迁怀陆块中的怀安麻粒岩片麻岩区、三屯营—太平寨岩浆杂岩区、天镇—宣化钾质花岗岩带以及迁安片麻岩穹窿区内广泛分布有各种成分的花岗质片麻岩,其中怀安麻粒岩-片麻岩区和三屯营—太平寨岩浆杂岩区内以英云闪长-奥长花岗-花岗闪长质(TTG)的片麻岩为主,即通常所称的灰色片麻岩。在天镇—宣化钾质花岗岩带和迁安片麻岩穹窿区内以花岗闪长岩和花岗岩为主。在迁怀陆块内深成片麻岩按化学成分大体可分为两个系列,即钠质系列的深成片麻岩和钾质系列的深成片麻岩,前者主要分布于陆块的中部和北部,后者主要分布于陆块的南部。这种地区性的岩性差别可能与它们形成时所处的构造部位不同有关。
一、钠质系列深成片麻岩的地球化学特征
钠质系列的深成片麻岩主要分布于怀安麻粒岩-片麻岩区和三屯营—太平寨岩浆杂岩区。主要为英云闪长质、石英闪长质、斜长花岗质、奥长花岗质及部分花岗闪长质片麻岩。在冀西北钠质深成片麻岩的SiO2含量为~的含量~,平均值大于15%,相当于太古宙大陆高铝型英云闪长岩和奥长花岗岩(Barker等,1976)。这类片麻岩的Na2O含量通常大于K2O含量,Na2O/K2O比值一般在2左右,最高可达。在标准矿物的An—Ab—Or图上(图5—21)多位于奥长花岗岩区和英云闪长岩区,部分位于花岗闪长岩区。在常量元素方面它们与苏格兰西北Lewisan灰色片麻岩(等,1981;等,1986)极为相似。冀东三屯营—太平寨岩浆杂岩区内的钠质深成片麻岩的SiO2含量介于54%~72%之间,Al2O3变化于~间。当SiO2含量为70%时,Al2O3为,与太古宙高铝型英云闪长岩(Arth,1979)相吻合。在An—Ab—Or图上多分布于英云闪长岩和奥长花岗岩区(图5—21)。全区钠质深成片麻岩主元素对SiO2的相关变化主要有两种。其中MgO、CaO、FeO*、TiO2和P205的含量随SiO2含量的增加有规律地减少,显示出由岩浆结晶产生的花岗岩所具有的特点。而Na2O和K2O含量的变化与SiO2含量变化之间缺少明显的相关性,这可能与钠质深成片麻岩中不同岩石类型之间的成分变化以及变质作用过程中K2O和Na2O的活动性较大有关。
图5—21迁怀陆块内深成片麻岩的标准矿物An—Ab—Or图解
●一三屯营—太平寨岩浆杂岩区;○—怀安麻粒岩片麻岩区;▲—迁安片麻岩穹窿区,∆—天镇—宣化钾质化岗岩带
冀东三屯营—太平寨岩浆杂岩区和冀西北怀安麻粒岩片麻岩区的钠质深成片麻岩在稀土元素特征上既有相似性,也有一定区别。前一地区内的深成片麻岩(不论是英云闪长岩、奥长花岗岩还是少量的花岗闪长岩)均为轻重稀土元素分馏较强的右倾式稀土模式,(La/Yb)N比值多为10~20,多数样品的稀土分布曲线近平行(图5—22A、B)仅有一个样品具有明显的正Eu异常(图5—22B)。后一地区内灰色片麻岩的稀土特征可分为明显不同的两类。一类以紫苏石英闪长质、英云闪长-奥长花岗质片麻岩和紫苏花岗岩为代表,它们构成了该岩区的主体部分,其轻重稀土元素显示出中等程度的分馏,(La/Yb)N多界于10~20之间,Eu异常不明显,重稀土元素多为球粒陨石的5~10倍(图5—22C、D)。它们与怀安灰色片麻岩的稀土特征相似。另一类以紫苏斜长花岗质片麻岩为代表,它们分布较零星,多在紫苏石英闪长质片麻岩中呈条带状分布。由于它们含有较多的斜长石,因此在稀土元素模式图中显示出明显的正Eu异常(图5—22C、D),Eu/Eu介于~之间,它们的重稀土元素也相对亏损。
这两种稀土模式的灰色片麻岩在世界其它TTG岩套中也都存在。其中稀土分馏中等,无明显Eu异常的一类与刘易斯片麻岩中的英云闪长岩(Rollinson,.等,1987)的特征一致,这种稀土元素特征表明,它们是由基性岩通过部分熔融产生的,并且角闪石是残余相中的主要矿物相。稀土元素分馏较强,具明显正Eu异常的一类与刘易斯片麻杂岩中的奥长花岗岩(Rollinson,.等,1987)的稀土特征一致。轻重稀土元素的高度分馏和重稀土的明显亏损表明残余相中有相当数量的石榴石,明显的正Eu异常表明残余相中还有较多的角闪石。
二、钾质系列深成片麻岩的地球化学特征
钾质系列深成片麻岩主要分布于冀西北的天镇—宣化钾质花岗岩带和冀东的迁安片麻岩穹窿区,其岩石类型主要为钾质花岗岩、石英二长岩及少量花岗闪长岩。在冀西北天镇—宣化钾质花岗岩带主要为红色钾质花岗岩,它们的SiO2含量较高,多介于68%~74%之间,Al2O3的含量变化于~之间,其特点是Na2O含量明显低于K2O含量,Na2O/K2O值为~,在标准矿物的An—Ab—Or图(图5—21)上均位于花岗岩区。常量元素的总体特征与太古宙花岗绿岩带中的花岗岩(Corndie,1981)基本一致。冀东迁安片麻岩穹窿区内的钾质系列深成片麻岩包括红色钾质花岗岩、石英二长岩及少量花岗闪长岩。红色钾质花岗岩的SiO2含量较高,多大于70%,Al2O3含量为~的含量变化较大,一些样品的CaO含量大于,另一些样品的CaO含量则小于。此类花岗岩的Na2O含量小于K2O含量,Na2O/K2O比值平均为,显然其K2O的富集程度比冀西北花岗岩带中钾质花岗岩K2O的富集程度稍低。它们在An—Ab—Or图上多位于花岗岩区。迁安片麻岩穹窿区另一类富钾的深成片麻岩为石英二长岩,它们分布局限,出露很少。石英二长岩的SiO2含量较低(53%~60%),碱金属元素含量较高,K2O+Na2O含量为~,且K2O含量大于Na2O含量,属于钾质系列。其明显的特点是TiO2和P2O5的含量较高,其平均含量分别为和。在An—Ab—Or图上(图5—21)它们多位于花岗岩区。
冀西北天镇—宣化钾质花岗岩带中钾质花岗岩的稀土元素主要有两种类型,一种类型的稀土元素总量中等,∑REE多介于100×10-6~200×10-6,轻重稀土分馏不很强烈,(La/Yb)N为20~80,Eu异常不明显或显示轻微的负Eu异常(图5—22E、F),这一种类型的样品占区内钾质花岗岩的绝大部分。另一种类型稀土总量高度富集,∑REE在400×10-6~4800×10-6之间,其中的轻稀土元素强烈富集,(La)N值变化于300×10-6~400×10-6之间,负Eu异常十分明显,Eu/Eu*为左右,重稀土元素分布较平坦(图5—22F)。这两类明显不同的稀土分配型式不是由分异造成的,也不可能是由同源母岩部分熔融程度不同造成的。最可能的解释是,这种差别是源岩性质的差异造成的。源岩的组分和矿物组合强烈地影响了钾质花岗岩的稀土元素配分型式(李永刚等,1995)。
冀东迁安片麻岩穹窿区中钾质系列深成片麻岩的稀土元素配分型式也显示出多样性。其中的一类轻重稀土分馏中等,几乎无Eu的异常(如图5—22G中的BB22和CF84-48)。另一种类型的轻重稀土元素分馏中等到较强,轻稀土元素La含量多为球粒陨石的200~300倍,有较明显的负Eu异常(如图5—22G中的CF84-7和CF84-28)。此外,还有另一种类型较特殊,其稀土总量较低,(La)N值多在20~50之间,重稀土亏损,(Yb)N值多小于1。其最突出的特点是正Eu异常明显(图5—22H)。迁安片麻岩穹窿区内钾质花岗岩稀土元素配分的多样性以及稀土元素的变化与主元素和微量元素间缺少相关性等特点表明,该区钾质系列花岗岩的源岩成分很不均匀,同时也反映它们经历了复杂的演化过程。
图5—22花岗质片麻岩的稀土元素模式图
A、B—怀安灰色片麻岩区;C、D—三屯营—太平寨岩浆杂岩区;E、F—天镇—宣化钾质花岗岩带;G、H—迁安片麻岩穹窿区,部分资料引自张秋生等(1991),李永刚等(1995)
图5—23深成片麻岩的SiO2—FeO*/(FeO*+MgO)(A)和SiO2—Al2O3(B)图解
IAG—岛弧花岗岩类;CAG—大陆弧花岗岩类;CCG—大陆弧碰撞花岗岩类;POG:造山后花岗岩类;RRG—与裂谷有关的花岗岩类;CEUG—大陆的造陆抬升花岗岩类;IAG,CAG,CCG,DOG—造山花岗岩类;RRG、CEUG—非造山花岗岩类;花纹说明同图5—21
三、深成片麻岩形成环境的讨论
迁怀陆块中钠质系列的深成片麻岩主要为英云闪长-奥长花岗质片麻岩,对这种TTG成分的太古宙片麻岩的成因已有较多讨论(Bark-er,1979; al.,1991;Rapp,et al.,1991;Martin,et al.,1994),目前多数研究者认为它们是由石榴角闪岩或角闪榴辉岩通过部分熔融形成的(Martin,et al.,1994),但对于它们形成的构造环境目前还存在不同认识,一种意见认为英云闪长岩等是早期喷发的玄武质岩石(或绿岩带)在后期造山运动过程中发生部分熔融造成的(McGreger,1979),其发生的部位类似现代俯冲带(毕鸟夫带)的热异常部位(Martin,1994),还有一种意见认为它们是早期板底垫托的玄武质岩石在深部部分熔融生成的,其形成部位通常位于地幔柱的上部。迁怀陆块中的灰色片麻岩在SiO2—FeO*/(FeO*+MgO)图上(图5—23A)多位于造山花岗岩类区。冀西北怀安灰色片麻岩的样品在Y+Nd—Rb图(图5—24)上多位于火山弧花岗岩区(由于冀东地区的样品缺少微量元素分析,因此在该图中无冀东样品的投点)。根据这些图解,本区灰色片麻岩形成于火山弧的环境,但构造环境的分析仅凭地球化学图解方法是远远不够的,因此还需做更深入的研究。
图5—24深成片麻岩的Y+Nb—Rb图(据Pearce等,1984)
ORG—洋中脊花岗岩;VAG—火山弧花岗岩;WPG—板内花岗岩,syn—COLG—同构造的碰擅带花岗岩;花纹说明同图5—21
Sylvester(1994)在总结太古宙花岗岩侵入体时曾指出,太古宙花岗岩侵入体是由火山岩和沉积岩石在中下地壳通过部分熔融产生的。并通过与显生花岗岩形成环境的对比,指出太古宙钙碱性和过铝型的花岗岩侵入体可能是“同碰撞的”(syn-collisional),碱性的太古宙花岗岩侵入体可能是“碰撞后的”(pos-collisional)。迁怀陆块的灰色片麻岩主要属于钙碱性系列的,应多属于同碰撞型的花岗岩。在SiO2—FeO*/(FeO*+MgO)图(图5—23A)上,冀西北花岗岩带的花岗岩多落入造山后花岗岩区,冀东迁安片麻岩穹窿区的花岗岩则多位于造山花岗岩区,在SiO2—Al2O3图(图5—23B)上冀西北花岗岩带的花岗岩多位于造山后花岗岩区,而冀东迁安片麻岩穹窿区的花岗岩则多位于造山后花岗岩与造山花岗岩的界线附近。这种地区的差别可能与这两个地区花岗岩形成的时间有关。在整个迁怀陆块的形成演化过程中,冀东迁安片麻岩穹窿区的花岗岩的侵位时间比冀西北天镇—宣化钾质花岗岩带的花岗岩侵位时间要早,所以冀东地区的花岗岩还多少显示出造山期花岗岩的特点,而冀西北花岗岩带花岗岩侵位较晚,它们具有造山期后花岗岩的特点。年代学的研究已证明冀东地区花岗岩(~)比冀西北花岗岩(~)的侵位时间要早。
第一部分 矿井概括1 矿区自然地质环境地理位置及交通情况晒口煤矿位于福建省邵武市城东的晒口街道办境内。矿区位于邵武市城区方位121度、直距公里,即晒溪桥—新铺一带。地理坐标:东经117°33′~117°36′、北纬27°16′~27°19′。闽江三大支流之一的富屯溪,316国道和鹰厦铁路东西中横贯矿区,矿区与周边主要城市的铁路里程分别为:南平154公里、福州320公里、厦门535公里、鹰潭159公里。矿区往南部36公里与京福高速公路相接,交通十分便利(详见交通位置图)。交通位置图、地形地貌矿区地貌系属起伏不平的中至低山区,主要山脉走向呈北北东—南南西、一般海拔标高为200~350m,最高点云屏山,海拔标高为;矿区最低侵蚀基准面富屯溪河床,其海拔标高约178m。区内由于不同时代的岩性差异,风化侵蚀后呈不同的自然地貌景观,中—下侏罗统漳平组及梨山组的砂、砾岩层分布区、基岩裸露,山脊狭窄陡峻,多为单面山,沟谷发育陡直;晚三叠统焦坑组的粉砂岩和前震旦纪的变质岩群及花岗岩等分布区,则为低缓的山丘。区内第四系冲积平地较少,主要分布于富屯溪和晒溪两岸。 水系区内地表水流颇为发育,主要水系有富屯溪、晒溪及6条常年性山间小溪。富屯溪为矿区的主要水体,自西北向东南横贯矿区中部,为焦坑井田和晒口井田地表天然的分界线,河床宽50~150m。根据邵武水文站历年(1963至1972;1976至1980;1990至1996)资料表明:年平均流量,最大流量6400m3/s(1967年6月22日),最小流量(1979年10月)。洪水期一般出现在4~6月份,最大洪水发生在1998年6月22日(流量未测得),矿区东部新铺村一带,洪水位标高;矿区西部的晒口村一带,洪水位标高,与晒口大桥桥面相差。晒溪为富屯溪的一级支流,发源于罗峰山,自北向南流经下沙新村、洒溪桥,于晒口村西注入富屯溪,年平均流量28m3/s,最大流量(1967年6月22日),最小流量(1961年1月15日),洪水期一般与富屯溪同时出现。1998年6月22日,出现最高洪水位(流量未测得),标高为。枯水季节最低水位标高为。新铺溪流量为~,其它6条常年性小溪流量约为~10L/s。气象及地震情况矿区气象属亚热带潮湿性气候,据邵武气象站历年来(1963年至2005年)气象观测资料阐明如下:气温:平均温度℃,一般于7、8、9月份气温较高;最高温度可达℃(分别出现在1971年7月31日、2003年7月16日及31日);而于12、1、2月份气温较低,最低温度可降到℃,一般甚少下雪。降水量:历年平均年降水量,最大可达。降水一般多集中在4、5、6月份,占全年总降雨量约40-50%;但在个别年份雨季提前于3月开始或推迟到7月止。日最大降雨量(出现在1970年6月26日),连续降雨最长可达25天(1966年)。 蒸发量:年平均总蒸发量 mm;一般在7月份或8月份为最大,占全年总蒸发量约30~40%,最大月蒸发量达。潮湿度:1964年~2005年潮湿系数在~间,平均为。 历年绝对湿度平均值毫巴,以6~8月最高;月平均值达毫巴以上;最大可达毫巴,最小达毫巴,年平均相对湿度为81%。风向及风速:在9月份至次年12月,晴天早晨多雾,一般须到十点左右方可消散,风向多为西北,历年平均风速,6~8月份东风和南风较多。根据《中国地震参数区划图》(GB18306―2001),本区抗震设防烈度为6度,地震动峰值加速度为。2 地质特征地层矿区在大地构造中的位置属于南华后加里东准地台华夏台隆遂(昌)建(瓯)台拱的南部,在区域地质构造中的笔架山—香林铺中生代复式向斜内的虎庵山—同青桥背斜的东南翼,呈一大致向东倾伏缓波状的单斜,延深至东部被F1逆断层切割,断层上盘的前震旦系地层出露于地表。矿区出露地层有:前震旦纪变质岩群、上三迭统焦坑组、下侏罗统梨山组,中侏罗统漳平组和第四系。焦坑组为煤系地层。⑴前震旦纪变质岩群AnZ主要出露于矿区的西部、东部及北部,为上三迭统焦坑组煤系地层沉积的基底,岩性主要为千枚岩、变质砂岩、云母石英片岩和少量细晶片麻岩及板岩等组成。⑵上三迭统焦坑组T3j主要出露于矿区的西部,而东部及北部仅零星出露,属含煤地层,以第一标志层底部为界,分上、下段。地层厚度由南向北(沿走向)逐渐增大,自0~372米;自西向东(沿倾向)逐渐变薄自218~60米。焦坑组下段为主要含煤段,岩性复杂,岩相变化频繁,厚度变化较大,中下部以厚层状砂砾岩为主,上部为粉砂岩及较稳定的中厚煤层(DE煤层)。焦坑组上段以湖泊相的粉砂岩为主,分布较普遍,岩性变化不甚明显,为良好的隔水层。⑶下侏罗统梨山组本组地层分布较普遍,为煤系地层的盖层。岩性变化不大,以河床相的长石、石英砂岩为主,间夹石英质砾岩和粉砂岩,为矿区的主要含水层。表1-2-1 各地层关系表系 统 组 段 层厚m 岩性特征 接触关系第四系(Q) 0~56 为坡积黄土层,内含滚石、洪积亚粘土,河床冲积砾石层及河漫滩砂土层 角度不整合侏罗系 中统 漳平组 上段 240 砾石成份复杂的砾岩或砂砾岩 假整合 下段 角度不整合 下统 梨山组 上段 240 河床相的长石石英砂岩为主,间夹石英质砾岩和粉砂岩 假整合 下段 240 三迭系 上统 焦坑组 上段 288 湖泊相粉砂岩为主,夹细---中粒砂岩和少量透镜状含砾砂岩 角度不整合 下段 82 中下部以厚层状砂砾岩为主,夹有透镜状砂岩、粉砂岩,并夹凝灰质砂岩,火山角砾岩与凝灰质泥岩。上部为粉砂岩及较稳定的中厚煤层(DE煤层) 前震旦纪变质岩群 不详 千枚岩、变质砂岩、云母石英片岩和少量细晶片麻岩及板岩 ⑷中侏罗统漳平组主要分布在矿区的东部和北部,为砾石成份复杂的砾岩或砂砾岩,分为上下两段。⑸第四系(厚度0~56米,一般厚度12米)为坡积黄土层,内含滚石、洪积亚粘土,常为耕作区,河床冲积砾石层及河漫滩砂土层等。、构造矿区构造的复杂程度中等,为一向东倾伏缓波状的单斜构造,倾角为20~30度,以断层构造为主,褶曲构造也十分发育。矿区内较大的断层均在矿区边缘;井内落差~10米的北东向及南东向中、小断层密布,并往往与褶曲共生,断褶并存导致矿区内倾向及走向地层起伏变化。⑴断层矿区内较大的断层大致有17条,按其性质和延伸展布方向,大致可分为二组:一组,近于南北及北东向的逆断层为主,如F1、F4、F6、F8(北端)及F9;正断层有F2、F16及F20。另一组,近于东西向的正断层为主,如F3、F5、F14及F21,逆断层有F8(西端)及F10。上述断层主要分布在矿区的西部、东部及北部的边缘,而矿区内比较稀少。各主要断层分述如下:F1逆断层:位于矿区的东部边缘,全长约6000米以上,倾向约80°~90°,倾角40°~50°,斜断距大于1000米,为矿井的东部边界。F4逆断层:位于焦坑井田东南部,全长约1850米,倾向110°~ 140°,倾角40°~50°,斜断距小于40米。F16正断层:位于晒口井田中部,全长约1400米,倾角72°,斜断距约50米。F20正断层:位于焦坑及晒口井田中部,全长约350米,向南北两端即消失。倾向110°,倾角80°,斜断距较小而往深部消失。故对煤层没影响。F10平推逆断层(外围原F13):位于矿区北部边缘,为矿井北部边界,全长约5000米以上,断导走向近东南,倾向往北,地表倾角偏陡约60°~ 70°,斜断距不详。但据矿井巷道揭露,井下小断层甚为发育。晒口井田常见岩、煤层挤压褶曲,且伴随着小断层产生。焦坑井田常见倾向及斜交小断层。⑵褶曲矿区为一往东倾伏的单斜构造,沿走向、倾向呈现次一级褶皱。煤系地层产状变化不大,一般倾向70°~120°,浅部的倾角20°~30°,向深部变缓为10°~25°。主要次级褶曲分述如下:轴向北东褶曲:发育于焦坑组下段角砾岩中,分布在1至6勘探线的西部,两翼宽约150米,幅度20~25米。轴向近东西:分布矿区西部,宽为70~80米,两翼倾角10°~ 25°向东倾伏,延伸约100米。据矿井巷道揭露,煤层沿走向出现向、背斜相间褶曲形态,往深处幅度相对减少,轴向为西偏北,向东倾伏。更次级的小型褶曲一般轴向延深数十米左右,幅度几十公分至十余米,往往与小断层相伴生,两者在成因上具有关联。但这些构造不破坏煤层的连续性。⑶岩浆岩矿区岩浆岩分布广泛,岩种繁多,侵入时代主要有早至中三叠世的印支期,晚三叠世至侏罗纪的燕山早期。主要分布在矿区的西部和南部的边缘,次为东部的F1断层上盘地层之中。前印支期中、酸性岩中主要有白云母花岗岩及石英闪长岩侵入于变质岩中,共同构成煤系地层的基底。燕山期中酸性岩浆岩侵入岩及喷出岩,主要有安山凝灰岩(成煤之前)、石英斑岩、安山斑岩、火山角砾岩及少量辉绿岩等,尤以石英斑岩及安山斑岩对煤层影响较大,呈小型岩墙及岩脉岩沿断层或褶曲走向侵入,造成煤层变薄,尖灭,给开采带来极大的困难。总之,矿井构造类别属中等复杂型。煤层及煤质煤层矿井主要可采煤层为焦坑组下段的DE煤层,属较稳定的简单~较复杂类型可采煤层。顶板岩性为黑色的砂质泥岩,含植物化石碎片,可见黄铁矿条带或结核,局部为粗砂岩,个别直接顶夹~的炭质泥岩伪顶。底板为灰黑色角砾岩或砂砾岩,常相变为含砾砂岩。主要可采煤层特征见表1-2-2:主要煤层特征表表1-2-2煤层编号 煤层厚度(m)最小—最大平均(点数)结构 稳定性 顶板岩性特征 底板岩性特征DE 焦坑井田 —简单至较复杂 不稳定 煤层顶板为细粉砂岩,局部为粗粉砂岩、细砂岩,少数地段夹~厚的炭质泥岩伪顶。一般顶板节理裂隙不发育。煤层直接顶板厚度变化较大,一般由东向西变薄,而个别点至尖灭。 底板主要为角砾岩或砂砾岩,也有见深灰色的细砂岩或粗粉砂岩,岩石一般坚硬而碎,不易产生形变且煤层底板一般含承压水较微弱,具有岩质疏松等特点。 晒口井田 — 煤质: 以亮~半亮型的粉~粉块~块状煤为主,煤质化验结果见表1-2-3。煤质化验结果一览表 表1-2-3煤层编号 工业分析 全硫Sd,t(%) 磷Pb(%) 容重ARD 发热量Qv,d(MJ/kg) Mad(%) Ad(%) Vdaf(%) DE 由上表结果表明:DE煤层为中灰、中硫、低磷、中高发热量的无烟煤。可作为动力、化肥、发电、水泥用煤、民用生活煤等。 矿井开采技术条件 岩石工程地质特征煤层顶板常见灰黑色,薄至中厚层状的细粉砂岩,局部为粗粉砂岩或细砂岩,但个别地方煤层与直接顶间夹一层~米厚的炭质泥岩伪顶,往往在炮采时与煤层一起采出,而影响煤质。底板主要为灰黑色角砾岩或砂砾岩,岩相变为含砾砂岩,也有见深灰色的细砂岩或粗粉砂岩,质硬,不易产生变形且煤层下伏地层(底板)一般含承压水较微弱,对煤层开采影响不大。但由于矿区内构造较发育,局部地段受断层、褶曲和岩浆岩脉的影响,岩石节理裂隙发育,岩石较破碎,局部岩体质量较差,同时局部地段存在较弱夹层,建议在这些地段开拓过程中,应加强维护,防止冒顶事故的发生。 瓦斯、煤尘和煤的自燃根据历年瓦斯鉴定确认该矿为低瓦斯矿井。焦坑井田瓦斯含量为-,瓦斯主要成份是:CH4约,CO2约,晒口井田瓦斯含量为-,瓦斯主要成份是:CH4约,CO2约。但随着开采深度的增加,在独头上山或独头长巷、通风不良处易造成CO、CH4等有害气体聚集,在今后矿井生产过程中应加强矿井通风管理,经常进行瓦斯监测,做好生产过程中防尘、防爆、防自燃工作,以防意外事故发生。矿区的无烟煤的挥发分为3%左右,无煤尘爆炸危险,建矿至今从未发生过粉尘爆炸事故。煤矿无烟煤燃点较高,不易发生自燃,但在矿井井田局部块段的顶层煤,由于顶层煤中含硫量突然变高,在此煤层开采揭露后硫化物迅速氧化放热,若通风不良,散热不及导致煤层氧化放热聚集,最终发生煤层自燃。晒口煤矿煤层自燃现象仅局部块段会发生,采用跟底进尺,后退回采的开采方法,采用工作面煤壁洒水等措施可以防止煤层自燃现象的发生。水文地质山区地形,地表排泄条件好。地表水系发达,主要水源是河流及降雨。降水丰富、集中在4-7月,年平均降雨1200-1300mm/年,降水量1700-1800mm,是矿坑充水的主要来源。岩性单一,以碎屑岩为主,含水性质单一,均为基岩裂隙水,由于含水层受构造裂隙控制,具有穿层性和和相互分隔的特点,各个含水带之间联通性差。晒口煤矿大部分煤层位于河流侵蚀面以下,虽然富屯溪、洒溪流经矿区,因留设了有效的保护煤岩柱,河水下渗微弱,对矿区充水影响不大。矿井的主要充水方式有三种基本类型:Ⅰ类:大气降水、地表水、潜水 → 矿区浅部采动裂隙及构造裂隙 →采空区新生含水层 → 采掘工作面涌出。Ⅱ类:大气降水、地表水、潜水 → 承压含水层 → 构造裂隙 → 采掘工作面涌出。Ⅲ类:承压含水层 → 覆岩冒落带、裂隙带两带 → 采掘工作面涌出。井田的水文地质条件属基岩裂隙类简单型。根据福煤(邵武)煤业有限公司晒口煤矿提供的矿井涌水量数据,-200m~-600m水平平均涌水量,最大涌水量,其中,-200m~-400m水平平均涌水量,最大涌水量。地温根据福建省煤炭工业(集团)有限责任公司于2006年5月18日提交的《福建省邵武市邵武煤矿资源/储量核实报告(焦坑及晒口井田)》和矿方提供的技术资料,晒口煤矿平均地温梯度G=℃/100m,介于℃/100m和3℃/100m,属于中常温类矿井。根据地质报告,预计在矿井-400~-600水平,地温将达到27℃~30℃。矿区开采情况晒口煤矿范围原为邵武煤矿开采,其煤炭开采历史悠久,早自清朝光绪二十三年至民国元年,由盐商陈远复主办开采;民国元年至三十六年,由义记公司开采,主要采焦坑井田浅部(即云坪寺之北至焦坑村北东一带)露头煤,均为私人小煤窑土法开采。1958年—1963年,开始有计划地进行建井开采工作,但仍以小煤窑开采为主。重点开采焦坑井田的浅部煤层,日产约500吨,几年总产量约万吨。1960年起由省燃料局正式接收为省属企业,正式命名为邵武煤矿,并于1959年开始由省燃料局设计院对矿井进行总体规划设计,设计矿井服务年限为45年。焦坑井田一号井主平峒1959年6月动工兴建,1964年6月投产,以平硐—暗斜井方式开拓,设计生产能力为21万吨/年。晒口井田二号井于1960年开始兴建,1961年1月正式投产,以片盘斜井方式开拓,设计生产能力为15万吨/年。随着开采水平的延深,原有的生产系统满足不了矿井生产能力需要,为实现焦坑—晒口井田联合集中生产,扩大矿井生产能力,1972年由省煤炭工业设计院对矿井进行技改扩建设计,1973年4月至1974年5月新建一对箕斗斜井至-40水平,将一、二号井-40水平运输大巷贯通,构成统一的运输提升系统,箕斗主斜井负责提煤,副井负责供电、排水,技改扩建后矿井生产能力增至45万吨/年。为了开采-200和-400水平煤炭资源,从1981年开始由省煤炭工业设计院对第三、四水平开拓延伸进行设计,在二号井副井旁新掘一条908m长的新副井至-200水平,箕斗主斜井往下延伸至-200水平,形成-200水平生产系统。该系统于1993年建成投入使用。随着资源逐渐枯竭,1995年重新核定矿井生产能力为21万吨/年。第二部分 1. 矿井自然环境和地质概括矿区地貌系属起伏不平的中至低山区,主要山脉走向呈北北东—南南西、一般海拔标高为200—350米,最高点云屏山,海拔标高为米;而长年性地表水流发育的富屯溪,则为本矿区最低侵蚀基准面,其海拔标高约178米。本地表水系主要为富屯溪,最大流量为6500m3/s,最小流量为,平均流量为,洪水期水位最高标高达+,枯水期河流最低标高+170m,流量随季节性变化。其次为晒溪,河床最低标高+,最高洪水位+米,洪水期最大流量为,最小流量为,流量随季节性变化。本区属亚热带潮湿性气候,据邵武市气象局资料,每年4~6月为雨季,11月至次年1月为旱季,历年平均降水量为,气候温和,雨水充沛。2.地层含水性矿区出露地层有前震旦纪变质岩群、上三迭统焦坑组、下侏罗统梨山组,中侏罗统漳平组和第四系。现对各地层的富水性简述如下:⑴、前震旦系变质岩群主要出露于矿区的西部、东部及北部,为上三迭焦坑组煤系地层沉积的老基底,岩性主要为千枚岩、变质砂岩、云母石英片岩和少量细晶片麻岩及板岩等组成。⑵、三叠系上统焦坑组主要出露于矿区的西部,而东部及北部仅零星出露,属含煤地层,系山麓堆积相---冲积相的角砾岩、砂砾岩及砂岩,湖泊相的粉砂岩、细砂岩或透镜状砂岩、砾岩和煤层等。地层厚度由南向北(沿走向)逐渐增大,自0---372米;自西向东(沿倾向)逐渐变薄自218---60米。焦坑组上段风化带为弱含水层,单位涌水量、渗透系数为。焦坑组上段以湖泊相的粉砂岩为主,夹细---中粒砂岩和少量透镜状含砾砂岩等组成,中厚层状、层理发育,含植物化石碎片偶见少量瓣鳃类动物化石,本地层分布较普遍,岩性变化不甚明显,为良好的隔水层。⑶、侏罗系下统梨山组本组地层分布较普遍,系为煤系地层的盖层。岩性一般纵横变化不大,以河床相的长石、石英砂岩为主,间夹石英质砾岩和粉砂岩,为矿区的主要含水层。由于基岩裂隙发育不均一,该含水层可分为相互分隔的三个含水带,其中中带即第二含水带中等含水、单位涌水量、渗透系数为,其他两个带均为弱含水带。⑷、第四系残坡积层和冲洪积层为坡积黄土层,内含滚石、洪积亚粘土,常为耕作区,河床冲积砾岩石层及河漫滩砂土层等。主要分布于富屯溪,晒溪两岸及矿区西部山脚一带,河岸以冲积层砂、砾石为主,山脚一带以坡积含砂土为主,渗透系数。3.构造含水性和导水性晒口煤矿主要构造以断层为主,分别为近于南北及北东向的逆断层为主以及近于东西向的正断层为主。大断层都在矿区边缘,井内落差米的北东向及南东向中小断层密布,断层导水性弱或基本不导水。4矿井充水条件充水水源分析⑴大气降水大气降水是矿区的主要补给水源,它通过地表潜水层及采空区塌陷裂隙补给深部裂隙承压含水层中,成为矿坑的直接补给来源。⑵裂隙含水岩层水主要赋存于三叠系上统焦坑组(T3j)砂岩、砂砾岩、含砾砂岩的裂隙中。含水层呈透镜体分布,浅部富水性中等~弱;深部富水性弱~极弱。主要表现为顶板的滴水和渗水,通过调查分析煤层底板的涌水量极小,底板突水的可能性极小。充水通道分析矿井充水的水源主要是大气降水,其次是地表水和潜水。主要充水通道是煤层采动时上覆岩层被破坏造成“两带”沟通引起的山体基岩和表土裂隙,塌陷区域,以及采动使断褶构造活化而形成的断褶导水带。5矿井涌水量、水害预测及其评估-40m水平涌水量由一采区、二采区、三采区涌水量构成,-200m水平涌水量由五采区、六采区、七采区涌水量构成。矿井排水主要是通过-200m水平中央水泵抽水至-40m水平中央水泵,再由-40中央泵房经箕斗井两趟管路排至地面后流入富屯溪。-200m~-600m水平平均涌水量,最大涌水量,其中,-200m~-400m水平平均涌水量,最大涌水量。通过矿区水文地质特征及充水分析,矿井主要充水因素为大气降水、地表水、线状断层带、基岩裂隙水。通过开展矿区水患现状调查,分析矿井水害现状,矿井目前无大的水害威胁。通过对矿井实际涌水量观测,矿井目前实际观测的最大涌水量为880m3/h,平均涌水量为580m3/h。近些年本矿开采老空区已封闭,留有排水口,存在小部分积水基本能通过排水口排出,对下部的开采影响较小。晒口煤矿目前的排水能力满足生产要求,但仍要做好季节防治水工作。6.矿井防水害措施矿井主要充水因素为大气降水、含水岩层和采空区积水。矿井地表水体为沟谷水,含水岩层富水性弱,断层导水性弱,地表水和地下水对开采影响不大,但为了做到预防为主,确保矿井正常生产,对于强降雨后,对采空区的补给,在矿井生产过程中必须做好以下防治水措施:1、煤矿企业必须在雨季来临前,派专门人员对防治水工作进行全面检查。2、矿井生产时,应做好水文地质调查工作,在矿井范围内进行水患分析预报;加强职工防治水知识教育,特别是透水预兆、应急措施知识的普及教育;坚持“有疑先停、有疑必探、先探后采(掘)”的原则,配备探放水设备。3、各矿井在开采下山水平时,要对各矿井主平硐及以上水平的矿井水采取“堵、截、引”等措施排出地面,留设足够隔水煤柱,严防上水平的通过钻孔裂隙带直接馈入下水平,造成额外排水负担。4、在各个生产水平开采过程中,必须留设足够的隔水煤柱、采空区煤柱、护巷煤柱、断层隔离煤(岩)柱、矿井边界煤柱等保安煤柱,确保矿井安全生产。5、矿井在开采过程中必须做好水文观测工作,应根据实际涌水量情况,及时扩大水仓容量和更换相应型号、功率的水泵。同时做好水泵及其供电线路维护工作,保持井下排水设备完好和正常运转,确保有足够的排水能力。6、断层为弱导水或局部弱导水,对矿井充水一般无威胁。但矿区中褶皱构造发育,一般在背斜轴部由于张性裂隙的发育,会形成较大面积的含水层,且含水量较大。对此断裂带、构造带应加强矿山地质及水文地质工作,密切注意井巷围岩、断层破碎带、掘进面等涌水特征,发现顶板淋水加大,顶板来压等透水预兆时,应立即停止作业,采取防范措施。
柴北缘的新元古代花岗片麻岩是最近几年从原“达肯大坂群”中解体出的变质深成侵入体(陆松年等,2000),通过研究和地质填图,已经确定新元古代花岗片麻岩在柴北缘有广泛出露,从东部的沙柳河、经锡铁山、绿梁山到赛什腾山西侧,断续延伸达700余公里。本次工作重点对大柴旦绿梁山(鱼卡河)、都兰沙柳河和锡铁山全集河一带的花岗片麻岩进行了解剖。研究表明,这些花岗片麻岩成分较复杂,有奥长花岗质、英云闪长质、花岗闪长质、二长花岗质和钾长花岗质,以花岗闪长质-二长花岗质为主体。从野外地质关系看,奥长花岗质片麻岩和英云闪长质片麻岩形成相对较早,钾长花岗质片麻岩相对较晚。
1.岩石特征
(1)绿梁山(鱼卡河)地区
绿梁山地区的花岗片麻岩根据野外产状和镜下岩矿鉴定,可划分为三种主要岩石类型:白云母花岗闪长片麻岩、白云母二长花岗片麻岩和眼球状二云二长花岗片麻岩。后者仍可辨别出深成侵入体形态,侵入到花岗闪长质-二长花岗质片麻岩体和变质表壳岩中。花岗闪长质片麻岩中可见少量奥长花岗质、英云闪长质组分。
白云母花岗闪长片麻岩 岩石呈浅灰色—灰白色,花岗变晶结构,条带状、片麻状构造。主要矿物成分有斜长石(更长石)~,40%~50%;微斜长石~1mm,5%~15%;石英~1mm,20%~30%;白云母~,9%~15%;石榴子石~,1%~3%,少量黝帘石、磷灰石、金红石、榍石和锆石。白云母呈定向排列,部分斜长石、石英呈拉长状。变形较强的岩石中钾长石减少,石英增多。
白云母二长花岗片麻岩 岩石呈浅灰色—灰白色,花岗变晶结构,条带状、片麻状或细眼球状构造。主要矿物成分有斜长石(更长石)~3mm,30%~35%;微斜长石~2mm,25%~35%;石英~2mm,20%~25%;白云母~,9%~15%;石榴子石~,1%~4%;少量黝帘石、绿帘石、绿泥石、磷灰石、锆石、榍石。白云母呈定向排列,部分斜长石、石英呈拉长状。
眼球状二云二长花岗片麻岩 岩石呈灰—灰白色,不等粒花岗变晶结构,变余似斑状结构,片麻状、眼球状、条带状构造。主要矿物成分有斜长石(更长石)~3mm,最大达7mm,30%;正长石~2mm,10%~20%;微斜长石~3mm,最大达5 mm,含量变化大,<1%~15%;石英~,25%~28%;白云母~,7%~12%;黑云母~,4%~5%;斜黝帘石;石榴子石~,~1%;少量榍石、方解石、磷灰石。斑晶有斜长石、正长石、微斜长石,多呈残斑出现。斜长石发育聚片双晶,部分发生韧性变形,呈长条状或条带状集合体。
(2)锡铁山(全集河)地区
以花岗闪长质片麻岩为主,少量二长花岗片麻岩,局部正长花岗质脉体较发育。暗色矿物以黑云母为主,强片麻理部位出现较多白云母。
花岗闪长片麻岩 岩石呈灰色—灰白色,花岗变晶结构,片麻状或条带状构造。主要矿物成分有斜长石~,35%~40%;微斜长石~2mm,10%~15%;石英~,40%左右;黑云母~2mm,7%~12%;白云母~2mm,0~5%;偶见石榴子石,少量黝帘石、绿帘石、绿泥石、磷灰石、锆石、榍石。黑云母具定向排列。
钾长花岗片麻岩 多呈岩脉状顺片麻理产出,肉红色-砖红色,中细粒花岗变晶结构,弱片麻状构造,主要矿物成分为微斜长石和条纹长石(55%),斜长石(5%~10%),石英(35%~40%),少量黑云母。
(3)沙柳河(阿尔茨托山)地区
沙柳河一带花岗片麻岩岩性组合比较复杂,主体岩石类型为灰白色条带状或眼球状二云花岗闪长片麻岩、白云母花岗闪长片麻岩,少量英云闪长质和石英闪长质片麻岩,局部岩石钾化较强,演变为条带状二长花岗片麻岩。原岩相当于似斑状花岗闪长岩—中粒花岗闪长岩。
灰色条带状、眼球状二云花岗闪长片麻岩 岩石多呈花岗变晶结构、鳞片粒状变晶结构、变余斑状结构,眼球状、条带状或片麻状构造。眼球状变斑晶一般大小为1~2cm,定向性较好,以灰白色板状斜长石为主,少量钾长石。条带以长英质成分和云母定向为特征。主要矿物成分有:斜长石(中更长石),多绢云母化,镜下见交代蠕英结构、净边结构,含量30%~40%;微斜长石,具有格子双晶,含量3%~20%;石英,呈粒状,含量20%~30%;黑云母,5%左右,部分被绿泥石、白云母交代;白云母呈细小鳞片状,含量5%~12%;石榴子石含量不等,0~8%,另外可见少量磷灰石、金红石、锆石、钛铁矿等副矿物。
含石榴子石白云母花岗闪长片麻岩 花岗变晶结构,条带状构造或片麻状构造。主要矿物成分有斜长石(更长石)~3mm,45%~56%;微斜长石~2mm,10%~18%;石英~2mm,20%~25%;白云母~,9%~15%;石榴子石~,1%~4%;少量黝帘石、绿帘石、绿泥石、磷灰石、锆石、榍石。白云母呈定向排列,部分斜长石、石英呈拉长状。
黑云石英闪长片麻岩 岩石总体为花岗变晶结构,片麻状构造,主要矿物成分有斜长石(更长石An为20~28)~,55%~63%;石英~1mm,5%~12%;黑云母~,7%~20%、绿帘石~,1%~12%;少量榍石、磷灰石、磁铁矿等。局部含有角闪石,此时黑云母含量减少。黑云母呈定向排列,构成片麻理。斜长石遭受不同程度的微晶黝帘石化和绢云母化;斜长石发育聚片双晶,有时可见双晶弯曲变形。岩石发生不均匀韧性变形;部分斜长石斑晶定向排列,部分斜长石发生亚颗粒化,发育眼球状构造。
含石榴子石白云母英云闪长质片麻岩 花岗变晶结构,条带状构造,片麻状构造。主要矿物成分有斜长石(更长石)~,53%~56%;微斜长石~1mm,7%~12%;石英~1mm,20%~30%;白云母~,9%~15%;石榴子石~,2%~3%;少量黝帘石、磷灰石、锆石。白云母定向排列。
2.岩石地球化学特征
花岗片麻岩的化学分析结果列于表5-1。岩石氧化物含量显示的突出特点是Al2O3含量较高,w(Al2O3)为~,铝饱和指数均>1,CIPW标准矿物计算结果显示岩石中均出现刚玉标准分子;碱度指数多界于~之间,w(K2O)/w(Na2O)多数>1,属准铝质—过铝质钙碱性岩。在w(An)-w(Ab)-w(Or)图解上,该花岗片麻岩样品多数投在花岗岩区(图5-2),少部分投在奥长花岗岩和花岗闪长岩区,与岩矿鉴定以花岗闪长质为主略有偏差,这可能是由于岩石遭受了不同程度的变形变质作用,出现了较多含钾量高的白云母和黑云母,使钾长石含量相对较低。在R1-R2图解上(图5-3),多数样品投在同碰撞花岗岩区。
表5-1 柴北缘新元古代花岗片麻岩样品化学分析结果
续表
除个别样品(BQ98011)外,花岗片麻岩的稀土元素含量较高,w(ΣREE)为×10-6~×10-6,w(LREE)/w(HREE)为~,稀土元素曲线右倾(图5-4),[w(La)/w(Sm)]N为~,[w(Gd)/w(Yb)]N为~,轻稀土元素分馏程度较高;δEu为~,显示明显的铕负异常。w(Sm)/w(Nd)为~,w(Eu)/w(Sm)为~,岩浆源自硅铝质地壳重熔。样品BQ98011的稀土元素特征与其他样品明显不同,稀土元素总量相对较低,且出现明显的Eu正异常,表明它的产出背景与其他花岗片麻岩不同。
图5-2 花岗片麻岩w(An)-w(Ab)-w(Or)图解
图5-3 花岗片麻岩R1-R2图解
图5-4 花岗片麻岩的稀土元素图谱
花岗片麻岩微量元素的MORG标准化图谱显示不相容元素K、Rb、Ba、Th等元素富集,Ta、Nb、Ce略高于洋脊花岗岩,Zr、Hf、Sm、Y轻度亏损,Yb强烈亏损;大多数样品出现Ba、Ta、Nb、Hf、Zr负异常(图5-5)。Ba负异常和较高的Rb含量显示同碰撞花岗岩的地球化学特点,而低的高场强元素及Ta、Nb、Hf、Zr负异常则与岛弧型花岗岩相似。在Pearce(1984)的w(Nb)-w(Y)和w(Rb)-w(Y+Nb)图解上所有样品均落在火山弧花岗岩和同碰撞花岗岩区(图5-6、图5-7)。表明柴北缘花岗片麻岩形成于与火山弧及大陆碰撞相关的构造背景。
图5-5 花岗片麻岩微量元素MORG标准化图谱
图5-6 花岗片麻岩的w(Nb)-w(Y)图解
图5-7 花岗片麻岩的w(Rb)-w(Y+Nb)图解
3.花岗片麻岩的同位素年龄
近年来,利用颗粒锆石U-Pb同位素稀释法从柴北缘获得了大量新元古代早期花岗片麻岩的年龄数据(表5-2),年龄范围为850~1000Ma,而且也得到了更为可靠的SHRIMP法测年数据的证实。
表5-2 柴北缘新元古代花岗片麻岩锆石U-Pb年龄一览表
深埋隧道工程的灾害地质问题论文
摘要 :在进行深埋隧道工程施工过程中,由于洞程较长,洞深埋设较大,地质条件较复杂,在施工时,如果处理措施不当会出现高地温、岩爆、高压涌水等问题。鉴于此,以实际工程为例,对深埋隧道工程主要存在的灾害地质问题进行了分析和探讨,保证了施工的顺利进行,以期为类似工程提供参考与借鉴。
关键词 :深埋隧道工程;灾害地质;高压涌水
1工程概况
太行山高速公路邯郸东坡隧道位于武安市岭底村南、七水岭村东、涉县东坡村东北处。隧道为分离式特长隧道,隧道工程总施工长度为3134m。左幅为ZK38+624~ZK41+740,长3116;右幅为K38+642~K41+776。最大埋深为176m。本文以此工程为例,对深埋隧道工程主要灾害地质问题进行分析和探讨。
2深埋隧道中的高地温难题
深埋地下隧道的工程中,地质问题是需要进行探索和研究的关键领域,最先要通过预测天然地温,一旦地温超过30℃一般将其称之为高地温。高地温不仅会恶化深埋隧道作业的环境,还会严重降低工人的劳动生产率,甚至会对现场施工人员的生命造成极大危害。此外,对深埋隧道施工材料选取的难度也相应增加[1]。然而,地温值是随着地下工程埋深在不断变化的,但地下工程的最大埋深和地温值的增加关系不是呈线性的,因为造成这种深埋隧道中的高地温问题的原因主要是地下水活动以及近期岩浆活动中放射性生热元素含量较高等。
3深埋隧道与岩爆的高地应力问题
在深埋地下隧道的工程中,其中一个突出的地质难题就是岩爆问题。地下隧道工程埋得越深,其地应力就会越高。深埋隧道工程和近地表工程的不同之处除了具有较高的水平构造应力外,最主要取决于围岩出现的高地应力。它不仅在硐侧壁引起高压应力,还导致硐顶部出现高拉应力,这样会导致硐室围岩不稳定,埋下隐患。由于高地应力的存在,一些黏性土含量较高,而硬岩含量较低的围岩就会产生被塑性挤出的可能。高地应力不断释放,地下隧洞就会发生变形,往往会出现隧洞短时间内突然变小的异常现象。就好比从掌子面距离正洞30m开始,洞身变形的长度有40m,起初的支架保护结构破坏就会非常严重,通过测量计算,隧洞拱顶的下沉在10~20cm之间,隧洞的拱脚和边墙也出现不同程度的挤压和移位,甚至还有混凝土开裂的情况[2]。这时就需设计一套科学有效、刚柔结合、综合治理的施工方案。为克制高地应力,考虑使用约1万根超长锚杆,要求总长超过11×104m,把地下隧洞中的断面改成环形成拱,做到先柔后刚、先放后抗的设计要求。岩爆受影响的原因有地震爆破,也有相邻岩爆或机械等外因动力的振动,但其中影响岩爆的最基本原因是岩石的结构特征。经过大量的数据分析发现,岩石颗粒排列呈定向排列还是随机排列,岩石是胶结连接还是结晶连接,是钙质胶结还是硅质胶结,这最终关系着岩爆烈度的强弱。例如:(1)随机排列的花岗岩、闪长岩等岩石的岩爆烈度,会比片麻岩、花岗片麻岩、糜棱岩等具有定向排列的围岩颗粒更强一些;(2)结晶连接的深层岩浆岩石中的岩爆烈度比胶结连接的沉积岩强;(3)具有硅质胶结岩石的天生桥二级水电站引水隧洞比关村坝的隧道中钙质胶结岩石的爆烈度强。
4深埋隧道中的高压涌水难题
深埋地下隧道的施工过程中,除了高地温以外,涌水问题也成为隧道运营中亟待解决的又一难题。由于地质条件复杂,隧道通过的地段会挖掘出很多水流量大的地质单元,一般就会出现涌水量大或水头压力高的情况。地下水水压在深部岩体中极高时,就会导致岩体水力劈裂。这就说明在高水头压力的作用下,在岩体的突水点附近,岩体断续裂隙、裂缝是朝着某个方向的,受网状交织的构造裂隙影响,经过融合后发生扩展的裂隙、空隙最终张裂开来。随着隧道深部岩体涌水量越来越大,地下水水压越来越高,会导致深埋隧道工程围岩水力劈裂。一旦出现水力劈裂的情况,就会迅速连通裂隙,空隙的张裂程度就会越来越大,涌水的渗透力会越来越强。再加上动水压力的影响,裂隙会再扩展,而使在裂隙面上的充填物发生剪切变形和位移。不论是在深埋隧道工程中还是在浅埋隧道中,容易发生的地质灾害主要表现为断层破碎带,岩体不整合接触面和结构不利组合段造成的塌方、地震,还有瓦斯爆炸、有害气体以及溶岩塌陷、泥屑流等[3]。其中,瓦斯爆炸主要指甲烷CH4在相对封闭的煤系构造地层中,由冲击波的产生、剧烈的氧化作用而导致的爆破,其灾害性极强。
5基岩裂隙水
基岩裂隙水的含义
只有储存在坚硬岩石裂隙中的非可溶性地下水,才被统一归纳在基岩裂隙水的`传统范畴中,根据含水介质的基础特征,可以将地下水分为空隙、裂隙、岩溶3种,但并非在地下水、岩石以及岩石中的空隙这3者之中产生对应关系。贮水空隙系统具有双重空隙介质,在地下水勘探中,关于贮水空隙类型还探索到了新的领域。基岩裂隙水主要存在于受符合地质构造条件的属坚硬或半坚硬的岩石所控制的以裂隙为主的贮水空间,是具有运动、富集规律的地下水。不管是溶蚀裂隙地下水在可溶性岩石中的部分,还是孔隙裂隙水中的半坚硬岩石,都属于基岩裂隙水,而它与其他类型地下水的基本区别,关键在于是不是受地质构造因素的严格控制。岩石含水的裂隙有成岩裂、构造裂和风化裂,主要是依照它的成因来划分的。如果非要与风化裂隙水和成岩裂隙水作比较,那么水源集中、水量较大的必定是构造裂隙。
基岩裂隙水的特点
由于主控因素作用,不同的蓄水构造中分布、富集基岩裂隙水的基本规律和决定主控的因素也基本相同,具有独特的分布和运动规律。我国基岩裂隙水富集的基本特色理论就是蓄水构造系统,其主要特点如下。(1)基岩裂隙水具有复杂多样的埋藏和分布形态。将储存、运移基岩裂隙水的空间和通道,叫做岩石裂隙。基岩裂隙的大小和基岩裂隙的形状,以及控制埋藏和分布裂隙发育带的产状,都是受地质构造、地层岩性、地貌条件等影响的。埋藏、分布不均匀的基岩裂隙水,大多具有不规则的含水层、多种多样形态、分布呈带状的特点[4]。比如用脆性和塑性这两种地层做比较,会产生较强的赋水性。若裂隙发育在褶皱构造中,像褶皱轴、转折、背斜倾伏等处,富水段的形成就会比较容易,而压性断裂破碎带中的赋水性是比较差的。(2)复杂的基岩裂隙水中,由于储存空间中不均匀的介质,埋深程度不同的同一含水层,其地下水的运动状态也各有不同。对于岩石中所要形成和分布的空隙,最基础的因素是地质构造,主要表现在:岩石裂隙的发育和裂隙水的储存都是受地质构造和地层岩性所影响,其中,基岩裂隙水的运动规律也被地质构造所牵制。由于地下水面的不同,即便是在基岩相同的裂缝水中,也是有时而出现无压水,时而出现承压水的情况[5]。层流、管道流、紊流、明渠流水是在岩石裂隙、溶洞的特殊形态作用下形成水运动的不同状态,因此,基岩裂隙水的不均一性以及强烈的方向感,是导致裂隙岩体的透水复杂多样、不具有规律性的根本原因。
6结论
在深埋地下隧道的工程中,比较突出的几大地质难题包括高地应力及岩爆问题、高压涌水突水问题、高地温问题等。此外,还有像地震震害、瓦斯有害气体爆炸以及涌水突泥、围岩塌方、岩溶塌陷、泥屑流等。于是,在这个复杂的、系统的深埋隧道工程中,关于灾害地质的研究,对隧道工程能否顺利开展是关键的一步,在隧道工程施工前应按照隧道工程的各方面具体情况,采取有效、有针对性的防御措施。
参考文献:
[1]重庆交通科研设计院.公路隧道设计规范:JTGD70—2004[S].北京:人民交通出版社,2004.
[2]上海市隧道工程轨道交通设计研究院,清华大学.隧道工程防水技术规范:CECS370—2014[S].北京:中国计划出版社,2014
[3]孙赤.锦屏二级深埋隧道大理岩段突水破坏机理研究[D].成都:成都理工大学,2014.
[4]王洪新.土压平衡盾构刀盘开口率选型及其对地层适应性研究[J].土木工程学报,2010(3):88-92.
[5]武力,屈福政,孙伟,等.基于离散元的土压平衡盾构密封舱压力分析[J].岩土工程学报,2010,32(1):18-23.
149 浏览 6 回答
206 浏览 5 回答
93 浏览 8 回答
137 浏览 3 回答
174 浏览 8 回答
111 浏览 5 回答
319 浏览 4 回答
101 浏览 6 回答
287 浏览 6 回答
185 浏览 3 回答
252 浏览 6 回答
216 浏览 5 回答
147 浏览 3 回答
333 浏览 5 回答
93 浏览 4 回答