查找有关数据着气象数据采集技术的发展以及各气象中心算法的完善,数值天气预报的准确率一直在稳步的提升。然而,面对当今社会对高精度天气预报的需求,来自各个气象中心的模式天气预报并不能够满足人们的要求。因此各个地区的气象部门需要根据自身情况,通过参考上级指导预报对本地区的未来天气现象重新进行预报以提高预报准确率。然而地区级气象部门却受限于本身设备条件,很难获得针对当地的具有指导意义的气象数据。基于上述原因,本文通过对浙江省气象台实际预报工作的调研,结合国家局下发的质量检验要求,为解决气象预报过程中遇到的实际问题,设计并实现了“浙江省天气预报数据分析系统”。并通过分析该系统的结果数据,设计并实现了基于神经网络方法的天气预测模块。该模块会将天气预测结果作为新的预报模式加入到数据分析系统中,为气象预报工作提供更多的数据支持。论文的主要工作内容如下:1、根据浙江省气象台气象预报工作的数据需求,通过对现有的气象数据结构的分析,设计并实现了一套在大时间跨度下,具有极高查询效率的气象数据仓库。通过该数据仓库的实现,将年度数据统计时间由原来的数百秒级降低到秒级。2、设计并实现了气象数据分析系统。利用C#、HTML、JavaScript与T-SQL语音开发了具备数据挖掘能力、质量检验能力、辅助预报能力,且数据表现形式丰富而直观的,数据分析系统。通过该系统的应用,可以有效的改善气象预报人员的预报准确率。3、提出以神经网络法构建预测天气数值参考数据的数据挖掘模型。该模型以BP神经网络方法构建,通过对历史数据的不断学习从而对各个参考预报模式的误差进行预测,然后根据预测结果给出新的参考数据,作为一种新的模式供预报人员参考。该参考数据相比较其他模式的数据在预报准确性与稳定性上都有较大的提升。通过气象数值预报分析系统在该浙江省气象台的应用实践证明,本文设计和实现的气象数值预报数据分析系统能很好地满足数值预报团队关于预报误差控制的需求。不仅根据数据学习模型计算得到的预报参考数据有较好的准确性。而且提供的质量检验功能,也为数值预报团队的预报工作提供了强有力的数据支持。