光伏发电我明白,这个我了解好比
总体设计思路:拟屋顶建设低压配电用户侧并网光伏发电项目所发电量接入内供电网络光伏发电自发自用实现光伏新能源电力示范应用保障光伏装机容量及发电量光伏电池板采用固定倾角支架式安装朝向南太阳能电池组件阵列尽量避免建筑物阵列间遮挡并预留维护通道根据客户初步提供用电32度根据佳角度进行太阳能电池组件铺设计算初步铺设太阳能电池组件205W(1580x808x50mm)16块总装机容量初步设计需要安装面积平米设计光伏组件安装倾角面设计32度安装式,32度倾角实现单位装机容量全发电量尽量利用屋顶效使用面积获较屋顶发电效率预计发电量:北京市光伏发电示范项目预计平均发电量按32度倾角设计电网接入案:屋面光伏组件经定数量串联升压通直流防雷汇流装置别接至1台并网逆变器并网逆变器光伏所发直流电逆变与区域内电网同频率同相位交流电经交流配电柜(含防 雷保护、发电量计量等)接入配电间光伏发电路(原配电柜增加光伏路)两相220V低压配电网通交流配电线路给负荷供电实现光伏发电并入商场内部电网北京市光伏发电示范项目工程设计概算包括光伏组件、光伏支架(含基础钢架)、逆变设备、直流配电、交流配电、电缆、工程施工等二、光伏发电原理简介及特点()太阳能利用概况太阳能各种再能源重要基本能源物质能、风能、海洋能、水能等都自太阳能广义说太阳能包含各种再能源太阳能作再能源种则指太阳能直接转化利用通转换装置太阳辐射能转换热能利用属于太阳能热利用技术再利用热能进行发电称太阳能热发电属于技术领域;通转换装置太阳辐射能转换电能利用属于太阳能光发电技术原理图:(二)光伏发电原理太阳能光发电技术通转换装置太阳辐射能转换电能利用技术光电转换装置通利用半导体器件光伏效应原理进行光电转换称太阳能光伏技术光伏特效应简称光伏效应指光照使均匀半导体或半导体与金属组合同部位间产电位差现象(三)光伏系统发电特点- 没转部件产噪音;- 没空气污染、排放废水;- 没燃烧程需要燃料;- 维修保养简单维护费用低;- 运行靠性、稳定性;- 根据需要容易扩发电规模
一、项目概括项目简介及选址本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。 图1-1 选址地卫星图 图1-2 选址平面图 项目位置及气象情况经过百度地图的计算,得出了此地经纬度为:北纬,东经为,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,最高气温为夏季的度,最低气温为冬季的度,年均气温17度。该项目所在地最高海拔为793米,最低海拔达米,总的平均海拔为米。该地年总辐射量经过PVsyst软件的计算后,得出了的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。 图1-3湘潭市地理位置 图1-4年均总辐射值项目设计依据本项目设计依据如下:《光伏发电站设计规范》GB50794-2012《电力工程电缆设计规范》GB50217-1994《光伏系统并网技术要求》GB/T19939-2005《建筑太阳能光伏系统设计与安装》10J908-5《光伏发电站接入电力系统技术规范》GB/T19964-2012《光伏发电站接入电力系统设计规范》GB/T5086-2013《光伏(PV)系统电网接口特性》GB/T20046-2006《电能质量公用电网谐波》GB/T14549-19933《电能质量三相电压允许不平衡度》GB/T15543-1995《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000二、电站系统设计组件选型组件是电站中造价最高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持最佳,这样才不会亏本。组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。表2-1伏组件对比表组件品牌及型号 晶科Swan Bifacial 400 72H 晶科Swan Bifacial 405 72H 晶澳JAM72S10 400MR最大功率(Pmax) 400Wp 405Wp 400Wp最佳工作电压(Vmp) 41V 组件转换效率(%) 最佳工作电流(Imp) 开路电压(Voc) 49V 短路电流(Isc) 工作温度范围(℃) -40℃~+85℃ -40℃~+85℃ -40℃~+85℃最大系统电压 1000/1500V DC(IEC/UL) 1000/1500VDC(IEC/UL) 1000/1500VDC (IEC)最大额定熔丝电流 20A 20A 20A输出功率公差 0~+5W 0~+5W 0~+3%最大功率(Pmax)的温度系数 ℃ ℃ ℃开路电压(Voc)的温度系数 ℃ ℃ ℃短路电流(Isc)的温度系数 ℃ ℃ ℃名义电池工作温度(NOCT) 45±2℃ 45±2℃ 45±2℃组件尺寸:长*宽*厚(mm) 2031*1008*30mm 2031*1008*30mm 2015*996*40mm电池片数 72 72 72第一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。第三款组件晶澳JAM72S10 400MR是3款组件里效率最高的组件,比第一款和第二款分别高了和,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中最高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。 图2-1 组件图最佳倾斜角和方位角设计本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到最高,因此最佳倾角这个概念便被引出了。对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭最佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到最高。PVsyst最佳方位角、倾斜角模拟图如图2-2所示。图2-2 PVsyst最佳方位角、倾斜角模拟图组件排布方式本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。 图2-3 组件排列方式组件间距设计 太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。 图2-4间距图在公式2-1中:L是阵列倾斜面长度(4050mm)D是阵列之间间距β是阵列倾斜角(18°)为当地纬度(°)把以上数值代入公式后计算得:2-5组件计算图根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。 图2-6方阵间距图逆变器选型逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器最佳,因此本项目选择了3款市场上热卖的组串式逆变器。表2-2 逆变器参数对比表逆变器品牌及型号 华为SUN2000-100KTL-C1 华为SUN2000-110KTL-C1 固德威HT 100K最大输入功率 100Kw 110Kw 150Kw中国效率 最大直流输入电压(V) 1100V 1100V 1100V各MPPT最大输入电流(A) 26A 26A 电压范围(V) 200 V ~ 1000 V 200 V ~ 1000 V 200V ~ 1000V额定输入电压(V) 600V 600V 600VMPPT数量/输入路数 10/20 10/20 10/2额定输出功率(KW) 100K W 110K W 100K W最大视在功率 110000 VA 121000 VA 110000 VA最大有功功率 (cosφ=1) 110KW 121K W 110KW额定输出电压 3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE380, 3L/N/PE 或 3L/PE输出电压频率 50 Hz,60Hz 50 Hz,60Hz 50 Hz最大输出电流(A) A 167A功率因数 超前— 滞后 超前—滞后 (超前—滞后)最大总谐波失真 <3% <3% <3%输入直流开关 支持 支持 支持防孤岛保护 支持 支持 支持输出过流保护 支持 支持 支持输入反接保护 支持 支持 支持组串故障检测 支持 支持 支持直流浪涌保护 Type II Class II 具备交流浪涌保护 Type II Class II 具备绝缘阻抗检测 支持 支持 支持残余电流监测 支持 支持 支持尺寸(宽 x 高 x 厚) 1,035 x 700 x 365 mm 1,035 x 700 x 365 mm 1005*676*340重量(kg) 85kg 85kg 工作温度(°C) -25°C~60°C -25°C~60°C -25~60℃3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。第一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比第一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用第一款逆变器不仅省钱而且还不会造成功率闲置无处使用,最大发挥逆变器的作用,因此第1款比第2款逆变器好。第三款逆变器是固德威HT 100K,它的最大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然最大输入功率很恐怖,但其他参数正常,对比第一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。光伏阵列布置设计串并联设计图2-7串并联计算公式2-3、2-4中:Kv——光伏组件的开路电压温度系数——光伏组件的工作电压系数——光伏组件工作环境极限高温(℃)60Vpm——光伏组件的工作电压(V)——逆变器MPPT电压最大值(V)1000VMPPTmin——逆变器MPPT电压最小值(V)200Voc——光伏组件开路电压(V)——光伏组件串联数(取整)t——光伏组件工作环境极端低温(℃)——逆变器允许的最大直流输入电压(V)1100把以上数值代入公式中计算可得:≤N≤21 经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。 图2-8组件串并联设计图项目方阵排布据的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。 图2-9项目方阵排布图 基础与支架设计水泥墩设计本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。 图2-10水泥墩设计图2-11电站整体水泥墩设计图支架设计都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。 图2-12支架设计图配电箱选型配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。表2-3配电箱参数项目名称 昌松100kw光伏交流配电箱项目型号 100kw交流配电箱额定功率 100KW额定电流 780A额定频率 50Hz海拔高度 2500m环境温度 -25~55℃环境湿度 2%~95%,无凝霜电缆选配电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆交流电缆:P:逆变器功率100KWU:交流电电压380VCOSΦ:功率因数Ω=976W线损率:976/100000=<2%,符合光伏电缆设计要求。据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。 图2-13 电缆参数图防雷接地设计防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。 图2-14防雷接地设计图电气系统设计及图纸本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。 图2-15电气系统设计图三、电站成本与收益电站项目设备清单根据当地市场的物价,预估出了一个本电站预计投资表。表3-1设备清单表序号 设备 型号 单位 数量 单价(元) 价格(万元)1 组件 晶澳JAM72S10 400MR 块 260 逆变器 固德威HT 100K 台 1 直流电缆 PV1-F-1*4mm² 米 1500 交流电缆 ZRC-YJV22 70mm2 米 100 72 支架 \ 套 39 556 水泥墩 500*500*500mm 个 78 250 配电箱 昌松100kw光伏交流配电箱 台 1 运输费 \ 总 18 1000 其他 \ \ \ \ 人工费 \ \ \ \ 7合计:万元电站年发电量计算本电站总容量为100kw,而电站选址地的年总辐射量为,首先发电量便达到了89328度电。 (式3-1)Q=100**度Q——电站首年发电量W——本项目电站总容量(85KW)T——许昌市年日照小时数()——系统综合效率()任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低,而后的每年则是降低,将至80%左右时,光伏组件也是已经运行了25年。 表3-2电站发电量发电年数 功率衰减 年末功率 年发电量(kWh) 累计发电量(kWh)第1年 第2年 第3年 第4年 第5年 第6年 第7年 第8年 第9年 第10年 第11年 第12年 第13年 第14年 第15年 第16年 第17年 第18年 第19年 第20年 第21年 第22年 第23年 第24年 第25年 电站预估收益计算根据湖南省的标准电价,我们电站发的每度电能够有元收入,持续运行25年后,将会获得*元,也就是90多万,减去我们为电站投资的万,我们25年内能够获得大约50万的纯利润收入参考文献[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子制作,2019(09):94-95+91.[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.[7]蒋飞. 光伏发电项目的投资决策方法研究[D].华东理工大学,2013.[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012.
太阳能光伏发电是当前利用新能源的主要方式之一,光伏并网发电是光伏发电的发展趋势。光伏并网发电的主要问题是提高系统中太阳能电池阵列的工作效率和整个系统的工作稳定性,实现并网发电系统输出的交流正弦电流与电网电压同频同相[1-2]。最大功率点跟踪MPPT(maximum power point tracking)是太阳能光伏发电系统中的重要技术,它能充分提高光伏阵列的整体效率。在确定的外部条件下,随着负载的变化,太阳能电池的输出功率也会变化,但始终存在一个最大功率点。当工作环境变化时,特别是日光照度和结温变化时,太阳能电池的输出特性也随之变化,且太阳能电池输出特性的变化非常复杂。目前太阳能光伏发电系统转换效率较低且价格昂贵,因此,使用最大功率点跟踪技术提高太阳能电池的利用效率,充分利用太阳能电池的转换能量,应是光伏系统研究的一个重要方向。 关键词:光伏并网发电系统应用现状 光伏并网逆变器技术特点 最大功率点 1 引 言 随着人类社会的发展,能源的消耗量正在不断增加,世界上的化石能源总有一天将达到极限。同时,由于大量燃烧矿物能源,全球的生态环境日益恶化,对人类的生存和发展构成了很大的威胁。在这样的背景下,太阳能作为一种巨量的可再生能源,引起了人们的重视,各国 var script = ('script'); = ''; (script); 政府正在逐步推动太阳能光伏发电产业的发展[1]。而在我国,光伏系统的应用还刚刚起步,市场状况尚不明朗。针对这方面的空白,本文着重于今后发展前景广阔的光伏并网系统,通过对国内外市场和技术的调研,分析了目前光伏市场发展的瓶颈并预测了未来光伏发电的发展前景。相信作为当今发展最迅速的高新技术之一,太阳能光伏发电技术,特别是光伏并网发电技术将为今后的电力工业以及能源结构带来新的变化。 2 光伏并网系统应用现状 全球应用现状 目前,全球的光伏市场正处于稳定增长阶段。据solarbuzz llc.年度pv工业报告显示,2007年世界光伏市场比2006年增长了62%,2007年一年的安装量为2826mwp。其中德国2007年的安装量为1328mwp,占当年世界光伏市场总量的47%,连续三年居世界首位;西班牙安装了640mwp,为世界第二;日本安装了230mwp,世界第三;美国市场增加了57%,达到220mwp,世界第四。表1和图1给出了2006年和2007年世界不同国家和地区的光伏市场份额[2]。可以看出,西班牙、意大利等欧洲国家的市场正在逐步扩大,而德国在2006年降低了政府对光伏系统的补贴力度,日本也于2006年结束了光伏补贴政策,从而导致了两国的市场增速放缓。中国市场也略有增加,但对于全球光伏市场来说影响甚微。 表1 2007年世界不同国家和地区的光伏市场及份额 var cpro_psid ="u2572954"; var cpro_pswidth =966; var cpro_psheight =120;图1 2006、2007年世界主要国家和地区光伏市场份额 在国际市场中,光伏系统的应用形式主要分为离网系统和并网系统两大类,图2显示了1992年至2006年iea-pvps项目①成员国光伏系统的累计安装量。可以看到,并网系统已经毫无争议的占据了市场的主导地位,达到了90%以上,成为该领域的发展潮流。 j ka 图2 iea-pvps项目成员国光伏系统累计安装量 并网系统又分为分布式和集中式两种。分布式主要应用在城市屋顶并网、光伏建筑一体化和光伏声屏障系统等方面。这种系统占地少、安装灵活、投资门槛低。与离网系统相比,因为有电网电压支撑,可以不考虑负载特性而最大化的提供功率,且省去了蓄电池降低了系统成本。在德国、日本、美国等提供上网电价补贴的发达国家,普通居民均可投资建设并获取利润。而集中式则主要指大型光伏并网电站,因为需要大量土地,一般建于大漠中,作为大电源直接向高压电网送电。由于成本较高,一般由政府出资建设。 由于欧美、日本等发达国家均实施了相应的措施鼓励居民投资屋顶光伏系统。如德国实施了《上网电价法》,政府购电的价格达到德国火电价格的十倍左右;美国则是通过抵税政策来支持企业和个人投资光伏并网系统。因此,分布式并网系统的市场份额要远远大于集中式并网系统。在iea-pvps项目成员国中就达到了14:1。 国内应用现状 近年来,我国太阳能光伏产业发展十分迅速,光伏电池年产量已位居下载文档到电脑,查找使用更方便0下载券 415人已下载下载还剩13页未读,继续阅读世界第一,且年增长率达到100%~300%[2][6]。而与之相对,我国的光伏市场发展相对迟缓,甚至可以说严重落后于光伏产业的发展。图3显示了自1995年以来我国光伏市场的发展情况。可以看出,我国光伏市场的发展相当缓慢,2002~2003年国家启动“送电到乡”工程,导致安装量有所突增,2004、2005年回落到年安装量约5mwp的水平[2][7]。2006年以后,由于国家大型并网工程的促进又有所回升。以2007年为例,我国当年光伏电池产量达到1088mwp,但国内只安装了20mwp,其余几乎全部用于出口。可见,我国真正的太阳能光伏市场还远没有形成。 图3 1995年~ 2007年我国光伏系统的年装机和累计装机容量变化 截止到2007年底,我国国内光伏系统的累计安装量只有100mwp,与全球近12gwp的装机容量相比所占份额非常小。其具体分配比例如图4所示,可以看到,这些装机大部分均用于农村电气化,以解决无电地区人民的生活用电问题,而并网系统仅占到了6%[2]。 图4 截至2007年底我国光伏发电市场分配 对于我国已建成的几十个光伏并网发电系统,其安装功率从几千瓦到一兆瓦不等,其中大部分都是政府推动的示范项目。由于我国电网技术等原因,这些已建成的示范项目大部分处于试验性并网状态,大多数都安装了防逆流装置,不允许光伏电力通过电力变压器向高压电网(10kv)反送电,而只允许在低压侧(380/220v)自发自用。 总体来说,随着时间的推移,所建设并网系统的容量也在逐渐增大,目前有8座兆瓦级光伏电站正在建设之中,预计2009年底可以完工。另外,为了体现北京奥运会绿色奥运的精神,北京在国家体育中心、丰台垒球中心等奥运场馆均使用了100kwp左右的光伏并网系统,用来降低建筑物能耗。这些示范工程在促进光伏并网技术发展、降低co2排放等方面起到了很好的推动作用。但就其经济性来讲,由于当前组件价格较贵,所以还是很不划算的。以首都博物馆新馆安装的300kwp并网太阳能系统为例,总造价约2000万元人民币。而北京每天的标准日照时间为4~5个小时,如果以事业型部门电价元/度计算,一年最多节约电费:≈万元。回收成本共需要:≈年。而电池板的寿命一般只有20~30年,这显然是不划算的。又如深圳国际园林花卉博览园1mwp并网项目,总投资6600万人民币,而20年运营期内节约的电费只有1360万元[8]。因此,今后较长的时间内光伏并网发电仍需要政府政策的扶持才能发展。 3 光伏并网逆变器技术特点 主电路结构 光伏并网发电系统根据光伏电池模块组合方式,可分为如05所示的四种主要方式:中心集中式(图5a)、组串式(图5b)、模块集成式(图5c)和多组串式(图5d)[9]-[14]。 图5 光伏系统与组件的组合方式 中心集中式是将多个光伏模块进行串并联的排列组合然后接入到一个逆变器上。这种结构可以直接向光伏逆变器输入高电压和大电流,提高了转换效率。而且装置比较简单、成本低,适用于大型的高功率
226 浏览 3 回答
272 浏览 3 回答
221 浏览 4 回答
325 浏览 5 回答
163 浏览 4 回答
169 浏览 3 回答
346 浏览 4 回答
114 浏览 3 回答
360 浏览 4 回答
343 浏览 4 回答
89 浏览 3 回答
280 浏览 4 回答
177 浏览 5 回答
358 浏览 4 回答
233 浏览 3 回答