 通过上面的分析我们发现,数学学习好,其实并不难。这与孩子成长的家庭、社会、学校有着密不可分的关系。建议家长多给孩子看一些有益的书籍和视频,多让孩子参加一些有益的活动,给孩子提供一个良好的生长环境。我喜欢数学,同时我又害怕数学,我怕会听不懂、学不会。事实证明,在我的学习过程中确实遇到了困难。但时间充足时,我可以预习课程,老师讲时也勉强听得懂,作题是我发现了自己的不足——不能把老师讲的内容应用。看着一道道不会的题我真的不想做了,可是这样又不行,只得细细地想例题,慢慢地分析例题,总结它的解题方法,做的多了也就逐渐会用了。在开学初期,我可以花大量的时间来做这样一道程序,可越到最后越忙,我挤不出时间去预习,甚至课后没时间做练习、问问题。在课上接受老师的那么少,没时间巩固,而且数学内容又逐渐变难,我又走到了低谷,那时我只好干脆放下数学,忙过了最急的事后再拿出时间总体复习。这段复习的时间里好困难,有时几个小时只做出二十几道题,可我还是坚持下来了,基本上捡回了失去的内容。考出了一个令自己感觉还比较满意的成绩。初中的数学主要是分代数和几何两大部分,两者在中考中所占的比例,代数略大于几何(我不知道你是哪里的人,反正在我们山东省济南市的中考中是这样的)。 代数主要有以下几点:1,有理数的运算,主要讲有理数的三级运算(加减乘除和乘方开方)在这里要注意数字和字母的符号意识,就是,不要受小学数字的影响,一看见字母就不会做题了。2,整式的三级运算,注意符号意识的培养,还有就是因式分解,这和整式的乘法是互换的,注意像平方差公式和完全平方公式的正用、逆用和变形用。3,方程,会一元一次、二元一次、三元一次、一元二次四种方程的解法和应用,记住,方程是一种方法,是一种解题的手段。4,函数,会识别一次函数、二次函数、反比例函数的图像,记住他们的特征,要会根据条件来应用。尤其要注意二次函数,这是中考的重点和难点。应用题里会拿它来出一道难题的 几何主要有以下几点:1,识别各种平面图形和立体图形,这你应该非常熟悉。2,图形的平移、旋转和轴对称,这个考察你的空间想象的能力,多做一些题。3,三角形的全等和相似,要会证明,注意要有完整的过程和严密的步骤,背过证明三角形全等的五种方法和证明相似的四种方法;还有像等腰三角形、直角三角形和黄金三角形的性质,要会应用,这在证明题中会有很大的帮助。4,四边形,把握好平行四边形、长方形、正方形、菱形和梯形的概念,选择体里会拿着它们之间的微小差异而大做文章,注意它们的判定和性质,证明题里也会考到。5,圆,我这里没有细学,因为这里不是我们中考的重点,但是圆的难度会很大,它的知识点很多、很碎,圆的难题就是由许许多多细小的点构成的。 以上就是我对初中数学知识的总结 麻烦给点分 谢谢!
学习数学,而不是一两件事情。在我看来,最关键的是它培养的兴趣。如果你恨它,因为热管不感兴趣,甚至头痛,恐惧,这是很难的数学努力。这样的数学不感兴趣,不用功,这是很难去学习它。 当然,灯是不足够的兴趣。必须尝试去学习它。至少,一定要记住这本书的概念,公式,最好的时间来预览有什么新的教训,第二天掌握更快,更多,更好的新的一课。类记一些笔记下要点,回家晚上以上回顾,总结和学习新的东西。问老师不明白的主题,并问明了至今。当解决问题的余老师有一个简单的方法,可以提高,与老师和同学们进行了讨论。不要担心自己可能是错误的,但不敢作出这样的问题,这是一个很好的锻炼机会。教师激励我们的人,而不是“拐杖”,关键是要依靠自己的努力,多动脑。通常你可以做一些课外灵活的标题。有时,一个棘手的问题是怎么画,要几天做它,就会有成功的喜悦。 仔细,认真缺一不可。应认真回答每个问题集中思想。甲数学论文,大部分的问题是要计算。我们应该认真计算,有些问题的陷阱一定要小心。卷子做了可怕的仔细检查。 最后一个问题,做题的基础上,确定关键条件,认真了解。在一般情况下,每一个字,每一个条件有一定的作用,应充分利用回答的话题。 :什么样的人数学学习 一个广阔的知识背景 教育是Suhuo穆林斯基说,“必须记住的材料比较复杂,而且必须保持在内存中的主要结论,规则是“知识背景”的学习过程中应该更加广阔。“换句话说,学生必须能够安全地识记,理解和灵活使用的公式,规则的结论,他一定要读,我想对很多并不需要记忆的材料。 调查过程中,我们发现,数学的大学生往往有广泛的知识背景,喜欢阅读一些文学名著,历史传记也喜欢读一些数学方面的书,如“快速计算秘密”,“物理和化学”,以及一个图书馆,书店有趣的智力的书籍。此外,推荐的书目和数学的“好玩的数学”系列“训练思考能力的数学书,数学的故事”。 “ 除了建立了广阔的知识背景,阅读节制的能力和兴趣的学习有很大的帮助。 像”懒“
数学学科的多功能,有较强的逻辑性和系统性。学习掌握的数学知识,应该有更科学的学习方法,正确的方法,“功夫不负有心人”,更有效的方法是错误的,它会“吃力不讨好“事倍功半。学习效果,更多的研究,更多的兴趣,学习成绩始终不提,它会慢慢失去学习的信心。,是否掌握更科学的学习方法是学习成功的关键。根据出色的完成经验的学生数学学习的本质,我们相信,一个更科学的学习方法和习惯,主要表现为以下五个基本方面。 1,良好的预览的大师讲座主动。凡事预则立,不预则废。 2,注意在课堂上,良好的课堂笔记。讲座提前进入状态。课前准备讲座的效果直接影响 3,及时复习,把知识转化为技能。审查是在学习过程中的一个重要组成部分。评论有计划,有必要及时检讨一天的功课,也及时审查阶段。 4,完成工作认真,形成技能,提高分析问题和解决问题的能力,教育当局杨乐院士回答高中学生如何学习数学的问题,是非常简短的三句话:一类是基于了解和更多的实践,和第二的理解和积累的基础上,第三个是一步一步的实践这里所说的,是做标题,来完成这项工作。 5,及时总结,知识结构化和系统化。一个主题或一个章节的结束,它是要及时总结,每一个方面的程度如何的实施,直接关系到下一个环节的进展和成效。出席第一次彩排,第一次审查工作,常常阶段总结。 每天放学回家,你应该检讨作业的日子里,完成了一天的工作后,排练的第二天功课。这三样东西,一个也不能少,否则就不能保证第二天有一个高品质的演讲效果。 BR /> [提示:使用错题 平时的学习中,教师要求学生腾出一个错题,这很容易让学生回顾,但通常老师复习错题,这只是强调,学生很少问看到别人的错题本。事实上,学生往往借错题非常必要的。借注: 借第一高的水平比他们的同学的错题本,这是很容易丰富,拓宽自己的知识领域。其次,容易错误的问题往往比低级别的学生敲响了警钟。借用相同的时间,做自己的学习笔记,自己平时看到的。至少在开始一个星期有两个重复的读,一个星期后,两个多星期,所以逐渐,这种方法可以应用到其他各种学科。 ,良好的动机和学习兴趣 BR />的动机是直接权力影响学生的学习动机和学习兴趣,教师和家长在调查中提到的鼓励的话,通过一些小技巧从小就学习数学的兴趣,促进学生的学习,使学生积极学习。如数学顺口溜,有趣的数学问题,数学讲的故事。自己的数学知识解决实际问题的成就,获得的成就感和自豪感感,计算面积?的书籍,轮胎圆周,大赛颁奖 华说:“有了兴趣已经厌倦了良好的不懈,随之而来的将腾出一些时间来学习的。” 三强的意志 > 正确的动机,并不意味着学生将能够成功地完成学习过程中,大,小,他们会遇到很多困难,在学习数学的过程中,让学生树立坚定的信心面对音乐,然后克服重重困难,获得知识和技能,你需要坚强的意志。许多学生的成绩差,是不是智力或其他方面的问题,但他们缺乏坚强的意志,克服困难,困难的“打退堂鼓,因此,学术总不能去了。学生顽强的意志和坚强决心,提高学生学习的自觉性和坚韧两方面。意识是指学生学习数学的目的和意义有深刻的认识,从而自觉地努力学习。当学生认识到这一点的学习和祖国的未来,他们未来的关系,明确职责,以排除干扰外界的诱惑,使学习成为人们的自觉行动。学习的目的是更清晰的认识更清晰的有意义的学习意识,较强的学习。坚韧的品质,做出不懈的努力,克服困难,完成学习任务。学生在学习过程中,总会遇到一些困难,迎难而上的信心,努力克服困难,表现的坚韧的意志。这是一个非常宝贵的品质。有了这种精神,学习困难或挫折时,不气馁,取得了良好的效果,并不会成为自满,而是要善于总结的经验教训,探索学习的规律和方法,奋勇向前。这将培养创新型人才的质量是非常必要的。 四,自我的信心和勤奋,自信和辛勤工作 也是数学学习上的两个非智力因素有着重要的影响。树立自信,相信自己通过努力学习数学,更重要的是后进生。由于学生的学习失去信心,就会失去克服困难的精神力量。此次收购的数学知识,技能,数学能力,从学生的勤奋和努力是分不开的。因此,学生勤奋好学,刻苦钻研的精神是非常重要的。 “的数学家章后说:”有没有捷径可走的道路上学习数学的多个机会,努力学习,持之以恒,会得到良好的结果。“可见,勤奋可以弥补一些学生缺乏智慧,促进学生数学能力的发展。 积极的态度 一个人的客观事物的情感态度和心理体验。我们的研究发现,任何数学始终保持良好的学生在小学和中学时代,往往与教师的情感交流,建立良好的师生关系,并且可以不断交流学习和学生遇到的问题,继续学习,分享经验,共同进步。 让我给你举个例子:李明比较好的数学系的学生数学问题要问他,他总是耐心帮助,以??帮助学生完成整个过程,他不仅帮助学生,并拥有一个更深入的了解数学知识。 “你有一个苹果,我有一个苹果,交换仍然是一个苹果,我有一个想法,你有一个想法,交换是两个概念。”李明相同的表,因为学习是很不错的,不敢向别人学习到的知识和能力做笔记的手必须阻止,看到的恐惧,使他的知识和老师传递给他,很快后面李铭许多。 通过上面的分析,我们发现,数学学习,其实是并不困难的。中成长的家庭与儿童,社会,学校有着密切的关系。建议家长给孩子看一些有益的书籍和视频,让更多的孩子参加有益的活动,为孩子的成长提供一个良好的环境。 我喜欢数学,我很害怕数学,我担心他们会不明白,不能学习。事实证明,在学习过程中遇到的困难。但足够的时间,我可以为标题的考前辅导班,老师讲时,他们不太了解,我发现缺乏内容和应用程序 - 老师不能说。观看一个频道会不会是这个问题,我真的想这样做,但是这是行不通的,只有要薄举例,慢慢地分析实例,总结出了解决问题的方法,做更多的事情,并逐渐成为使用。早在学校,我花了很多的时间做这样的计划可能会更加的最后一个繁忙的我挤时间预览,甚至放学后没有时间做练习,提出问题。老师在课堂上是如此之小,没有时间去巩固,数学的内容逐渐变得困难,我去的底部,然后我就干脆放下数学忙后最迫切的,然后拿出全面检讨。本次审查都面临着很大的困难,有时几个小时,仅使两个十几个问题,我坚持下来了,基本上找回丢失的内容。测试的方式来让自己感觉还是比较满意的结果。 初中学校数学课程分为两部分,代数和几何,略大于在中考中的比例,代数几何(我不知道你是哪里人,反正,在我们山东省,济南市,中考中的话)。 代数以下几点:1,合理的操作,主要讲有理数的三个操作(加法,减法,乘法和除法,幂运算的数字和字母符号意识处方)这里要注意的,是不是受主学校的影响,看到的字母数字不会做的题目。 2,融合三层计算,注意符号意识培训的,有分解,乘法和正始可互换注意,类似的差异的两个正方形式和完美的方式被使用时,逆和变形。 3,方程将在一,二元,三元二次的解决方案和应用的四个方程,记住,方程的方法,解决问题的一种手段。 4,功能,标识一个函数,二次函数的逆函数的图像,请记住它们的特性,根据应用程序的条件。特别要注意的辅助功能,这是测试的重点和难点。 几何应用题可以用它来的问题主要表现在以下几点:1,识别各种平面图形和立体图形,你应该很熟悉。 2图形的平移,旋转,轴对称,检查你的空间想象能力做更多的问题。 3,全等和相似三角形,将会证明,要注意有一个完整的流程和严格的步骤,也证明三角形全等的五种方法和证明的四种方法,像一个等腰三角形,直角的三角形和金三角的性质,得到应用,这将是非常有帮助的证明问题。 4,四边形,把握好平行四边形,长方形,正方形,菱形,梯形的概念选择轻微它们之间的区别,在身体上大做文章的,要注意他们的判断和考试的性质,也以证明其所有权。 5,圆,我有没有优良的学校在这里,因为这里是不是我们的重点在考试中,但圆将是非常困难的,它的很多知识,它被打破了,圆的问题是形成由许多小点。 以上是我总结的初中数学知识虚线谢谢你的麻烦!
数学,多么精确、客观的一门基础科学!可是,她虽然是最客观的,同时她也是最贫穷的。{在提供对事物和人生的内在意义的解释上是最贫穷的。我真正喜欢上数学是在高中的时候。虽然在初中我的数学成绩也是名列前茅,但还谈不上喜爱。上高中,我渐渐的喜欢上数学。可是由于我平时不爱做题,所以考起试来速度太慢,结果总是拿不到高分。不过我的准确性很高:我的同桌看到我的试卷上的选择题老是满分都有点嫉妒了。我不爱做题的原因在于:我不想被那些很具体的问题纠缠——别忘了:哲学家是普遍性的朋友。还记得学到向量那一章时,多个向量的加减法具有一个特点:无序性。我这个人喜欢穷根究底,所以我非要找到每一事物的根据不可。我苦思冥想,最后我找到了一种很直观的方式证明了向量的这个特征。这个方法的核心就在于:把每一个向量分解为两个垂直向量。由于在电脑上我不会画图,所以在这里我就只能对那些喜欢数学的朋友说声抱歉了。又比如余弦定理,我也自创了一种很直观的证明方法。我的证明光凭眼睛就可以看懂。再比如二项式定理,我可以通过一个简单的跳步游戏来解释。用我的方法,一个初中生都可以不费力的理解这个定理。当然,得先掌握排列和组合的基本概念。还有微积分基本公式,我曾经因为找到一种很形象的证明方式而激动不已。数学中的极限思想非常吸引我。解析几何也很诱人:用坐标来表示点、用方程来表示曲线、通过方程来间接地研究曲线的几何特性。可是,用代数方法来分析几何问题遭到了卢梭的嘲笑。古代的哲学家中有人甚至认为世界图象一定是数学性的。上大学以后我对数学已经没有从前那份痴了。随着时光的流逝,我渐渐的明白:数学研究的只是客观世界的空洞的形式:时间和空间。我的生命重心转移到了哲学上。我的生命历程告诉我:哲学比数学重要得多!于是我的生活发生了变化:我把我的智力分为两重:一重发挥在关系自身的事务上;另一重则发挥在对事物的客观把握上面。而后者渐渐成为我的生活的中心。 把我带进哲学殿堂的人是德国哲学家叔本华。我上高一时发现了他。他是我最崇拜的哲学家。对于他,许多人用一两个术语比如“唯意志主义”、“唯心主义”、“悲观主义”等等来概括。而这些概念在人们的意识中都是一些消极的概念。我曾经度过一段美好的日子:那就是夜幕降临时独自一人在火炉边捧读《作为意志和表象的世界》。那时的月光是最美丽的。顺便说一下,依我看,叔本华对毕达哥拉斯定理的图解比不上我国初中数学教科书上的图解。如今的我,对数学的热情已冷却。我甚至疏远了她。这里面的原因我想或许是:一个哲学家是不需要太多的数学知识的!回顾我过去之所以自创出那些证明方法,我想是因为我和别人有一点不同:别人追求的是逻辑性,而我追求的是形象性!有人或许以为在数学中逻辑思维才是最重要的。但我不这样看,合乎逻辑的数学推理只能提供可靠性,至于“为什么是这样?”却没有交代。所以,有许多人不喜欢数学。数学对于他们就像变魔术! 在我的内心深处有一种信念:要把握存在和事物的本质,并不需要逻辑,并不需要过多的科学知识。我深信:哲学不是科学,她是一门艺术!它是生活的儿子,不是实验室的产品!
讲座心得(1):讲座心得体会12月12日晚,我们在实验楼303教室有幸参加了李泽光博士关于类风湿关节炎诊治与新进展的精彩讲座,不但让我从中汲取了在中西医结合理念下诊治类风湿方面的经验,也让我感受到了李教授从容不迫的教学风格和随机应变驾驭课堂的潜质,他的愉快的课堂气氛,严谨的教学语言,绚丽的教学情景,给我留下了深刻的印象,使我颇受震撼。下方来谈谈我的听后体会。其次,尊重学生,平等交流。在课后交流答疑中,李教授走到学生中间,应对面耐心的倾听学生心底的声音,答疑解惑。自主探究是尊重学生的体现,尊重学生,是学生自主探究的前提。在他的课上,真正听到了学生自主交流的声音。他的回答,唤醒学生的兴趣,激发了学生思维,活跃了课堂气氛,让我倍感温馨。总之,我要向李博士学的东西很多。因此,在今后工作学习中,我要深刻明白运用并实践李泽光博士教育思想精神,以后要更加发奋充实自己,完善自己的知识结构,多学习,勤反思,不断提高自己的理论和实践水平,并像他那样,不断探索研究,不断学习提高。
我的生活与数学长江路小学 张宇宸今天晚上,我、爸爸、妈妈,一起到季家面馆吃面。 数学与我的生活来 到季家面馆,我们看了看菜谱。爸爸吃“熏鱼面”需要4分钟,妈妈吃“皮肚猪肝面” 需要6分钟,我吃“六鲜皮肚腰花面” 需要8分钟,今天晚上6:30上课,所以我们开始盘算先后下面用最短的时间。我利用奥数课上所学的最短时间:第一下爸爸的熏鱼面、第二下妈妈的皮肚猪肝面、第三下我的六鲜皮肚腰花面,所用时间是:4×3+6×2+8=32分钟。第一下爸爸的熏鱼面、第二下我的六鲜皮肚腰花面、第三下妈妈的皮肚猪肝面,所用时间是:4×3+8×2+6=34分钟。第一下妈妈的皮肚猪肝面、第二下爸爸的熏鱼面、第三下我的六鲜皮肚腰花面,所用时间是: 6×3+4×2+8=34分钟。第一下妈妈的皮肚猪肝、第二下我的六鲜皮肚腰花面、第三下爸爸的熏鱼面,所用时间是: 6×3+8×2+4=38分钟。第一下我的六鲜皮肚腰花面、第二下爸爸的熏鱼面、第三下妈妈的皮肚猪肝面,所用时间是:8×3+4×2+6=38分钟。第一下我的六鲜皮肚腰花面、第二下妈妈的皮肚猪肝面、第三下爸爸的熏鱼面,所用时间是: 8×3+6×2+4=40分钟。最后商量第一下爸爸的熏鱼面、第二下妈妈的皮肚猪肝面、第三下我的六鲜皮肚腰花面。时间是宝贵的,通过这件事让我知道“一寸光阴,一寸金。寸金难买寸光阴。”这句名言。也让我知道数学与生活的联系,只要善于思考,善于观察,世界将更美好。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.希望我的帮助能帮到你,
去百度文库找找
167 浏览 6 回答
192 浏览 5 回答
142 浏览 2 回答
165 浏览 6 回答
87 浏览 2 回答
291 浏览 3 回答
115 浏览 3 回答
118 浏览 2 回答
292 浏览 2 回答
141 浏览 4 回答
251 浏览 3 回答
316 浏览 2 回答
127 浏览 3 回答
83 浏览 3 回答
102 浏览 2 回答