Proposition . For xo 属于P to be primal optimal it is sufficient that f(x) and the active components of g(x) at Xo are Type I functions with respect to a common rl(X ) at Xo and conditions ()-() hold at x o .for some Yo. We note that if r(x) is identically zero then () and () imply that xo is primal optimal. It follows that if a primal constraint qualification holds, then for xo属于P to be primal optimal it is necessary as well as sufficient that conditions ()-() hold at xo for some Y0 and that f(x) and g(x) are Type I functions with respect to a common r(x) at x0. However in the following theorem we see that for optimality, under an additional qualification on the constraints there must exist a vector r(x) which is not identically zero for each feasible x. Theorem . If x0 属于 P and the number of active constraints at Xo is k, where k < n, then for Xo to be optimal in the primal problem it is necessary that f(x) and g(x) are Type I functions with respect to 命题 。为XO笔记本电脑属于磷是原始最佳它是足够的F ( x )和活性成分的G (十)在厂是I型职能方面的一个共同的北京(十)在XO和条件( ) - ( )保持在XO笔记本电脑。一些哟。 我们注意到,当R ( x )是相同的零然后( )和( )意味着原始XO笔记本电脑是最佳的。因此,如果原持有资格限制,那么为XO笔记本电脑属于磷是原始最优这是必要的,也是充分的条件 ( ) - ( )举行XO笔记本电脑的一些Y0和函数f ( x )和g ( x )的是I型职能方面的共同住宅(十)在x0 。然而在下列定理,我们看到的最优化,根据附加资格的限制,必须存在一个矢量住宅(十)这是不相同的每个可行零十定理 。如果x0属于P和积极的数目限制在XO笔记本电脑却钾,其中k “氮,然后厂为最优的原始问题是必要的函数f ( x )和g ( x )的是I型职能方面