我写了很多,不过是小学生的,不知道你要不要?数学小论文最近,我从一个简单的算式中发现了两个新公式,这使我非常高兴。下面,我就讲一下它的思考过程: 现在,有这么一个算式:1+3+5+7=?这么简单的题目,我想一年级的小朋友都能有死办法做出来,那么请看这组算式:1+3=4=22、1+3+5=9=32、1+3+5+7=16=42…这些算式的和都是一个数的平方,并且这些和的平方根就是这个算式的项数,所以,我得出一个结论:一组差为2的奇数等差数列的和就等于项数×项数。那么,求项数有没有更简单的方法呢?有!再来看一下求和算式:1+3+5+7=(1+7)×4÷2=8×4÷2=16,如果把它的第三步转为简便方法的话,就是:8÷2×4=4×4=42=16,也就是说(1+7)÷2就等于项数,因此得出:在一组差为2的奇数等差数列中,项数=(首项+末项)÷2。 这些就是我对这些公式的思考过程,听起来不是很难吧!本来嘛,发现,就在我们身边。 抓住数的整除特征[问题]用1、2、3、4、6、7、8、9这样的8个数组成一个多位数,使这个多位数能被1、2、3、4、6、7、8、9中的每一个数整除;其中每一个数字至少使用一次,可以重复使用(如6478319232)。请问:组成的多位数最小是多少? [思路点睛]首先我们要想到能被一些数整除的特征,能被2整除就要是偶数,被3、9整除的各个位上之和要是它们的倍数,能被4整除的数末两位上就是4的倍数,能被8整除的末三位上要是8的倍数。把这8个数加起来,得40,但能被9、3整除至少要是45,也就要加5,5不出现在这些数中,我们就选择重复使用1和4。要最少的话就可以确定前几位要从小到大,我们取112344□□□□。我们再考虑能被4、8整除,那末两位只能是68,那末四位就有两种可能:7968、9768,已知划线部分都能被8整除,接着,我们只要看能不能被7整除,最后确定1123449768是这样的多位数中最小的,不信你们试试?