随着科学技术特别是信息技术的高速发展,数学的应用价值越来越得到众人的重视。我整理的数学科技论文,希望你能从中得到感悟! 数学科技论文篇一 数学教学中学生科技创新精神的培养 摘要: 创新精神是创造力发展的灵魂和动力。培养学生的创新精神是开发学生创造力最主要和最有效的措施。因此,在进行数学概念的创造性教学时,教师要特别注意对学生创新精神的培养。 关键词: 培养 创新 数学教学 能力 青少年作为跨世纪的一代,肩负的历史重任更艰巨。世界现代科技革命浪潮汹涌卷来,时代给中国人民以挑战,历史给中国人民以机遇。作为培养未来建设者的教师如何面对历史的挑战?如何培养青少年的数学科技创新能力,开展发明创造活动?这是每一位教师应该思考的主要问题。 我们培养青少年的数学科技创新能力,开展发明创造活动,其目的不在于制作出几件科技作品,不在于在各项比赛中获得名次,而在于培养他们的创新精神和科学素质。创新精神和科学素质是现代科学技术高速度和综合化发展对未来建设者的要求,是现代化社会对现代人的基本要求,它是从小养成的、不断发展的。那么数学教学中应如何培养学生的科学创新能力呢? 一、培养学生的科学创新精神 创新精神是创造力发展的灵魂和动力。培养学生的创新精神是开发学生创造力最主要和最有效的措施。一个人的创造力能被开发到什么程度,能否为社会做出创造性的贡献,在很大程度上取决于他是否具备创新精神。如果一个人不想去创造,即使他的智力水平再高,创造力再高,一切也都等于零;而如果他具有愿意为科学和人类进步献身的高尚品德,那就会给他的创造力发展提供巨大的精神动力,他就可能会为社会做出创造性的贡献。因此,在进行数学概念的创造性教学时,要特别注意对学生创新精神的培养。例如可以通过多媒体手段进行教学,使学生对要学的新概念、新知识感兴趣,以激发学生的求知欲和好奇心;通过有效的激励手段,鼓励学生大胆质疑问难,大胆进行联想和猜测,以培养学生的挑战性和冒险性;通过思想教育,使学生树立为社会进步做出贡献的远 大理想,培养学生爱祖国、爱人民的优良品质等。 二、创造思维的新视角 创新需要思维,创新也需要会学习的能力,要借它山之石,为我所用。首先有一个学习的问题。在信息化时代里,知识创新的速度不断加快,知识更新的周期不断缩短,人们对知识的占有将由静态变为动态。也就是说,人们的学习不会因学校学习的结束而结束。然而面对浩如烟海的知识,每个人不仅要有学习新知的能力,而且要有鉴别新知的能力和技巧。所以变革传统的被动接受、死记硬背、机械操练的学习方式,倡导主动参与、乐于探究、勤于思考的学习方式,培养学生学会学习是适应现代社会发展的需要。因此教师要发挥知识的智力因素,做到发散思维与收敛思维的辩证统一,发展学生的创新思维能力。 数学的创造往往开始于不严格的发散思维,而继之以严格的逻辑分析思维,即收敛思维。发散思维虽然能够提供有价值的重要设想,但其成果必须严格验证。发散思维富于创造性,能够提供大量新思路、新方法。但是,单靠发散思维还不能完成创造性思维活动。因此,发散思维和收敛思维要相辅相成、辩证统一,偏视任何一面都是不可取的。 运用“普遍联系和发展”的观点处理课本的例题、习题,发挥知识的智力因素,深入挖掘创新素材和其潜在功能。在保持已知条件不变的情况下,探索能否得出更深刻、更广泛的结论,或改变命题条件、结论的若干元素,组成新型的更一般的命题,并探究其正确性,不落俗套,培养学生思维的广阔性。另一方面,要注重知识的纵向延伸,使学生的思维由表及里、由浅入深地不断递进,培养学生思维的深刻性。 杨振宁博士在总结科学家成功之道时说:“成功的秘诀在于兴趣。”可见,兴趣是创造思维活动成功的先导。“兴趣是最好的老师”。一个人的创造性成果,无一不是在对所研究的问题产生浓厚兴趣的情况下所取得的。兴趣是人们心理活动共有的特征。一个人要在学业上有所发展、有所创造,首先必须对学业满腔的热忱和极大的兴趣,肯用全副精神去做。学生的学习动机和求知欲、学习积极性和主动性是帮助学生形成与发展创造性思维能力的重要条件,但它们不会自动涌现。这需要教师从创设认知“冲突”中去激发学生学习的兴趣。所以,教师要采用灵活多变的教学方法,创设情景,着力营造一种轻松愉快的学习氛围,从而培养学生的学习兴趣和热情,用妙趣横生的数学问题吸引学生去思考、去探索、去创新。 灵活多变的教学是培养学生创新思维能力的崭新途径。只要教师充分发挥自己的聪明和智慧,创造思维的新视角,以新颖的方式去诱导、激发学生的兴趣,就一定能使学生向往科学,追求真理。学生的创造意识也会随着培养起来。 课堂教学是一个启发、培养学生创造意识的重要场所,教师不能满足于具体的学科知识,还要揭示知识背后所凝结的历史、观念、方法、精神等,特别是其中的人文内容和创造精神,以及科学史上创新过程的介绍,使得课堂教学成为“多维营养”的源泉,以指导学生克服多年的“应试教育”所带来的消极影响,极快地完成从知识的继承者到知识的创造者的转变。 三、激励学生大胆探索,培养创新思维能力 教育家第斯多惠曾说:“教学的艺术不仅仅在于传授本领,而在于激励、呼唤、鼓励。”青少年的天性是好奇和求异,凡事喜欢问个究竟和另辟蹊径。对此,教师绝不能压抑而应引导和鼓励,水到渠成。 教育激励常常有如下的几种方式:1.榜样激励,要以学生中创新的事例为榜样,常言道“榜样的力量是无穷的”。2.前景激励,青少年学生向往美好的理想,积极进取,大胆创新,开拓前进的道路。3.参与激励,实践出真知,训练出才干,培养学生的创新精神和实践能力。4.表现激励,勇于表现自我是青少年的特点,要让学生充分的展示自己的特长,对培养和发展学生的爱好与技能产生了无形的推动力。5.竞争激励,有竞争才有发展,同学间你追我赶,争先恐后,发挥了主体作用,有效地推动了数学创新活动的开展。6.成功激励,成功给人带来光荣、幸福等美好的感受,更能鼓励成功者不断进取,发展了学生的创造性。7.表扬激励,及时、充分地肯定学生的闪光点,热情地表扬学生的聪明智慧,是激励学生大胆创新的良好方法。 陶行知先生说:“发明千千万万,起点是一问。”一池死水,风平浪静,投去一石,碧波涟漪,可谓一石击起千层浪。教师教学要温故知新,巧妙设疑,指导学生的创造思维活动,还要善于设疑,去撞击学生思维的火花,进而激发学生创造思维的波澜。 教师要提倡和鼓励学生“标新立异”、“无中生有”、“异想天开”和“纵横驰骋”,从而培养学生勇于探索、敢于创造的独创精神。想象力是引导学生创造性思维的源泉,人类思维中无与伦比的想象力是使科学不断进入未知领域的原始动力。而观察力是激发学生创造思维活动的关键。教师要指导和鼓励学生伸展智慧的触角去观察和探索,去想象和创新,做开拓创新的优秀人才。 引导学生独立思考,大胆探索,让学习知识的过程中体验发现与创造。指导学生运用已有的知识、学习经验、学习方法去探索与发现,从而获得新知。对学生来说,作业是学生认识上一个再创造的过程。 从对知识初步理解到融会贯通是一个漫长的心理历程。学生独立探索、解决问题的过程,就是学生发挥聪明智慧,把各种知识构建成思路通道的建筑工程,也是培养学生创新精神和实践能力的教育过程。 例如,指导学生在作业中要大胆地探索,通过作图、列式、运算得到正确的结果。作业中多种思路(方法)解题特别能反映学生思维的积极性和创造性。在作业评讲中要创设民主型、探索性的课堂气氛,因势利导,反映学生多种思路(方法)解题的创造性,注重创新思维能力的培养。热情表彰、鼓励学生的新作,最好由教师板书学生作业的全过程,分析学生的思路,指出其新颖之处和思维闪光点,激励全班学生积极进取,发展创新思维。结合教学内容指导学生研究性学习,发挥知识的智力因素,大胆探索解题思路,勇敢地提出新解法。 课堂教学是师生情感交往的场所,教师要鼓励学生积极参与讨论、质疑、发表各种见解,形成师生间的能动交流。教师在教学中,要力求打破常规,引导学生从多方位去思考问题,对疑难问题能提出较多的思路和见解,培养学生一题多解、一题多思、一题多变、举一反三的创新思维。创造性思维的实质就是思维活动中选择、突破和重新建构这三者的有机统一。选择是解开人类思维创造之谜的第一把钥匙。创造性思维中的突破不是为了使现存的体系的得到改良,而是为了使新的思想大厦拔地而起。 想象力是引导学生创造性思维的源泉,人类思维中无与伦比的想象力是使科学不断进入未知领域的原始动力。观察力是激发学生创造思维活动的关键,教师要指导和鼓励学生伸展智慧的触角去观察和探索,去想象和创新,做开拓创新的优秀人才。 参考文献: [1]崔录等.现代教育思想精粹.光明日报出版社. [2]布鲁纳.教育过程.上海人民出版社. [3]吴兴长.数学教学中非智力因素的培养. [4]北京教育行政学院.教育心理学讲座,2000,1. 数学科技论文篇二 再谈现代科技对小学数学教学的有力支撑 摘 要: 在以学习能力为核心因素的新课程理念下,我们必须科学、合理而又充分地借助以网络资源为主的现代信息技术,才能更快更好地实施和实现素质化教学,这既是科技教育时代的潮流和象征,又是发展未来教育事业的必然要求。理论和实践同时表明,现代教育技术具有无可比拟的优势功能,不仅能够有效扩充课堂教学的信息化容量,增强教师控制教学信息的灵活性,而且能够体现教学活动中的主导作用和主体作用,及时有效地实现课堂教学的反馈与纠偏改错,还能有效地发展和强化素质教学活动的个性化特征。本文作者结合在小学数学教学中的实践与体会,试对此作简要的阐述。 关键词: 小学数学教学 现代教育技术 有效支撑 自从现代信息技术进入校园并逐步登堂入室以来,各类教学活动越发呈现出令人欣喜的活力和魅力,在转化教育观念、改革课程教学、更新教学方式、培养学习能力、激发创新意识和促进教学相长等方面,不仅提供了有效支撑,而且实现了新的增长点,从而表现出作用巨大、影响深远的特征。在小学数学教学中,笔者尝试将传统教学媒体与现代教学媒体有机地结合起来,充分发挥各自的教学功能和优势,在相互补充、互为促进和相辅相成之中达到综合性效果,不仅有效地促进了课堂教学结构的优化,而且实现了课程教学效果的最优化。本文从以下几个方面试简要阐述之。 一、合理运用现代教育技术,可以扩大信息容量,便于教师灵活控制教学。 一方面可以利用其海量存储功能,把一些图形、题目及其分析和解答过程事先储存起来,在课堂教学中适时适量地呈现出来,在学生面前再现出来。另一方面还可以利用其高速处理信息的特点,快速、灵活而又准确地进行作图,为数学课堂教学增加知识容量。如此不仅大大丰富了课程教学的方法和手段,拓展了师生双方的交流渠道,而且有助于执教者对教学目标信息进行实时控制,极大地提高了课堂教学的质量和效率。比如,在教学《梯形面积的计算》内容时,笔者借助于多媒体技术手段,通过“旋转—平移”的技术处理将梯形转化成平行四边形,接着利用平行四边形的面积有效地推导出梯形的面积,从而帮助学生灵活快捷地掌握了重点知识,也突破了本课的难点内容。与传统教学模式进行比较,后者的优势明显地在于,通过形象直观的动画模拟演示,让小学生在一目了然之中既乐于接受又易于接受。从而在节约时间、提高质效的同时,不仅有效地拓展了小学生的数学学习思维,而且在寓教于乐之中培养了他们的逻辑推理能力。 二、合理运用现代教育技术,可以创设有效情境,激发学趣和促进思维。 教育心理学研究表明:在学校教育中,学生的学习情感体验往往由具体的教学情境所派生和决定。数学课程具有抽象性、严谨性和应用广泛性的基本特征,这些特性在传统教学模式下(呈现三大弊端,即多讲解少思考、多练习少活动、多批评少鼓励)往往无法得以充分体现出来。因此,在小学数学教学过程中,我们要借助多媒体技术手段,紧密联系学生的生活实际,从他们的生活经验和已有知识出发,努力创设生动有趣的教学情境,从而有效实现融认知、能力和情感为一体的“三维目标教学”。比如,在行程内容的教学过程中,教师可以把生活中的人、自行车、摩托车和汽车等“搬进”多媒体画面,并利用Flash技术使其运动起来。为了帮助学生进一步了解实际生活中的行程问题,执教者可以运用多媒体创设相应的情境,如“相向而行”“背向而行”“相遇”“速度和”“两地相距”等,也可以改动条件与问题进行变化逆转,从多个角度帮助小学生掌握和理解“路程、速度、时间”的数量关系。 三、合理运用现代教育技术,可以显示形成过程,在思维困惑处点拨疏导。 在小学数学教学过程中,我们可以借助多媒体技术,把一些抽象性较强的数学概念、法则和原理等内容,通过图像显示和动画模拟等手段形象生动地表现出来,从而有效地帮助学生建立表象、深化理解和强化认识。比如,在教学“周长”与“面积”的数学概念时,我们可以利用多媒体技术,通过“水平移动、拉直呈现、闪烁填色”等动画模拟,把一个长方形的周长及面积的形成表象过程生动有趣地呈现在学生面前,以有效增进他们的理解。此外,由于小学生缺乏足够的空间想象思维能力,对他们来说,理解几何形体的组合图形是有一定难度的。针对这样的情况,执教者可以借助多媒体技术手段,动态演示“切割”“旋转”“提取”等变化过程,实现化难为易、化静为动、化隐为明的教学目标,让学生在认真观察之中看得清清楚楚、明明白白。这样能够有效地培养和发展他们的观察能力、思维能力、空间想象能力。比如,小学生在学习圆周长的计算方法后,常把圆周长的一半误认为是半圆的周长。对此,执教者可以用多媒体演示半圆图,让弧长和直径分离,使得学生理解“半圆周长是由哪些组成的”,从而帮助他们有效地突破思维瓶颈,冲出局限思维的“低洼之地”。 四、合理运用现代教育技术,可以发挥双主作用,及时有效地反馈和纠偏。 实践表明,多媒体教学的“人机交互性”特征,能够有效强化“教师主导”和“学生主体”,体现新课程理念下的素质化教学要求。主要体现在:在信息流向和流程控制上,教师根据课堂教学实际情况,以及信息特点、学生特点,能够对信息的表现形式和频度进行实时控制,从而发挥教学中的主导作用;学生通过多媒体可以控制文字、图像等使之自动演绎出结果,利用其快速功能可以充分展示思维的发展方向以拓展学生的思维广度,利用其储存功能反复演示所需内容,通过上机操作控制信息传输的速度和次数等方面,使得学生有着更高的参与度,从而充分发挥教学中的主体作用。通过多媒体网络教学,还能有效实现生生之间、师生之间的多向交流。此外更为重要的是,在小学数学教学过程中,多媒体辅助教学的好处还充分体现在:能够“节约时间、提高效率”,有利于快速高效地开展教学活动;能够实现“当堂反馈、及时补救”,不让错误在头脑里“滞留、积淀、过夜”;能够实现“多变互动、分层教学”,有利于实施因材施教活动,等等,对推行素质化教学有重要的作用。 看了“数学科技论文”的人还看: 1. 大学数学科技论文范文 2. 大学数学科技论文 3. 数学系毕业论文范文 4. 关于数学的毕业论文 5. 关于科技论文2000字
我这里有一份“等”对“不等”的启示 对于解集非空的一元二次不等式的求解,我们常用“两根之间”、“两根之外”这类简缩语来说明其结果,同时也表明了它的解法.这是用“等”来解决“不等”的一个典型例子.从表面上看,“等”和“不等”是对立的,但如果着眼于“等”和“不等”的关系,会发现它们之间相互联系的另一面.设M、N是代数式,我们把等式M=N叫做不等式M<N,M≤N,M>N、M≥N相应的等式.我们把一个不等式与其相应的等式对比进行研究,发现“等”是“不等”的“界点”、是不等的特例,稍微深入一步,可以从“等”的解决来发现“不等”的解决思路、方法与技巧.本文通过几个常见的典型例题揭示“等”对于“不等”在问题解决上的启示. � 1.否定特例,排除错解 �解不等式的实践告诉我们,不等式的解区间的端点是它的相应等式(方程)的解或者是它的定义区间的端点(这里我们把+∞、-∞也看作端点).因此我们可以通过端点的验证,否定特例,排除错解,获得解决问题的启示. �例1 满足sin(x-π/4)≥1/2的x的集合是(). ��A.{x|2kπ+5π/12≤x≤2kπ+13π/12,k∈Z} ��B.{x|2kπ-π/12≤x≤2kπ+7π/12,k∈Z} ��C.{x|2kπ+π/6≤x≤2kπ+5π/6,k∈Z} ��D.{x|2kπ≤x≤2kπ+π/6,k∈Z}∪{2kπ+5π/6≤(2k+1)π,k∈Z}(1991年三南试题) �分析:当x=-π/12、x=π/6、x=0时,sin(x-π/4)<0,因此排除B、C、D,故选A. �例2 不等式 +|x|/x≥0的解集是(). ��A.{x|-2≤x≤2} ��B.{x|- ≤x<0或0<x≤2} ��C.{x|-2≤x<0或0<x≤2} ��D.{x|- ≤x<0或0<x≤ } � 分析:由x=-2不是原不等式的解排除A、C,由x=2是原不等式的一个解排除D,故选B. �这两道题若按部就班地解来,例1是易错题,例2有一定的运算量.上面的解法省时省力,但似有“投机取巧”之嫌.选择题给出了三误一正的答案,这是问题情景的一部分.而且是重要的一部分.我们利用“等”与“不等”之间的内在联系,把目光投向解区间的端点,化繁为简,体现了具体问题具体解决的朴素思想,这种“投机取巧”正是抓住了问题的特征,体现了数学思维的敏捷性和数学地解决问题的机智.在解不等式的解答题中,我们可以用这种方法来探索结果、验证结果或缩小探索的范围. �例3 解不等式loga(1-1/x)>1.(1996年全国高考试题) �分析:原不等式相应的等式--方程loga(1-1/x)=1的解为x=1/(1-a)(a≠1是隐含条件).原不等式的定义域为(1,+∞)∪(-∞,0).当x→+∞或x→-∞时,loga(1-1/x)→0,故解区间的端点只可能是0、1或1/(1-a).当0<a<1时,1/(1-a)>1,可猜测解区间是(1,1/(1-a));当a>1时,1/(1-a)<0,可猜测解区间是(1/(1-a),0).当然,猜测的时候要结合定义域考虑. �上面的分析,可以作为解题的探索,也可以作为解题后的回顾与检验.如果把原题重做一遍视为检验,那么一则费时,对考试来说无实用价值,对解题实践来说也失去检验所特有的意义;二则重做一遍往往可能重蹈错误思路、错误运算程序的复辙,费时而于事无补.因此,抓住端点探索或检验不等式的解,是一条实用、有效的解决问题的思路. �2.诱导猜想,发现思路 �当我们证明不等式M≥N(或M>N、M≤N、M<N)时,可以先考察M=N的条件,基本不等式都有等号成立的充要条件,而且这些充要条件都是若干个正变量相等,这就使我们的思考有了明确的目标,诱导猜想,从而发现证题思路.这种思想方法对于一些较难的不等式证明更能显示它的作用. �例4 设a、b、c为正数且满足abc=1,试证:1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥3/2.(第36届IMO第二题) �分析:容易猜想到a=b=c=1时,原不等式的等号成立,这时1/a3(b+c)=1/b3(c+a)=1/c3(a+b)=1/2.考虑到“≥”在基本不等式中表现为“和”向“积”的不等式变换,故想到给原不等式左边的每一项配上一个因式,这个因式的值当a=b=c=1时等于1/2,且能通过不等式变换的运算使原不等式的表达式得到简化. �1/a3(b+c)+(b+c)/4bc≥ =1/a, �1/b3(a+c)+(a+c)/4ca≥1/b, �等号不一定成立而启迪我们对问题进一步探索的典型例子是1997年全国高考(理科)第22题: �例8 甲、乙两地相距S千米(km),汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时(km/h).已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为b,固定部分为a元. �Ⅰ.把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域; �Ⅱ.为了使全程运输成本最小,汽车应以多大的速度行驶? �分析:y=aSv+bSv,v∈(0,c〕,由y≥2S 当且仅当aS/v=bSv,即当v= 时等号成立得,当v= 时y有最小值.这是本题的正确答案吗?那就得考虑v= 是否一定成立.当 ≤c时可以,但 是有可能大于c的.这就引发了我们进行分类讨论的动机,同时也获得分类的标准. �综上所述,“等”是不等式问题中一道特殊的风景,从“等”中寻找问题解决的思路,本质上是特殊化思想在解题中的应用.从教学上看,引导学生注视不等式问题中的“等”,是教会学生发现问题、提出问题,从而分析问题、解决问题的契机. �1/c3(a+b)+(a+b)/4ab≥1/c, �将这三个等式相加可得 �1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥1/a+1/b+1/c-(1/4)〔(b+c)/bc+(c+a)/ca+(a+b)/ab〕=(1/2)(1/a+1/b+1/c)≥(3/2) =3/2,从而原不等式获证. �这道题看似不难,当年却使参赛的412名选手中有300人得0分.上述凑等因子的思路源于由等号的成立条件而产生的猜想,使思路变得较为自然,所用的知识是一般高中生所熟知的.再举二例以说明这种方法有较大的适用范围. �例5 设a,b,c,d是满足ab+bc+cd+da=1的正实数,求证:a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥1/3.(第31届IMO备选题) �证明:a3/(b+c+d)+a(b+c+d)/9≥(2/3)a2, �b3/(a+c+d)+b(a+c+d)/9≥(2/3)b2, �c3/(a+b+d)+c(a+b+d)/9≥(2/3)c2, �d3/(a+b+c)+d(a+b+c)/9≥(2/3)d2. �∴ a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥(2/3)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da+ac+bd) �=(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)+(1/9)(a2+c2-2ac+b2+d2-2bd) �≥(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)≥(5/9)(ab+bc+cd+da)-(2/9)(ab+bc+cd+da)=(1/3)(ab+bc+cd+da)=1/3. �当a=b=c=d=1/2时,原不等式左边的四个项都等于1/12,由此出发凑“等因子”.对于某些中学数学中的常见问题也可用这种方法解决,降低问题解决对知识的要求. �例6 设a,b,c,d∈R+,a+b+c+d=8,求M= + + + 的最大值. �分析:猜想当a=b=c=d=2时M取得最大值,这时M中的4个项都等于3.要求M的最大值,需将M向“≤”的方向进行不等变换,由此可得3 ≤(3+4a+1)/2=2a+2,3 ≤2b+2,3 ≤2c+2,3 ≤2d+2.于是3M≤2(a+b+c+d)+8=24,∴M≤8.当且仅当a=b=c=d时等号成立,所以M的最大值为8. �当然,例6利用平方平均数不小于算术平均数是易于求解的,但需要高中数学教材外的知识.利用较少的知识解决较多的问题,是数学自身的追求,而且从教学上考虑,可以更好地培养学生的数学能力.先有猜想,后有设计,再有证法,也是数学地思考问题的基本特征. �3.引发矛盾,启迪探索 �在利用基本不等式求最大值或最小值时,都必须考虑等号能否取得,这不仅是解题的规范要求,而且往往对问题的解决提供有益的启示.特别当解题的过程似乎顺理成章,但等号成立的条件却发生矛盾或并不一定成立.这一新的问题情景将启迪我们对问题的进一步探索. �例7 设a,b∈R+,2a+b=1,则2 -4a2-b2有(). ��A.最大值1/4� B.最小值1/4 ��C.最大值( -1)/2� D.最小值( -1)/2 � 分析:由4a2+b2≥4ab,得原式≤2 -4ab=-4( )2+2 =-4( -1/4)2+1/4≤1/4.若不对不等变换中等号成立的条件进行研究,似已完成解题任务,而且觉得解题过程颇为自然,但若研究一下等号成立的条件,则出现了矛盾:要使4a2+b2≥4ab中的等号成立,则应有2a=b=1/2,这时 = /4≠1/4,第二个“≤”中的等号不能成立.这一矛盾使我们感觉到解题过程的错误,促使我们另辟解题途径.事实上,原式=2 -(2a+b)2+4ab=4ab+2 -1,而由1=2a+b≥2 得0< ≤ /4,ab≤1/8,∴原式≤ /2+1/2-1=( -1)/2,故选�C. 本文来自论文大学网
数学教育的毕业论文范文
导语:数学教育方面的研究有利于教师们更好地开展相关的数学教学。下面是我为大家带来的数学教育的毕业论文范文,希望大家喜欢。
摘要:数学是一门科学学科,不仅向学生传授数学基础知识,还重在启发学生的智力,提高学生的思维能力、独立思考能力和创新精神。由于新课改的深入,我国传统的教学模式致使数学教育教学中出现众多问题。学校在教育教学中,为了提高学生成绩,一味地强调培养学生的应试能力,忽略学生学习的主体性和创新能力。针对数学教育教学的现状,数学教育应该改变教学途径,注重培养学生学习数学的兴趣,提高学生的创新能力,从整体上提高数学教育教学水平。
关键词:高中数学;教育现状;改变途径
随着新教育课程改革的实施和深入,我国传统的教学模式出现众多弊端,针对这些弊端,在教育改革的路程中,探索新的教育教学方式成为教育教学的主题。高中数学教育不仅培养学生的独立思考能力,还应该注重培养学生的创新能力,因此,高中数学教学过程中,教师应该创新教学方法,让学生在学习数学知识的过程中,提高自身的逻辑思维能力和创新精神,从而提高数学教育教学水平。
一、高中数学教育教学的现状
新课改的实施,使我国高中数学教育教学模式出现了种种弊端,例如,传统的教学意识、单一的教学方法、繁重的升学压力等,以下从这几个方面就我国高中数学教育现状作简要论述。
(一)传统的教学意识
常言道:"学好数理化,走遍天下都不怕"。这充分显示出数学教育在人们意识中的重要地位,认为数学是其他学科的基础,因此在数学教育教学中,人们对数学教育有着十分苛刻的要求。人们十分重视数学教育显然是极其正确的,但是,在教学过程中,教师只是采取传统的强行教学模式,如死记硬背,认为只有这样才能更好地掌握数学科学。数学作为一门科学学科,不仅仅是传授基础的数学知识,而重在启发学生的智力,培养并提高学生的思维能力。教师如果只是为了提高分数而一味地强调基础知识,那么培养出的人才将不能适应社会的发展,在一定程度上将会给教育教学和社会发展带来隐患。
(二)单一的'教学方法
教师在教学过程中,采取的一言堂的教学模式,教师成为课堂的主角,注重讲授,而并未认识到学生是课堂的主体,在讲授过程中忽略学生对知识的反馈。数学是一门逻辑性很强的学科,教师应该细心、耐心地讲解每一个步骤,让学生理解、吃透每个知识点,而不是死记硬背每一个步骤,这样学生在考试过程中,只是一味地模仿、照搬,而不对问题进行深入分析以及对公式进行推导,长期的这种教学模式,不仅使学生对数学失去兴趣,而且不利于提高学生的数学成绩、独立思考能力和创新能力等。
(三)繁重的高考压力
随着教育教学的改革和发展,教育界的学者们也逐渐认识到数学教育过程中存在着众多问题。为了减轻学生的学习压力,教育者们提出减负的观念。他们提出这一观念是从学生的角度出发,其初衷是好的,但是在实施过程中,人们并没有将它的初衷体现出来,而是与初衷出现偏差。针对这一观念出现的偏差是因为教育教学者和学生已经将升学思维根深蒂固于头脑中,这不仅使"减负"这一概念成为名副其实的幌子,而且使教育教学模式并没有发生实质性的变化。在数学教学过程中,数学教育者如果只是为了追求较高的升学率,而忽视了培养学生的创新能力和思维能力,那么培养出来的将是高分数低智能的学生。面对这种教学模式培养出的人才状况,教育界对教育教学进行改革已经势在必行。
二、改变现状的途径
针对我国高中教育的现状,我国应该改革数学教育模式,采取有效措施使数学教育教学培养出高素质、高水平的人才。以下从三个方面简要说明改变数学教育现状的途径。
(一)树立正确的教育教学观念
正确的教学观念有利于正确引导教学高质量的发展,因此,教师在教育教学中树立正确的教育教学观念尤为重要。首先,教师在教学中不应该一味地强调应试教育,不能以分数评价学生。分数不是衡量学生能力的唯一标准,如果教师以分数来衡量学生的能力,就不仅会影响学生学习数学的积极性,还会限制学生思维能力、独立思考能力的发展。其次,教师应该树立学生是学习的主体的观念,在教学中应该以学生为主体,充分发挥学生的主体性,激发学生对数学的学习兴趣,使学生乐在其中,让他们发挥自身的学习水平,投入到学习中,尽情地思考、讨论,在思考、讨论中掌握数学知识和学习技巧,从而提高自身的逻辑思维能力。
(二)采用多种教学手段活跃课堂气氛
数学是一门逻辑很强的学科,学生在学习数学过程中往往会感到枯燥、乏味,于是在课堂中就会处于被动地位,对数学没有热情和积极性。因此,教师在教学中应该采用多种教学手段,将一些带有趣味性和文学色彩的内容融入数学课堂教学中,活跃课堂气氛,同时,将数学与生活实践相结合,调动学生的积极性,这样不仅使沉闷的课堂充满活力,使教学内容丰富多彩,而且培养学生的观察能力、理解能力和实践能力,让学生将数学知识应用于生活中,从而达到学以致用的目的。
(三)建立平等的师生关系
学生与教师看似是两个不同地位的角色,但是在教学中,学生和教师是相互合作、平等的关系。在学生心里,教师是高高在上的;在有些教师心里,学生就是学生,与自己的关系是不可逾越的。这些致使学生与教师之间产生了距离。学生在面对老师时,有着一种畏惧的心理,因此不敢表达自身内心真实的想法。同时,教师以高高在上的姿态进行教学,而从不走进学生的内心,了解学生的真实想法,这在一定程度上阻碍了师生间的交流,从而影响教学质量。面对这种状况,教师应该走进学生内心,成为学生的朋友,鼓励学生勇于探求新知识,解除学生的内心疑惑,以平等之心对待每一个学生,加强与学生的交流和沟通,提高学生学习数学的兴趣,让学生在轻松、愉悦、和谐、平等的环境中掌握数学知识,提高数学成绩,从而从整体上提高数学教学质量。
在新课改教育教学的背景下,数学教育教学与其他学科教学一样,在不断摸索中求发展。数学教师应该适应教育发展的潮流,改变传统的教学观念和教学方式,充分发挥学生学习的主体性,激发学生学习数学的热情,培养学生的创新能力和逻辑思维,提高数学教育教学质量,从而使教育更加人性化、科学化。
210 浏览 4 回答
99 浏览 7 回答
103 浏览 2 回答
133 浏览 2 回答
101 浏览 6 回答
167 浏览 9 回答
215 浏览 9 回答
134 浏览 3 回答
89 浏览 5 回答
197 浏览 2 回答
289 浏览 5 回答
171 浏览 4 回答
320 浏览 4 回答
228 浏览 2 回答
135 浏览 6 回答