1、高斯7岁那年开始上学,老师布置了一道题,1+2+3······这样从1一直加到100等于多少。高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:"你一定是算错了,回去再算算。”高斯非常坚定,说出答案就是5050。高斯是这样算的:1+100=101,2+99=101······50+51=101。从1加到100有50组这样的数,所以50X101=5050。布特纳对他刮目相看。因为是他发明的这个定律,因此就叫“高斯定理”
2、高斯定理也称为高斯通量理论(Gauss' flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。
3、高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。
4、高斯和阿基米德、牛顿、欧拉并列为世界四大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。
扩展资料:
1、高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。高斯定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。
2、高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。
3、高斯是最早怀疑欧几里得几何学是自然界和思想中所固有的那些人之一。欧几里得是建立系统性几何学的第一人。他模型中的一些基本思想被称作公理,它们是透过纯粹逻辑构造整个系统的出发点。在这些公理中,平行线公理一开始就显得很突出。按照这一公理,通过不在给定直线上的任何点只能作一条与该直线平行的线。
参考资料:百度百科-高斯