数学与应用数学专业毕业论文(设计)大纲先修课程:数学与应用数学专业主要课程、教育类课程等适用专业:数学与应用数学(本科、师范)一、目的培养和提高学生综合运用所学知识分析、解决问题的能力(包括数学理论研究和应用研究的能力、教学研究能力、文献检索、科技论文的写作能力)。使学生获得科学、教学研究方法的初步训练。培养学生的独立研究能力和重视开发学生的创新能力。二、论文选题论文选题应贯彻为我国社会主义物质文明和精神文明建设服务的方针,在基础数学、应用数学和数学教育等学科的以下几个方面加以考虑:1.结合自己所学的专业知识,进行某一专业方向上的学术探讨;2.结合自己所学的专业知识,进行教学研究方面的专题研究或专题综合;3.结合自己所学的专业知识,联系实际解决一些应用问题;4.对中学有关数学课程的教材、教学方法进行专题研究;5.结合本人所教数学课程,对中等教育的教育理论和教育实践进行探讨;6.对新课程改革的理论与实践进行探讨。论文课题不宜过大,难易程度要适当。两名或两名以上学生选做同一课题论文时,各人的内容应有较大区别。学生选定课题后,应填写《毕业论文任务书》,经指导教师同意,方可进行论文工作。三、对毕业论文的基本要求1.立论、观点要符合马克思主义基本原理;2.对学术的探讨要符合科学性和逻辑性;3.对论述的主要问题要正确地运用所学专业、基础理论、基本知识和基本方法;4.论证严谨,结论明确。所运用的研究方法基本正确,所收集的数据资料完整、充分,所设计的实验方法、步骤、正确可行,所提出的观点正确;5.文字通顺,表达确切,书写规范,独立完成;6.论文一般以3000字到6000字为宜,每篇论文的正文前应有300字左右的论文摘要(概括论文的中心论题以及基本观点、方法、结论)3到5个关键词。论文中所引用的定义、定理、论述都要注明出处。论文后应附有作者在写论文时所阅读的文献、参考书目录以及页码;7.论文应包括英文名、英文摘要和英文关键词;8.论文要按照统一格式进行排版(见江苏大学学报自然科学版)。四、毕业论文成绩评定1.学生毕业论文成绩的评定采取指导教师和毕业论文答辩小组分别单独评分,按比例综合评定,最后由毕业论文答辩委员会综合平衡审定。2.成绩分5个等级:优秀、良好、中等、及格、不及格。毕业生毕业论文统一格式要求一、论文用纸:B5纸打印。二、论文标题:1、主标题:用小二号黑体字,置于首页第一行,居中。2、正文采用四级标题,分别以“一、(一)、1、(1)”标明。其中一级标题用黑体字,二级标题用楷体,三、四级标题与正文字体相同。三、论文正文:1、字体:用四号仿宋体。2、段落:行距为24磅。3、页码:居中。四、年级、专业与姓名:四号宋体,置于主标题与正文之间,居中,上下各空一行。五、注释:如有注释,皆在正文之后注明。
如何写好数学教育论文华南师范大学数学系 何小亚一、数学教育论文的基本结构标题(论文中心内容的概括,要求确切、恰当、鲜明、简短、精炼,一般不超过20字)作者名(单位名、省、市、邮政编码)摘要:[ 摘要的内容应全部源自论文本身,是论文内容的高度“浓缩”,使读者能迅速了解论文的主要内容。它要求准确、简明扼要(一般不超过300字)、独立完整、客观陈述(不能以第三者的口气进行介绍、评论,如“文章认为……”、“本文通过……”、“本文论述了……”、“本文探讨了……”、“本文首次提出了……”这些表述是不符合要求的)]关键词:(关键词是从论文中选取出来,用以表示全文主题内容信息的单词或术语,约3—8个)引言(开头语)1. 选题的原因和重要性。2. 对本课题已有研究情况的述评,如研究进展、对现有结论的评价、尚未解决的问题等。3. 本课题研究的目的、方法、计划。4. 本课题研究的意义和价值。几种常见的开头方法:1.内容范围开头法,即说明本文要论述的内容范围;2.问题开头法,即以数学问题或研究对象所存在的问题的方式开头;3.设问开头法,即以设问的形式把论文要论述的中心内容表达出来;4.目的开头法,即直接把论文要达到的目的告诉读者;5.背景开头法,即阐述所研究课题的历史背景;6.结论开头法,即直接阐述论文的的主要结论。正文1 …………………………2 …………………结论与讨论(结束语)结论部分起着总结全文、深化主题、揭示规律的作用,其内容大致为概述自己研究了什么问题,取得了什么结论,需要进一步研究的问题。下列情况可以省略结论部分:1. 前言部分已对结论进行了概括;2. 结论已不言自明;3. 验证性的论文;4. 商榷、反驳、补充性的论文。附录附录是指因内容多,篇幅长而不便写入正文,但又必须向读者交代清楚的一些重要材料。因为正文中有些内容意犹未尽,列入正文中撰写又会冲淡主题,为此,在论文的最后部分以附录的方式进行弥补。附录的内容主要有座谈会提纲、问卷调查表格、测试问题、各类图表等。参考文献参考文献是指作者在撰写论文的过程中所引用的图书资料,包括参阅或直接引用的材料、数据、论点、词句,而必须在论文中注明出处的内容。它包括各种著作、期刊、学术报告、学位论文、科技报告、专利、技术标准等。一般地说,在论文中引用前人的观点、数据、材料时,应按先后顺序标明数码,依次列出所引用内容的出处。引用文献为期刊,可仿下面的例子书写:[1] 何小亚. 数学应用题认知障碍的分析[J].上海教育科研,2001,6:41-43.[5] 何小亚. 建构良好的数学认知结构的教学策略[J].数学教育学报. 2002,11(1):25.引用文献为专著、论文集、学位论文、学术报告等,可仿下面的例子书写:[2] 赵振威,黄熙宗,范叙保,等. 中学数学解题研究[M]. 江苏:江苏教育出版社,1998. 96-104.引用文献为报纸,可仿下例书写:[8] 谢希德. 创造学习的新思路[N]. 人民日报,1998—12—25(10)上述指的是一般小论文的格式。对于毕业论文,则要按照下面的格式。一、问题的提出(背景、问题、你要研究什么问题……)二、术语界定(术语界定就是去解释规定你论文中要用到的关键术语,如“新课标”是什么意思?、“数学建模”指的是什么?、“渗透”是什么意思……)三、研究的现状(综述同行(相关文献)的研究情况)(谁/什么文献/研究什么/什么结论/简单的评价。要以脚注的形式标明出处。文献综述最好按类别进行.。四、研究的意义(价值)及理论基础(你的理论主要是数学课程标准理论)五、研究方法(你的方法属文献研究、比较研究、定性研究)六、研究结果就是以下你的正文中属于你自己研究的结果。自己的东西有多少就写多少,不一定要面面俱到。别人的结果要放在研究现状里。否则读者很难区分哪一部分是别人的,哪一部分是你的。七、研究结论(根据“五、研究结果”得出的结论)八、研究展望(研究的不足/存在的问题/进一步值得研究的问题)二、数学教育论文的选题1.学习研究数学教育文献数学教育类期刊Educational Studies in Mathematics(荷兰);Journal for Research in Mathematics Education(美);Mathematics Teaching(英);Mathematics Teacher(美);《课程. 教材. 教法》(人民教育出版社)《数学教育学报》(天津师范大学等)《数学通报》(中国数学会,北京师范大学);《数学教学》(华东师范大学);《中学数学》(湖北大学);《中学数学教学参考》(陕西师范大学);《中学数学研究》(华南师范大学)。2.把握数学教育研究的新动向及时了解数学教育研究的新动向、新成果,积极参与教学改革,勇于实践,教学与科研相结合。3.研究课程标准和新教材九年义务教育阶段数学课程标准,高中数学课程标准,各种版本的新教材4.研究学生学习数学的过程和教学方法5.研究初等数学问题对初等数学各个分支中的某些问题或某种方法进行专门的研究,比如某个定理的推广和改进,某种解题方法的提出与应用。三、注意事项1.结合自己的兴趣特长选择研究课题2.注意文献资料的取舍围绕课题选择文献资料,选择的材料应具有典型性(代表性)、实践性、理论性和新颖性3. 构思与布局在总体构思论文的框架结构时,要注意从整体上思考如何提出问题、分析问题和解决问题,将论文分成几个部分,每一部分又细分为几个小的部分,每一小部分有哪些要点。4. 修改和定稿初稿完成后,应仔细推敲,反复修改,要敢于否定自己,切忌马虎走过场。5. 注意创新论文应注意创新,最忌讳因循守旧,人家写什么,自己也写什么,跟在别人后面人云亦云。我们在撰写数学教育论文时,无论是题目、内容、论点、例证,还是解决问题的思路和方法都应该锐意创新,因为有无创新是一篇论文质量高底的重要标志。6.不容易被刊用的稿件的特点(1) 论述的经验、方法是众所周知的;(2) 所列举的数据有为自己评功摆好的嫌疑;(3) 选用的例证陈旧;(4) 仅仅是例证的堆砌,缺少深刻的理论分析;(5) 概念不清,逻辑推理出错;(6) 结论的推导冗长而应用面狭窄;(7) 课题过大,设计面过宽,讨论问题面面俱到,但不深入;(8) 文章过长(超过5000字)。附件四:研究课题举例一、一般性的研究课题1. 中学数学课程标准的分析研究2. 关于高考数学命题及答卷的研究3. 数学开放题研究4. 数学应用题研究5. 优秀数学教师的教育思想及教学艺术评析6. 数学教学改革实验研究7. 数学差生的成因与教学对策8. 学生数学能力评价研究9. 数学教育中的素质教育内涵10. 中学数学教学与学生创新意识培养11. 中学数学教学与学生应用意识培养12. 数学课程评价的理论与实践13. 数学语言教学研究14. 数学思想方法的教学研究15. 中学数学作业处理16. 运用数学方法论指导数学教学17. 中学生数学阅读能力的调查研究18. 中学生数学语言能力的调查研究19. 数学学习方式的调查研究20. 数学交流能力的调查研究二、 高中数学新课程教学方面的研究课题(一)在新课程理念下对原有内容的教学研究1. 函数教学研究2. 向量教学研究3. 立体几何教学研究4. 解析几何教学研究5. 导数及其应用教学研究6. 概率与统计的教学研究7. 不等式教学研究8. 三角恒等变换教学研究(二)对新增内容的教学研究9. 算法教学研究10. 统计案例教学研究11. 框图、推理与证明教学研究12. 选修系列3教学研究13. 选修系列4教学研究(三)双基与能力教学研究14. 新课程理念下高中数学双基教学设计研究15. 关于培养学生抽象、概括能力的研究16. 关于合情推理与演绎推理在培养学生思维能力中的作用的研究17. 数学新课程实施中学生自主学习的研究18. 数学教学中培养学生自我监控能力的研究19. 关于《标准》中课程内容与要求的科学性、可行性的研究20. 数学文化对于促进学生数学学习的研究21. 数学教学中渗透数学探究、研究性学习的研究三、高中数学新课程的评价课题1. 对学生数学学习过程评价的研究2. 体现新课程理念的模块终结性评价工具与方法的开发3. 对选修系列3、选修系列4读书报告的评价4. 对数学探究、数学建模的评价5. 高中新数学课程课堂教学评价6. 高中数学教师专业化发展评价7. 数学新课程理念下的高考命题研究8. 数学教学中情感、态度、价值观的评价9. 关于过程性评价与终结性评价有机结合的研究四、高中数学新课程的信息技术研究课题1. 信息技术的三重连环表示法(数字、图形与符号)对于数学教学的影响与作用2. 网络环境对于数学新课程实施的促进作用(如运用网络资源,展现数学文化)3. 信息技术与研究性学习的融合4. 运用信息技术手段,改变学生学习方式(结合具体内容研究)5. 信息技术对评价的形式与内容带来的影响6. 以信息技术为主要手段的数学课程和教学资源库的建立7. 信息技术对于学生数学能力(如图形直观能力、逻辑思维能力或运算能力等)的影响与促进8. 运用信息技术手段,展示数学知识的发生和发展过程的案例研究9. 信息技术与数学课程内容整合的案例开发五、高中数学新课程的课程资源研究课题1. 算法的背景与实例的收集与积累2. 概率与统计的背景与实例的收集与积累3. 导数及其应用的背景与实例的收集与积累4. 关于高中数学选修系列3课程资源的开发与积累5. 关于高中数学选修系列4课程资源的开发与积累6. 现行高中数学新教材的比较研究7. 数学新课程资源的拓广与应用8. 网上数学资源的拓广与利用9. 数学教学软件的研制与开发10. 数学教学资源的传播与信息共享六、高中数学新课程的研究性学习(数学建模、数学探究)1. 如何指导学生选择数学探究、数学建模的课题2. 数学探究、数学建模活动与课堂教学的关系研究3. 研究性学习对培养学生能力的作用中学数学教材、教学研究的问题1.“好”的情境的标准是什么?如何开发?若干优秀情境交流。2.如何在一些重要的数学概念(如,函数)中,突显“数学化”过程。2.一些重要的数学思想在中学数学中的渗透(如随机的思想、公理化的思想)。3.统计与概率内容的系统设计及案例交流。4.课题学习的系统设计及案例交流。5.整理与复习的系统设计及案例交流。6.几何内容的系统设计及案例交流。7.发展学生推理能力的系统设计及案例交流。8.小学、初中、高中的衔接,知识之间的联系(哪些重要的联系?如何体现?)。9.信息技术对课程内容选择、呈现以及教师专业发展的影响。10.如何体现数学的文化价值,不只局限于数学史。11.教材如何体现教学内容的弹性(阅读材料、选学内容、开放问题、提供参考书籍)12.教材怎样才能更好地体现数学的特点及学生的认知特点。13.建立数学模型与数学的双基教学。14.如何处理教材“留白”和学生自学(阅读)之间的关系。15.教材“留白”与教师发展空间之间的关系。16.对评价的思考与实践。附二:教学设计模板课题名称:×××××××教学年级:×年级设计者:(姓名、单位、邮编、联系电话(手机或小灵通!)、E-mail等)一、教学内容分析1.教学主要内容2.教材编写特点本节课内容在单元中的地位,本节课教材编写的意图及特点等。3.教材内容的数学核心思想4.我的思考下面的学习目标、活动设计、组织与实施是如何落实对教学内容分析的理解,特别是核心数学思想的落实。说明:教学内容分析应该建立在教师良好的数学素养之上。可以在教学组内或学区中心集体研讨,或专家的指导下完成。需要注意的是,对教学内容的分析应体现在学习目标和教学过程的设计上。二、学生分析1.学生已有知识基础(包括知识技能,也包括方法)2.学生已有生活经验和学习该内容的经验3.学生学习该内容可能的困难4.学生学习的兴趣、学习方式和学法分析5.我的思考:下面的学习目标、活动设计、组织与实施是如何落实对学生分析的理解。说明:学生分析应该通过对学生的实际调研作为科学依据,不能仅凭经验判断。学生分析是个性化的工作,不能由他人的结果简单代替自己的学生分析。已有知识基础的调研可以通过设计几个指向明确的小问题实现,对这方面的数据统计及分析是更为重要的,这种分析是教师设计和修正“学习目标”的重要依据。学生经验、学生学习困难、学生学习兴趣等的调研可以通过访谈实现,可以是抽样,也可以是有针对性的,如对于学困生做特别的访谈,可能会发现他们身上所具有的学习要素。调研中可以将学生测验、访谈、小组观察等结合起来。三、学习目标(以学生为主语)1. 知识与技能2. 过程与方法(数学思考、解决问题)3. 情感态度价值观说明:1.教学内容分析和学生分析是学习目标制定的依据和前提。因此,如果对教学内容分析的要求越透彻,对学生分析的要求越科学和规范,学习目标的设计就越不是一件简单而迅速的工作。2.学习目标是为学生的“学”所设计,教师的“教”是为学生的学习目标的达成服务的。学习目标是个性化的,又是尊重数学学科发展需要和学生未来学习需要的。3.学习目标的制定应从以上几个方面进行思考,但具体形式不一定逐条对应。4.学习目标应该在下面的教学活动中得到实在的落实。特别是教学活动中设计意图应该阐释,活动及其组织与实施是如何为达成目标服务的。四、教学活动教学活动就是为学习目标的实现所设计的活动。包括1.活动内容2.活动的组织与实施说明:指教学活动开展的具体形式,包括学生学习方式—独立学习,还是合作学习等;教师活动的开展—提问或提出任务,组织合作学习,组织交流,讲授等;教学资源的准备等,如学具、教具、课件等。3.活动的设计意图说明:为教学活动和活动的组织实施进行辩护,辩护的出发点是分析它们是否促成了学生学习目标的达成。不是简单地主观臆断是为目标服务,应该有一定的理由—数学的、教学的。更不应该写成一些没有针对性,放之四海而皆准的“普遍真理”。4. 活动的时间分配预设说明:主要指对教学活动的时间分配预设,以便于自己检测教学设计上合理与否。可以参考下面的表格形式,也可以用文档的形式。活动内容 活动的组织与实施(含教师活动和学生活动) 设计意图 时间分配五、教学效果评价目的是检测学习目标是否实现,为进行教学反思和改进教学提供依据。可以采取测验、访谈、课堂观察等多种方式评价教学效果。教学设计中应包括教学效果评价的方案。例如,对于知识技能目标达成度的评价,可以设计当堂课或课后能够做的1-2个小问题。以下几点供教师思考:(1) 情境的作用是什么?应该为学习目标服务,不是仅仅追求“热闹”。(2) 如何组织有效的教学活动,如小组活动的组织、信息技术的使用、练习的设计等,使得它们更为有效?(3) 学习目标是教学设计的核心,设计了就要努力执行和实现。所有的教学活动和教学设计都应该为促成“目标”的实现服务。(4) 教学是需要设计的,最后达到寓教于“无形”之中。(5) 设计应该考虑单元或更大的范围。
浅谈数学中的研究性学习 (转,供参考)找个自己感兴趣的题目去写,参考范文! 现代社会知识更新的速度不断加快,在高中阶段,对学生传授的知识是有限的,学校教育不可能让学生学的知识用上一辈子。人们在获得生存与发展中所面临的问题越来越具有社会性、复杂性和不可预见性,人们所必需的知识范围与能力素养的范围急剧扩大。而作为一名数学教师我们有责任引导学生从数学的角度分析社会生活和实践活动中的问题、开展探究活动,让学生在获得必要的数学知识与技能的同时,认识知识探究与问题探索的基本方法和途径,提高参与社会生活的探究、发现和改造等一切活动中进行决策的基本能力。 一、 正确的认识是开展数学研究性学习的基础 弄清概念:什么是数学研究性学习 数学研究性学习是培养学生在数学教师指导下,从自身的数学学习和社会生活、自然界以及人类自身的发展中选取有关数学研究专题,以探究的方式主动地获取数学知识、应用数学知识解决数学问题的学习方式。它同社会实践等教育活动一样,从特定的数学角度和途径让学生联系社会生活实例,通过亲身体验进行数学的学习。数学研究性学习强调要结合学生的数学学习和社会生活实践选择课题,学生从自身数学学习实践出发,找到他们感兴趣的、有探究价值的数学问题。开展数学研究性课题学习将会转变学生的数学学习方式,变传统的“接受性、训练性学习”为新颖的“研究性学习”,它有利于克服当前数学教学中注重教师传授而忽视学生发展的弊端,有利于调动学生的研究热情,激发学生的求知欲和进取精神,从而有效提高学生对数学的探究性学习能力、实践能力、创造能力和创新意识。 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学和现实问题的一种有意义的主动学习,是以学生动手动脑,主动探索实践和相互交流为主要学习方式的学习研究活动。 二、如何进行数学研究性学习 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。古希腊哲学家德谟克利特曾经指出:“教育力图达到的目标不是完备的知识,而是充分的理解。”我国古代教育家说得更精辟且形象:教学中应“授之以‘渔’”,而不仅是“授之以‘鱼’”。数学研究性学习更加关注学习过程,然而老师又如何让学生在数学课堂上进行研究性学习呢? (一) 从教材切入让学生在数学家探索数学规律的研究思维过程中体验研究性学习 ?在高中数学教材中有大量的材料可切入研究性学习的探索。在课堂教学中,教师应把握住“遵循大纲、教材,但又不拘泥于大纲、教材”的原则,结合生产、生活实际适当地加深、加宽,选出探究的切入点,对学生创新意识和能力进行初步培养。如:在讲复数的概念的引入时,告诉学生数的发展是由生产与生活的需要和解方程的需要推动的,是科学实际和生产、生活相结合的产物,然后要学生:解方程: 。学生一定会说无解或无实数解,教师引导学生分析“无解”和“无实数解”的区别,要学生探讨是不是有什么新的东西?如果有应该是怎样的?学生会通过探求及讨论发现此方程的解有但不是实数从而就会想到是虚的,教师要求学生用已有的方法求出方程的解,学生往往会感觉困难,教师就要问学生为什么困难?学生会说无法求,教师要求学生探求一个新的东西出来解决。 通过问题的层层揭示,并通过联系数的开方知识、解方程知识等手段来突破难点。这一过程使学生亲历数学研究之中,是学生主动地获取知识、应用知识、解决问题的学习活动。这一过程能充分调动学生的参与意识,培养学生的探索精神,启迪学生的思维,使学生能自然地掌握知识。 教师引导学生把提出的新东西进行归纳、总结,上升到理论。然后提出新的问题。如上面这节课对要求学生:解方程:x3-1=0.这样处理能再次将理论和实践结合起来,使学生感悟到在数学学研究中理论和实践之间的辩证关系。课后教师可以再布置几个探究性思考题,让学生在课外进一步巩固课堂上的探究方法和思路,拓展和活跃学生思维。 指导学生进行一题多解和一题多变也是一种研究性学习的方法。 这样以数学教材为载体渗透研究性学习,有一定的灵活性能更好的培养学生探求规律的能力。数学知识探索是数学学习的核心,用类似科学的研究方式,让学生置于探索和研究的气氛之中,亲身参与研究,体会知识及规律的探索方法,提高学生发现和解决问题的能力。 (二) 把握教材例、习题的潜在功能,有效培养学生的研究性学习能力 数学知识由纷繁复杂的客观世界抽象而来,研究性学习能力是学习数学知识的必要条件。很多教师都有一个发现:在学习单个知识时,学生似乎学得不错,但学完了多个知识或一个系统后,却变成简单的题目都不会,这除了综合能力不高外,还与平时没有养成研究性学习有关。像二倍角公式的理解就不能只知道2α是α的二倍角,类似的:4α是2α的二倍,α是的二倍, 例如:已知Sin= ,? ?, 求4的三角函数值。 分析:由,两次运用二倍角公式;又如:Cosα=2Cos 2? ?- 1 = 1 – 2Sin2 ???????? ?Cos 2? ??=? ,? Sin2 ?= ?????? ????tan2 ?= 这实际上是二倍角公式的逆向运用,得到的半角公式(或降幂公式)。有了对例题的深刻理解和研究性学习就能解决一类问题,如求的值;化简等。 通过变式、逆用、一题多解等训练思维的深度,引导学生不满足表面知识,能深入钻研问题,探求各种知识的联系,从而找到解决问题的本质和规律。 在教学上要鼓励学生敢于主动、独立的发现问题、探讨问题,敢于提问,敢于发表自己的不同观点,例如:在△ABC中 ,,求CosC值,可我在批改作业时,没有考究教材参考资料提供的答案(实际上只有),结果把正误答案颠倒。发现错误后,我主动向全班同学道歉,并表扬了善于研究思考、敢于坚持真理的同学。并及时提出新问题:(1)在△ABC中若 ,,求CosC值。有几个解?(2)在△ABC中,成立吗?作为留给学生的课外研究性学习题。学习了正弦定理后,再回头证明。通过这一问题的深刻探讨,不但使学生牢固掌握知识,更大大提升了学习的自信心和学习的热情,在潜移默化中培养了学生的科学态度和研究性学习精神。在学习等比数列前n项和知识时,有一题是:在等比数列中:已知 。在求解过程中学生得到了:? ,进一步发现:成等比数列 ,这就是研究性学习所得的成果,继续引导这一结论并推广就就可完成下面一题。证明:等比数列的也成等比数列。学生们总结前面的学习也较顺利地完成了证明,心理充满了成功的喜悦。真的没有漏洞吗?鼓励学生进行研究性学习探讨其严谨性,有学生举出了反例:数列 1,-1,1,-1……是公比q= -1等比数列,但 ,并不是等比数列;这一发现令人吃惊,因为在课本和其他所有的课外书都没有此说法。从理论上讨论:当,显然当n为偶数且q= -1时, ,不可能为等比数列。由此可见数学研究性学习的重要。 (三) 数学开放题与研究性学习 ??? 研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。 自70年代日本、美国在中小学教学中较为普遍地使用数学开放题以来,数学开放题已逐渐被数学教育界认为是最富有教育价值的一种数学问题,因为数学开放题能够激起学生的求知欲和学习兴趣,而强烈的求知欲望浓厚的学习兴趣是创新能力发展的内在动力。80年代介绍到我国后,在国内引起了广泛的关注,各类刊物发表了大量的介绍、探讨开放题的理论文章或进行教学实验方面的文章,并形成了一个教育界讨论研究的亮点。 高考命题专家也敏锐地觉察到开放题在考查学生创新能力方面的独特作用,近几年在全国和各地的高考试题中连续出现具有开放性的题目。 数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。因此数学开放题用于学生研究性学习应是十分有意义的。 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 21、浅谈中学数学中的反证法 22、数学选择题的利和弊 23、浅谈计算机辅助数学教学 24、数学研究性学习 25、谈发展数学思维的学习方法 26、关于整系数多项式有理根的几个定理及求解方法 27、数学教学中课堂提问的误区与对策 28、中学数学教学中的创造性思维的培养 29、浅谈数学教学中的“问题情境” 30、市场经济中的蛛网模型 31、中学数学教学设计前期分析的研究 32、数学课堂差异教学 33、浅谈线性变换的对角化问题 34、圆锥曲线的性质及推广应用 35、经济问题中的概率统计模型及应用 36、通过逻辑趣题学推理 37、直觉思维的训练和培养 38、用高等数学知识解初等数学题 39、浅谈数学中的变形技巧 40、浅谈平均值不等式的应用 41、浅谈高中立体几何的入门学习 42、数形结合思想 43、关于连通性的两个习题 44、从赌博和概率到抽奖陷阱中的数学 45、情感在数学教学中的作用 46、因材施教与因性施教 47、关于抽象函数的若干问题 48、创新教育背景下的数学教学 49、实数基本理论的一些探讨 50、论数学教学中的心理环境 51、以数学教学为例谈谈课堂提问的设计原则 52、不等式证明的若干方法 53、试论数学中的美 54、数学教育与美育 55、数学问题情境的创设 56、略谈创新思维 57、随机变量列的收敛性及其相互关系 58、数字新闻中的数学应用 59、微积分学的发展史 60、利用几何知识求函数最值 61、数学评价应用举例 62、数学思维批判性 63、让阅读走进数学课堂 64、开放式数学教学
196 浏览 4 回答
147 浏览 6 回答
95 浏览 4 回答
355 浏览 4 回答
84 浏览 3 回答
93 浏览 7 回答
238 浏览 3 回答
342 浏览 4 回答
325 浏览 6 回答
161 浏览 4 回答
160 浏览 6 回答
203 浏览 3 回答
203 浏览 3 回答
303 浏览 5 回答
352 浏览 5 回答