信度和效度分析在问卷分析中大多都会用到的,即使是成熟的问卷,一般也是需要做的,在本科和研究生的论文中均适用。信度和效度相当于是对于问卷质量的一个前置条件,如果问卷的信度和效度比较好,证明问卷的
数据可靠性比较高,问卷数据内部一致性比较高,所以可以用来做后续的建模分析,相反,如果信度和效度不高,可能就需要重新设计问卷,发放问卷。信度分析在spss的分析中,最主要的Cronbach’s alpha系数。操作步骤为:点击分析-标度-可靠性分析-选择项-确定,只需要把问卷中的题目放到信度分析的选项框中就可以:  得到的结果如图: Cronbach’s alpha系数值得范围以及信度的效果:~非常好~相当好;~最小可接受值;~最好不要; 所以通过上表可以看出该问卷信度相当好。(不同的参考文献对于这个系数的要求也不同,一般来说,Cronbach’s alpha系数大于都是可以接受的)效度分析效
度分析在用spss进行分析的时候使用的方法是因子分析。效度分析对于很多的同学来说是最不好处理的。效度比较好代表的是问卷的数据内部一致性比较好,也就是说每个维度的所有题目的选择上基本是一致的,维度划分比较好。比方说:职业目标维度的5个题目分别为:1、对于将来做什么工作,我已经做了决定2、尽管现在我还是个学生,但是我能想象出将来自己工作状况3、我已经选定了我的职业,所以,现在我不用担心职业的问题4、对于职业,我已经做了明确的决定5、尽管以后我可能会改变想法,但现在,我已经选定了一个吸引我的职业。对应的选项为5级量表,分别为:1,2,3,4,5代表的是 非常不符合、有些不符合、不能确定、有些符合、非常符合。如果问卷填写人认真填写,那这些题目的选择上应该不会存在太大差异,因为这些题目都是换着方法对同一个问题的问法。需要注意的一点是,如果在问卷题目中有反向的题目,需要先将反向的题目转换为正向的题目。同一个维度的数据通过效度分析后再进行问卷数据的矩阵运算和旋转后也会自动落到一个维度上。效度分析最好的结果是,整体的问卷会按照不同的维度划分成对应的主成分,如果不是这样的就需要考虑重新做问卷或者和导师沟通下如何分析。效度分析操作步骤:分析-降维-因子-把量表的变量移动到右侧变量框中-描述-选择KMO/提取-选择碎石图/旋转-选择最大方差法/选项-排除小系数。分别选择好后都需要点继续。      生成结果以及解释: 通过SPSS25进行分析,需要分析显著性和KMO值,显著性小于,说明该问卷数据适用于做因子分析,然后看KMO值,如果此值高于,则说明效度高;如果此值介于之间,则说明效度较好;如果此值介于,则说明效度可接受,如果此值小于,说明效度不佳。 第二个图片,公因子提取的比例数据。提取的公因子均大于,说明提取的公因子可以比较好的解释问卷的数据。这个在论文中没有明确的标准,一般写大于就可以。 这是第三个表格,这个表格代表的是提取的公因子解释问卷数据的比例。公因子提取的数量默认是提取特征值大于1的,上表可以看出,只有前3个是大于1的,所以提取前3个公因子。公因子解释整体问卷数据的比例为,这个数值是看最右下键的数值。一般高于60%都是可以接受的。问卷信度效度比较好的时候这个数值可以到80%左右。 上图为输出的碎石图。对于碎石图普遍的解释是找出图中的陡坡和缓坡的临界点,就认为陡坡的是需要提取的公因子,可以看出第3和4为临界点。从碎石图可以看出每个因子代表的特征值,从碎石图可以更清晰的看出,前三个因子的特征值大于1,第四个因子所包含的信息量就小于1,也就是说第四个因子所代表的信息量已经不足以代表1道题目,所以就没有要提取多余的因子。 这是第四个表格,旋转后的成分矩阵表(注意,一般都是要用最大方差法对成分矩阵进行旋转的,不然因子之间容易混杂在一起,不容易区分出来)。这个表格代表的是每个因子在每个题目上所包含的信息量。一个比较好的问卷数据最终的展现的结果是每个因子将会代表一个维度,这个维度和手动做的维度划分是一致的。通过上表可以看出问卷数据被分成了三个主要的因子,分别为第VAR00001 - VAR00004, VAR00005- VAR00008, VAR00009- VAR00012三个主要的因子,也就是说上述三个段的题目分别代表不同的因子。因子分析的结果和问卷的维度划分是一致的是最好的情况,说明问卷效度很好,如果旋转后的成分矩阵和维度划分是不一致的,可以考虑重新做问卷或者使用成熟的问卷重新发放(这就又回到了问卷设计阶段)、或者和老师沟通下处理的方法,有的不严格的老师效度分析只要KMO的数值就可以,这样就可以避免展现这个表格。