拉普拉斯变换的实际应用 在工程学上的应用 应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。 拉氏变换在微分方程(组)初值问题中的应用 1.1 利用拉氏变换解常系数线性微分方程的初值问题 例1 求初值问题Y”一2y +2y=e~,y(O)=0,Y (0)=1. 例2求解初值问题 用拉氏变换求常系数线性微分方程(组),是把关于Y(t)的微分方程(组) 转化成关于象函数l,(s)的代数方程,从而容易确定l,(s).从象函数l,(s)求其拉氏逆变换即得原函数 Y(t).由于在求解过程中同时利用了初值条件,因此用拉氏变换求得的解是初值问题的解.如果把初值视为任意常数,则用拉氏变换求得的解就是通解. 2 利用拉氏变换求积分方程 用拉氏变换求解相关问题既方便又简洁. 答案补充:应用拉普拉斯变换分析RLC电路,不需要确定积分常数 拉普拉斯变换的数值逆在偏微分方程中的应用ut(t,x)-∫0^t(t-s)^-1/2uxx(s,x)ds=f(t,x)的数值解。该方法选择适当的n可以达到相当高的精度。 用拉氏变换引入网络函数的概念,网络函数是分析电路正弦稳态响应的工具,最后,希望以系统的方式将电路的时域特性与频域特性联系起来,拉氏变换加深对电路功能的理解。答案补充拉氏反变换:有理真分式、有理假分式、部分分式展开法、具有独立实根的有理真分式的拉氏反变换、具有共轭复根的有理真分式的拉氏反变换、具有实重根的有理真分式的拉氏反变换、具有多重复根的有理真分式的拉氏反变换、假分式的拉氏反变换(整理为一个多项式和有理真分式之和,然后分别求其拉氏反变换)、F(s)的零点极点、初值定理和终值定理、初值定理终值定理的应用。 s域电路分析 拉氏变换用于电路分析具有两个特点:第一,拉氏变换将线性常系数微分方程转化为容易处理的线性多项式方程,第二,拉氏变换将电流和电压变量的初始值自动引入到多项式方程中,这样在变换处理过程中,初始条件就成为变换的一部分。 s称为复频率、复频域分析方法(又称运算法)、动态元件的初始储能问题、s域欧姆定律V=ZL、拉氏变换的线性特性决定了线性电路理论在s域同样适用、这些线性电路理论包括:KCL、KVL、节点电压法、网孔电流法、戴维南等效、诺顿等效、叠加定理等。答案补充我自己的经历,就只有在信息系统里,用到,主要是求初值问题,积分问题