工具变量的本质特征是外生性,即工具变量与扰动项不相关,如果工具变量外生,且为强工具变量,则工具变量法的逻辑必然成立,可得到回归方程的一致估计。
由于工具变量的相关性易检验(比如,考察第一阶段回归的 F 统计量),而工具变量的外生性不易检验,故对于使用 IV 的实证论文,工具变量的外生性常常成为审稿人、主编与作者的分歧焦点。
通过排他性约束来定性探讨工具变量的外生性,在实践中需要将 影响 的所有可能渠道列出,然后将除以外的渠道全部排除(比如,通过讨论认为这些其他渠道不存在或可以忽略)。
在回归模型中,当解释变量与误差项存在相关性(内生性问题),使用工具变量法能够得到一致的估计量。内生性问题一般产生于被忽略变量问题或者测量误差问题。
当内生性问题出现时,常见的线性回归模型会出现不一致的估计量,此时如果存在工具变量,那么人们仍然可以得到一致的估计量。
根据定义,工具变量应该是一个不属于原解释方程并且与内生解释变量相关的变量。在线性模型中,一个有效的工具变量应该满足变量和内生解释变量存在相关性。