绿色催化剂的应用及进展摘要]对新型绿色催化剂杂多化合物的研究进展进行了综述,主要介绍了杂多化合物在催化氧化、烷基化、异构化等石油化工领域的研究现状,并对其应用和发展前景做了总结和评述。[关键词]杂多化合物;绿色化工催化剂;展望随着人们对环保的日益重视以及环氧化产品应用的不断增加,寻找符合时代要求的工艺简单、污染少、绿色环保的环氧化合成新工艺显得更为迫切。20世纪90年代后期绿色化学[1,2]的兴起,为人类解决化学工业对环境污染,实现可持续发展提供了有效的手段。因此,新型催化剂与催化过程的研究与开发是实现传统化学工艺无害化的主要途径。杂多化合物催化剂泛指杂多酸及其盐类,是一类由中心原子(如P、Si、Fe、B等杂原子及其相应的无机矿物酸或氢氧化物)和配位原子(如Mo、W、V、Ta等多原子)按一定的结构通过氧原子桥联方式进行组合的多氧簇金属配合物,用HPA表示[3-6]。HPA的阴离子结构有Keggin、Dawson、Anderson、Wangh、Silverton、Standberg和Lindgvist 7种结构。由于杂多酸直接作为固体酸比表面积较小(<10 m2/g),需要对其固载化。固载化后的杂多酸具有“准液相行为”和酸碱性、氧化还原性的同时还具有高活性,用量少,不腐蚀设备,催化剂易回收,反应快,反应条件温和等优点而逐渐取代H2SO4、HF、H3PO4应用于催化氧化、烷基化、异构化等石油化工研究领域的各类催化反应。1杂多酸在石油化工领域的研究进展随着我国石油化工工业的快速发展,以液态烃为原料制取乙烯的生产能力在不断增长,而产生的副产物中有大量的C3~C9烃类,其化工综合利用率却仍然较低,随着环保法规对汽油标准中烯烃含量的严格限制,如何在不降低汽油辛烷值的情况下,生产出高标号的环境友好汽油已是我国炼油业面临的又一个技术难题。目前,催化裂化副产物C3~C9烃类的催化氧化、烷基化、芳构化以及C3~C9烃类的回炼技术已成为研究的热点。因此,催化裂化C3~C9烃类的开发与应用将有着强大的生产需求和广阔的市场前景。催化氧化反应杂多酸(盐)作为一类氧化性相当强的多电子氧化催化剂,其阴离子在获得6个或更多个电子后结构依然保持稳定。通过适当的方法易氧化各种底物,并使自身呈还原态,这种还原态是可逆的,通过与各种氧化剂如O2、H2O2、过氧化尿素等相互作用,可使自身氧化为初始状态,如此循环使反应得以继续。用杂多酸作催化剂使有机化合物催化氧化作用有两种路线是可行的[7]:①分子氧的氧化:即氧原子转移到底物中;②脱氢反应的氧化。将直链烷烃进行环氧化是生产高辛烷值汽油的重要途径之一。Bregeault等[8]研究了在CHCl3-H2O两相中,在作为具有催化活性的过氧化多酸化合物的前体的杂多负离子[XM12O40]n-和[X2M18O62]m-以及同多负离子[MxOy]z-(M=Mo6+或W6+;X=P5+,Si4+或B3+)的存在下,用过氧化氢进行1-辛烯的环氧化反应时,负离子[BW12O40]5-、[SiW12O40]4-和[P2W18O62]6-都是非活性的,并且许多光谱分析法表明它们的结构在反应过程中没有发生变化。[PMo12O40]3-表现出很低的活性,而[PW12O40]3-、H2WO4和[H2W12O42]10-都表现出高活性。反应中Keggin型杂多负离子[PW12O40]3-被过量的过氧化氢分解而形成过氧化多酸{PO4[WO(O2)2]4}3-和[W2O3(O2)4(H2O)2]2-,而这两种活性物种在环氧化反应中起到了重要的作用。烷基化反应石油炼制工业上,烷烃烷基化、烯烃烷基化及芳烃烷基化反应是生产高辛烷值清洁汽油组分的环境友好工艺。但以浓硫酸和氢氟酸作为催化剂的传统烷基化工艺因氢氟酸的毒性和浓硫酸的严重腐蚀性受到了很大的限制。C4抽余液是蒸气裂解装置产生的C4馏份经抽提分离丁二烯后的C4剩余部分,其中富含大量的1-丁烯和异丁烯。如何利用C4抽余液中的异丁烯和1-丁烯是C4抽余液化工利用的关键。异丁烯是一种重要的基本有机化工原料,主要用于制备丁基橡胶和聚异丁烯,也用来合成甲基丙烯酸酯、异戊二烯、叔丁酚、叔丁胺等多种有机化工原料和精细化工产品。1-丁烯是一种化学性质比较活泼的a-烯烃,其主要用途是作为线性低密度聚乙烯(LLDPE)的共聚单体,也用于生产聚丁烯、聚丁烯酯、庚烯和辛烯等直链或支链烯烃、仲丁醇、甲乙酮、顺酐、环氧丁烷、醋酸、营养药、农药等。特别是自20世纪70年代LLDPE工业化技术开发成功以来,随着LLDPE工业生产的蓬勃发展,国内外对1-丁烯的需求与日俱增,已成为发展最快的化工产品之一。刘志刚[9]等用浸渍法制备了Cs+、K+、NH4+的SiPW12杂多酸盐类和SiO2负载的SiPW12杂多酸,在超临界条件下评价了它们对异丁烷和丁烯烷基化的催化作用。结果表明,它们的活性和选择性大小顺序是当阳离子数相同时,Cs+盐>K+盐>NH4+盐。(NH4)尽管催化活性不高,但对C8产物的选择性达到%;具有很高的催化活性,但其对C8产物的选择性却只有。异构化反应汽油的抗爆性用异辛烷值表示,直链烃异构化是生产高辛烷值汽油的重要手段。C5~C6烷烃骨架异构化旨在提高汽油总组成的辛烷值,反应受平衡限制,低温有利于支链异构化热动力学平衡。为达到最大的异构化油产率,C5~C6烷烃异构化应在尽可能低的温度和高效催化剂存在下进行。烷烃骨架异构化是典型的酸催化反应,最近发现有较多的固体酸材料(其酸强度高于H-丝光沸石)可用于轻质烷烃骨架异构化,其中,最有效的有基于杂多酸(HPA)的催化材料和硫酸化氧化锆、钨酸化氧化锆(WOx-ZrO2)。2绿色催化剂绿色化学对催化剂也提出了相应的要求[1,2]:(1)在无毒无害及温和的条件下进行;(2)反应应具有高的选择性,人们将符合这两点的催化剂称之为绿色催化剂。由于一些杂多酸化合物表现出准液相行为,极性分子容易通过取代杂多酸中的水分子或扩大聚合阴离子之间的距离而进入其体相中,在某种意义上吸收大量极性分子的杂多酸类似于一种浓溶液,其状态介于固体和液体之间,使得某些反应可以在这样的体相内进行。作为酸催化剂,其活性中心既存在于“表相”,也存在于“体相”,体相内所有质子均可参与反应,而且体相内的杂多阴离子可与类似正碳离子的活性中间体形成配合物使之稳定。杂多酸有类似于浓液的“拟液相”,这种特性使其具有很高的催化活性,既可以表面发生催化反应,也可以在液相中发生催化反应。准液相形成的倾向取决于杂多酸化合物和吸收分子的种类以及反应条件。正是这种类似于“假液体”的性质致使杂多酸即可作均相及非均相反应,也可作相转移催化剂。陈诵英[10]等用二元杂多酸为催化剂,双氧水为氧化剂,醋酸为溶剂,催化氧化三甲基苯酚(TMP)合成三甲基苯醌(TMBQ),这与传统方法先用发烟硫酸磺化TMP,然后在酸性条件下用固体氧化剂氧化得到TMBQ相比,能减少排放大量废水以及10 t以上的固体废物,且其摩尔收率可达86%,大大提高了原子利用率。刘亚杰[11]等采用一种性能优良的环境友好的负载型杂多酸催化剂(HRP-24)合成二十四烷基苯。HR-24属于一种大孔、细颗粒、强酸性的固体酸催化剂,大孔和细颗粒有利于大分子烯烃的扩散,且不容易被长链烯烃聚合形成的胶质堵塞孔道,而强酸性可使催化剂在较低温度下就具有较高的催化活性。实验表明,在反应温度和压力较低的情况下(120℃和~ MPa),烯烃的转化率和二十四烷基苯的选择性都接近100%。Furuta等[12]采用Pd-H3SiW12O40催化乙烯在氧气和水存在下氧化一步合成了乙酸乙酯,简化合成工艺,与绿色化学相适应。刘秉智[13]以活性炭负载磷钼钨杂多酸为催化剂,用30%双氧水催化氧化苯甲醇合成苯甲醛,苯甲醛收率可达。与国内同类产品的生产工艺相比,其具有催化活性好,反应条件温和,生产成本低廉,催化剂可重复使用,对设备无腐蚀性,不污染环境,是一种优良的新型合成工艺路线,具有一定的工业开发前景。3展望虽然绿色化工催化剂理论发展逐渐得到完善,但大多数催化剂仍停留在实验阶段,催化剂性能不稳定,制备过程复杂,性价比低是制约其工业化应用的主要原因,但从长远角度考虑,采用绿色化工催化剂是实现生产零污染的一个必然趋势。环境友好的负载型杂多酸催化剂既能保持低温高活性、高选择性的优点,又克服了酸催化反应的腐蚀和污染问题,而且能重复使用,体现了环保时代的催化剂发展方向。今后的研究重点应是进一步探明负载型杂多酸的负载机制和催化活性的关系,进一步解决活性成分的溶脱问题,并进行相关的催化机理和动力学研究,为工业化技术提供数据模型,使负载型杂多酸早日实现工业化生产,为石油化工和精细化工等行业创造更大的经济、社会效益。[参考文献][1][2][3][4][5][6][7][8][9][10][11][12][13]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1997,170-195.夏恩冬,王鉴,李爽.杂多酸氧化-还原催化应用及研究进展[J].天津化工,2007,21(3): C,Chottard G,Bregeault J,et epoxidation using tungsten-based precursors andhydrogen peroxide in a biphase medium[J].Inorg Chem.,1991,30(23):4 409-4 415.刘志刚,刘植昌,刘耀芳.SiW12杂多酸盐在C4烷基化反应中应用的研究[J].天然气与石油,2005,23(1):17-19.陈诵英,陈蓓,王琴,等.环境友好氧化催化剂杂多酸的应用[J].宁夏大学学报,2001,(2):98-99.刘亚杰,温朗友,吴巍,等.负载型杂多酸催化剂合成二十四烷基苯[J].石油炼制与化工,2002,33(12): M,Kung H Catalysis A:General[J],2000,201:9-11.刘秉智.固载杂多酸催化氧化合成苯甲醛绿色新工艺[J].应用化工,2005,(9): Chemistry TheoryandPractice[M].Oxford:Oxford University Press, atom economy:a search for synthetic effi 2ciency[J].Science,1991,254(5037):1 471-1 M,Okuhara [J],1993,23(11): Rev-Sei Eng.[J],1995,37(2):311-352.温朗友,闵恩泽.固体杂多酸催化剂研究新进展[J].石油化工,2000,(1):49-55.
绿色化学是20世纪末崛起的一门新兴学科,相对于传统化学,它是未来化学化工发展的主要方向之一。下面是我为大家整理的化学综述性论文,供大家参考。
1改革措施
加强课前预习
随着中国高校培养水平的逐步提高,目前在对学生的培养中设置了大量的实验课,每周学生都要进行两到三次的实验课学习,学生对实验课已经不存在太多的新鲜感,再加上不同的实验课基本采取的都是同一模式的教学方法,从而导致学生对实验的积极性普遍不高,实验应付差事。以往在做实验之前,通常是由教师组织安排,介绍实验目的、实验原理和仪器设备;对易出现的问题提出注意事项,对实验中出现的现象提出理论解释,学生按教师的讲解按部就班的重复实验,获取数据,验证规律。使用实验规定的仪器设备,按照规定的实验方法和步骤完成规定的实验内容,然后按规定的格式完成实验报告;这样可以培养严谨、认真、规范的学习态度,有利于学生掌握有机化学实验的操作要领。但也往往会使学生由于缺少独立解决问题的意识,而挫伤学生的创造性和积极性,完全把他们放在了被动接受的位置上,严重地束缚了学生的创新性,缺少创新思想,缺少学习兴趣,导致记忆不牢,认识不深,做实验则只为拿学分,走形式,实验操作过而忘,更不会掌握扎实的基础。学生不经过预习,同样可以根据老师的讲解了解实验内容,能够按老师的讲解完成实验,但这样学生对预习报告就会流于形式,照抄教材,敷衍了事,对实验内容了解不深,从而不能真正掌握实验的知识要点[3]。为改变此现状,采用要求学生提前预习的措施。在上课之前,要求学生先交预习报告,否则不能进行实验。实验预习的具体内容要求明确实验目的和要求、了解反应机理、熟悉各种化学试剂的物理常数、画好装置图、列出实验步骤和注意事项。为了杜绝学生应付差事,只是将教材一字不落的抄袭下来的现象,要求预习报告中的实验步骤部分必须细化成一个个步骤,每个步骤必须有简明扼要的标题,标题下写明该步骤的具体内容。预习报告最后要求学生根据教材的注释和网上查找的资料写出注意事项。在对实验讲解时,设置若干问题,对学生进行提问,检验预习效果,同时对学生起到督促作用。通过这些措施,使得学生不得不认真预习,从而提高学习效果。
培养过硬的基本操作能力
有机化学实验包括许多的基本操作,在某种意义上我们可以说有机化学实验就是由若干个基本操作构成的一个复杂的操作体系。若要使实验达到理想的效果,学生必须具备扎实的基本功,具备过硬的基本操作技能[4]。有机化学实验课一般设置了基本操作实验(如熔点的测定、蒸馏和沸点的测定、分馏、减压蒸馏、水蒸气蒸馏、萃取、重结晶、色谱等)和有机化合物的合成实验(如乙酰乙酸乙酯的制备、肉桂酸的制备、呋喃甲醇和呋喃甲酸的制备、1-溴丁烷的制备、乙醚的制备、苯乙酮的制备、己二酸的制备、苯甲酸乙酯的制备等)。基本操作实验是后续合成实验的基础,也是今后学生从事工作和科研的基础,打好这个基础对学生具有重要意义。在教学过程中,经常出现课程已经进行了大半部分,而学生的基本操作过程依然错误百出的现象。如在做蒸馏时,不知道温度计水银球的正确位置、冷凝管如何选用等种种实验细节问题。这种问题的出现客观上是基础实验操作要注意的细节很多,主观上是学生学习态度不够认真造成的。为使学生打下坚实的基础,掌握基本的实验技能,在基本操作实验的教学中应该注意要求学生在实验报告中划出实验装置图,在画图的过程中,学生会注意仪器意见的连接关系,仪器的选用、温度计的位置等各种细节,从而使实验装置深深的引入脑海。学生实验过程中老师要及时指出学生的实验装置和实验操作存在的问题。
提高平时成绩权重
为督促学生平时认真实验,应提高平时成绩的权重。将平时成绩的比重设置为60%,考试成绩占40%。这样如果学生平时不认真做实验,综合成绩不可能理想。将平时成绩细化为预习报告成绩、实验操作成绩、实验报告成绩和考勤。其中实验操作成绩为主要考察内容,所占比重最大。学生每次的预习报告,实验报告都给与相应的量化成绩,督促学生不断改进自己的报告,养成良好的习惯。而对于学生在操作工程中出现的问题,在指正的同时,要及时给与扣分的处罚,鞭策学生去认真改正错误。这样在学期末评定学生平时成绩的时候有据可依,成绩更加公正:而在以往的评定中,因为没有详细的评分细则和平时量化分数,教师只能根据主观判断给出一个笼统的分数,成绩评定往往不够理性。而期末考试不但要考察学生的动手能力,(如:装置搭建顺序、仪器选用、装置拆卸、仪器保养、实验操作、熟练程度等);还应设置相应的问题对学生进行考核,考核内容主要是有机化学实验的重要知识,包括实验室规则及安全常识,化学仪器的使用和养护方法,基础操作的原理及适用范围等。
开设综合设计性实验
二十一世纪高素质创新人才的要求和社会主义市场经济对人才的需求,确定了化学实验教学的目标和基本要求,要求我们建立起从接受型到培养综合型的教学体系。过去,验证性实验占的比例过大,综合性、设计性实验很少,甚至没有。学生做实验几乎成了“照方抓药”,实验所需的仪器、试剂均已由实验员准备好,并摆在试架上,加什么试剂,先后顺序,甚至加几滴都照书本步骤学生毫无主动性可言,只是机械地操作,定时观察预计现象,记录实验数据,不能动手配制试剂,不能独立动手安装仪器,离开书本实验步骤,就无法下手[5]。因此,有机化学实验有必要对实验内容进行调整,使之适应新形势的需要。为了拓宽基础实验的内容,强化学生的综合能力训练,在实验教学改革中注重加强综合实验。取消一些单独的验证性实验,增加了综合性实验,开设了一些设计性实验。采用综合设计实验的方式,使学生成为实验方案的制定者和实验的完成者,使其成为绝对的主角。具体做法是,教师负责拟定多个实验题目,并分配给每个实验小组,要求各小组到数据库查找文献资料,自行拟定实验方案并完成实验。采用这种方式不但提高了学生学习的积极性,而且培养了学生查阅文献与参考书的能力、综合分析资料设计实验的能力和一定的科研素养。
2结语
通过改革,学生的学习积极性、综合素质、动手能力和创新能力得到了很大的提高。学生普遍认为通过综合设计性实验学到了很多知识,包括资料的获取、实验方案的拟定、数据的处理等。由于设计性实验能够充分发挥学生自己的聪明才智,而不是按部就班的做验证实验,学生表现出了较高的兴趣。科学、合理的考核方法使得学生注重实验课程的每一个环节,其素质得到了全面的发展。
国家、社会、经济的发展需要人才的发展,人才是国家发展的第一要素。《国家中长期人才发展规划纲要(2010-2020年)》指出,我国人才的总体发展目标为:到2020年,培养一支规模宏大、结构完善、布局合理、素质优良的人才队伍,全面确立国家人才竞争优势,实现加入世界人才强国行列的目标,为社会主义现代化建设奠定人才基础,并且强调高技能人才要占技能劳动者比例的28%。研究生教育在高等教育中占有非常大的比重,其培养目标是为现代社会输送高科技人才、高级管理、技术人才和研究型、应用型人才,这就要求高等学校在加强全日制研究生培养质量的同时,针对在职人员开展非全日制专业学位研究生的培养,使培养目标呈多样化的发展态势,形成高素质人才队伍,全面提高创新型科技人才、领军人才、复合型人才的培养比重,加大培养各个重点领域急需紧缺专门人才的力度。我国非全日制专业学位研究生教育制度始于1991年,主要培养对象为相关专业的在职人员,采用“进校不离岗”的方式进行学习,不影响学生平时的正常工作。在职工程硕士研究生来自于生产第一线,一般毕业3年以上,长期的工作实践,积攒了一定的实践经验和解决实际问题的能力,企业对他们赋予了较高的期望值,但他们由于毕业时间较长,基础知识的陈旧率和遗忘率较高,专业理论并不能满足企业发展需要,从而在某种程度上限制企业的发展。我国国有大中型企业的快速发展决定了现代工程技术人员应该是高层次应用型和复合型人才。化学工程领域工程硕士的培养目标主要是为本领域所覆盖范围内的工业企业和工程建设部门、工程设计和研究院所等有关单位培养基础扎实、素质全面、工程实践能力强且具有一定创新能力的应用型、复合型高级工程技术人才和工程管理人才。对在职工程硕士进行工程应用和实践能力的培养,其目的就在于使化学工程领域工程硕士学位获得者能够胜任企业要求,促进企业发展,推进企业技术进步,所以各个高校一方面要强化他们的基础知识、专业理论,另一方面要培养他们的实践、操作能力,实现发现、分析、处理企业现实问题的目的。因此,对于非全日制专业学位研究生的培养,要根据企业实际生产需求来设置教学内容,优化教学方法、手段、途径,因此改变传统的教学模式,结合工业生产实例进行高等分离工程课程改革,具有重要的意义。
一、引进绿色化学和绿色分离工程的概念
绿色化学又称为环境无害化学,是一门从源头上消除污染的化学,即利用高选择性的化学反应,提高反应原子的利用率,达到100%选择性,实现零排放。绿色分离工程指的是分离过程绿色化,主要包括两种途径进行实现:第一,优化传统分离过程,降低甚至消除分离过程对环境的影响;第二,开发和使用新的技术,例如,膜分离技术。分离技术贯穿于整个化工产品生产过程,分离过程绿色化对于未来环境保护和污染治理具有重大意义,是社会现代化可可持续发展的关键性问题之一。分离技术是提高产品竞争力的关键技术,对于降低产品生产成本、提高产品质量等发挥着重要作用。教师要让学生明白经济发展在满足当代社会发展的同时,又不能威胁子孙后代的未来。根据现有发展基础、条件,在不损害地球生态系统的前提下,合理有效地利用和开发有限的资源并产生足够的财富,以满足社会合理的经济需求。绿色分离工程等新型分离技术在高等分离工程课程中的引入,必将引领学科的健康和可持续性发展。
二、改进教学方法
与全日制研究生不同,在职研究生来自于化工企业,一般为单位的技术骨干或相关岗位的管理者,有些甚至已经是高层次的专业人才和项目负责人等,具有一定的实践经验和解决实际问题的能力,他们的学习目的很明确,致力于知识转化,用专业知识解决现实问题。对于在职工程硕士来说,他们既要增加自己的知识积累,更要培养自己应用知识的能力,学习的核心就是提高知识的有用性和实效性。因此,教学内容不能过于理论化,如果课程内容理论性过强,将会给学生的学习带来困难,影响学生的学习效果。另外,教学一定要做到理论与实际相结合,例如,教师通过工程中的实际案例解释相关的原理或者理论,侧重理论与应用的结合。教师还要合理安排教学内容,课程结构要紧凑,做到重点突出、难点明确、层层递进、详细透彻,通过这种方式提高学生思考、处理问题的能力。例如,课堂上使用启发式教学法、现场教学法、案例教学法等多种教学方法,实现对教学内容的诠释;综合运用多媒体、网络平台及模拟仿真系统等多种教学手段,使教学内容形象化,最终实现该课程教学质量及教学效果的根本性提高,使其达到培养专业型人才的综合要求,建成学而有用、学而会用的核心课程。针对该课程的特点,结合高等分离工程课程教学的特性以及教学中存在的问题,应对该课程教学进行一定的改革.
1.优化教学方案、完善多媒体课件。教师要根据目前国内外的新技术、新工艺、新设备的发展,在现有课程体系基础上,适当加入新的教学内容,制定出合理的教学方案。多媒体课件是目前高校授课的必备工具,目前该课程主要采用理论教学方法,没有系统的模拟仿真系统和实践设施,因此为提高授课效果,应对该多媒体课件进行进一步的完善,加入基本原理的动画和实际生产的视频,以保证该课程理论教学与实践的有机结合,提高学生的理解能力。
2.采用研讨式的教学方式。由学生提出本单位现场分离设备中存在的问题,根据所学的理论知识和工作经验,找出解决问题的方法,并在各自的实际生产过程中进行验证。
3.为了使学生能够更好地学习、理解和掌握课程的理论技术和方法,采用AspenPlus、Pro/II等化工流程模拟软件,对化工分离过程进行设计和模拟,建立典型案例库,模拟化工分离的过程、分离过程中物质之间的相互作用以及分离工艺中相关设备的直观演示,开发相关的计算软件以解决分离工程中大量计算的问题。
4.让学生提出工厂实际中分离设备存在的问题,并收集现场数据,进而设计程序,得出计算结果,提高学生处理实际问题的能力和素质。
5.充分利用互联网资源。二十一世纪是信息时代,技术人员需要广泛了解科技发展动态,了解学科的前沿性技术并掌握其发展趋势。在职研究生平时在单位工作,只有节假日才能到学校上课,因此建立师生互助平台和网络信息库势在必行,不仅能加强学生与教师的沟通,还能加强学生与学生的联系。教师在学校将专业的最新信息录入信息库内,为研究生开辟获取信息的渠道,学生将遇到的技术困难提交到平台,教师与同学一起通过讨论和研究,提出解决方案,再用于实际生产进行验证。
三、注重教学环节
教学过程是影响研究生教育质量的关键,同时也是保证研究生教育质量的重要因素。高双林等对影响研究生培养质量的可控因素进行了系统分析,主要包括学科建设、教学环节和管理体系三大部分,其权重系数分别为、、,说明教学环节是研究生教育质量保证体系中的重要部分。在职研究生虽然参加工作一段时间,社会经验和工程经验比较丰富,但是回到学校后,往往会存在些许的陌生和拘谨,尤其是在教室内安静的听老师讲课,往往很难。因此,对于这些学生的授课方式,要以互动交流为主,鼓励学生提出生产中的实际问题,例如石油化工过程中针对硫含量过高的问题,鼓励学生结合自己的工作去查阅文献,以化学法和物理吸附法为基础,设计出脱硫的方案,大家以基本理论为依据进行讨论,提出解决方案,并到相关的企业进行验证。
四、优化教师队伍
有机化学发展介绍及前景一.发展介绍1806年首次由瑞典的贝采里乌斯(—1848)提出,当时是作为无机化学的对立物而命名的。19世纪初,许多化学家都相信,由于在生物体内存在着所谓的“生命力”,因此,只有在生物体内才能存在有机物,而有机物是不可能在实验室内用无机物来合成的。1824年,德国化学家维勒(�hler,1800—1882)用氰经水解制得了草酸;1828年,他在无意中用加热的方法又使氰酸铵转化成了尿素。氰和氰酸铵都是无机物,而草酸和尿素都是有机物。维勒的实验给予“生命力”学说以第一次冲击。在此以后,乙酸等有机物的相继合成,使得“生命力”学说逐渐被化学家们所否定。 有机化学的历史大致可以分为三个时期。 一是萌芽时期,由19世纪初到提出价键概念之前。 在这一时期,已经分离出了许多的有机物,也制备出了一些衍生物,并对它们作了某些定性的描述。当时的主要问题是如何表示有机物分子中各原子间的关系,以及建立有机化学的体系。法国化学家拉瓦锡(—1794)发现,有机物燃烧后生成二氧化碳和水。他的工作为有机物的定量分析奠定了基础。在1830年,德国化学家李比希( Liebig,1803—1873)发展了碳氢分析法;1883年,法国化学家杜马(—1884)建立了氮分析法。这些有机物定量分析方法的建立,使化学家们能够得出一种有机化合物的实验式。 二是经典有机化学时期,由1858年价键学说的建立到1916年价键的电子理论的引入。 1858年,德国化学家凯库勒(—1896)等提出了碳是四价的概念,并第一次用一条短线“—”表示“键”。凯库勒还提出了在一个分子中碳原子可以相互结合,且碳原子之间不仅可以单键结合,还可以双键或三键结合。此外,凯库勒还提出了苯的结构。 早在1848年法国科学家巴斯德(—1895)发现了酒石酸的旋光异构现象。1874年荷兰化学家范霍夫('t Hoff, 1852—1911)和法国化学家列别尔( Bel,1847—1930)分别独立地提出了碳价四面体学说,即碳原子占据四面体的中心,它的4个价键指向四面体的4个顶点。这一学说揭示了有机物旋光异构现象的原因,也奠定了有机立体化学的基础,推动了有机化学的发展。 在这个时期,有机物结构的测定,以及在反应和分类方面都取得了很大的进展。但价键还只是化学家在实践中得出的一种概念,有关价键的本质问题还没有得到解决。 三是现代有机化学时期。 1916年路易斯(—1946)等人在物理学家发现电子、并阐明了原子结构的基础上,提出了价键的电子理论。他们认为,各原子外层电子的相互作用是使原子结合在一起的原因。相互作用的外层电子如果从一个原子转移到另一个原子中,则形成离子键;两个原子如共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用原子的外层电子都获得稀有气体的电子构型。这样,价键图像中用于表示价键的“—”,实际上就是两个原子共用的一对电子。价键的电子理论的运用,赋予经典的价键图像表示法以明确的物理意义。 1927年以后,海特勒(—)等人用量子力学的方法处理分子结构的问题,建立了价键理论,为化学键提出了一个数学模型。后来,米利肯(—1986)用分子轨道理论处理分子结构,其结果与价键的电子理论所得的结果大体上是一致的,由于计算比较简便,解决了许多此前不能解决的问题。对于复杂的有机物分子,要得到波函数的精确解是很困难的,休克尔(ückel,1896—)创立了一种近似解法,为有机化学家们广泛采用。在20世纪60年代,在大量有机合成反应经验的基础上,伍德沃德(—1979)和霍夫曼(—)认识到化学反应与分子轨道的关系,他们研究了电环化反应、σ键迁移重排和环加成反应等一系列反应,提出了分子轨道对称守恒原理。日本科学家福井谦一(1918—1998)也提出了前线轨道理论。 在这个时期的主要成就还有取代基效应、线性自由能关系、构象分析,等等。二.21世纪有机化学的发展在21世纪,有机化学面临新的发展机遇。一方面,随着有机化学本身的发展及新的分析技术、物理方法以及生物学方法的不断涌现,人类在了解有机化合物的性能、反应以及合成方面将有更新的认识和研究手段;另一方面,材料科学和生命科学的发展,以及人类对于环境和能源的新的要求,都给有机化学提出新的课题和挑战。有机化学将在物理有机学、有机合成学、天然产物学、金属有机学、化学生物学、有机分析和计算学、农药化学、药物化学、有机材料化学等各个方面得到发展。 物理有机化学 物理有机化学是用物理化学的方法研究有机化学的科学。主要的研究发展方向有: 1.运用现代光谱、波谱和显微技术表征分子结构,探索其与性能(物理、化学、生理、材料……)的关系;新分子和新材料的设计和理论研究。 2. 反应机理(协同、离子、自由基、卡宾、激发态、电子转移……) 和活泼中间体。 3. 主—客体化学;分子间弱相互作用和超分子化学;分子组装和识别;功能大分子和小分子相互作用及信息传递。 4. 新的计算化学方法、分子力学和动力学、分子设计软件包的开发;与实验的互补与指导。有机合成化学研究从较简单的前体小分子到目标分子的过程和结果的科学。有机合成化学是有机化学的主要内容。70年代以来,有机合成步入了一个新的高涨发展时期。 有机合成的基础是各种各样的基元合成反应,发现新的反应或用新的试剂或技术改善提高已有的反应的效率和选择性是发展有机合成的主要途径。 合成反应方法学上的一个重大进展是大量的合成新试剂的出现,特别是元素有机和金属有机试剂。利用光、电、声等物理因素的有机合成反应也要给以适当的重视。 高选择性试剂和反应是有机合成化学中最主要的研究课题之一,其中包括化学和区域选择控制,立体选择性控制和不对称合成等。后者是近年来发展得较快的领域,包括了反应底物中手性诱导的不对称反应,化学计量手性试剂的不对称反应,手性催化剂不对称反应,利用生物的不对称合成反应和新的拆分方法等。反映过渡态反应部位的构象是反应选择性的关键因素 复杂有机分子的全合成一直是最受关注的领域,体现合成化学的水平,与生物科学相结合,重视分子的功能则是合成化学家的新热点。有机合成化学的发展方向有: Z n& V& a+ 1.合成方法学 新概念、试剂、方法、反应的运用,实用的在温和条件下经过较简单的步骤高选择性高产率地转化为目标分子。 2. 具独特性能(生理、材料、理论兴趣)的分子的(全)合成。 3. 资源可持续利用的无害原料、原子经济和环境友好的反应介质、过程和工艺路线、绿色安全的产品。 4. 学科新生长点、交叉点的扩展和手性、仿生等新技术的运用。化学生物学在分子水平上研究生物机体的代谢产物及其变化规律性;利用有机化学的方法研究调控生命体系过程的科学。化学生物学是顺应20世纪后半叶生物学日新月异的发展,在化学学科的原有的几个分支——生物有机学、生物无机化学,生物分析化学、生物结构化学以及天然产物化学的基础上提出的新兴学科。化学生物学研究目前大致包括以下几个部分:1.从天然化合物和化学合成的分子中发现对生物体的生理过程具有调控作用的物质,并以这些生物活性小分子作为探针和工具,研究它们与生物靶分子的相互识别和信息传递的机理。2.发现自然界中生物合成的基本规律,从而为合成更多样性的分子提供新的理论和技术。3.作用于新的生物靶点的新一代的治疗药物的前期基础研究。4.发展提供结构多样性分子的组合化学。5.对于复杂生物体系进行静态和动态分析的新技术等。金属有机化学研究金属有机化合物[各种不同类型的C—M(杂原子)]的结构、合成、反应及其应用的科学。主要的研究发展方向有:1. 金属有机化学基元反应及其机理;各种不同类型的C—H(C、杂原子)的选择性形成、切断。2. 导向合成化学和聚合反应的金属有机化学;金属有机化合物的新型高效催化作用及其应用。药物化学和农药化学药物化学是有机化学的一个重要分支,与生命科学密切相关。它是研究与人类疾病和健康、植物保护等生命现象有关的创新药物研制的科学。药物化学的发展领域:1. 高通量生物活性筛选;药物作用靶点和基于构效关系指导下的分子设计和组合化学学库设计。2. 生化信息学的应用和创新、仿生及先导药物的发现、开发。3. 非传统机制的药物合成、分析和功能测试。有机新材料化学有机材料化学是研究以有机化合物为基础的新型分子材料的开发的科学。现代科学技术突飞猛进的发展,尤其是信息技术的发展,对材料科学提出了更高的要求,迫切需要研究新材料。相对于其他功能材料,以有机化学为基础的分子材料具有以下的特点:1.化学结构种类繁多,给人们提供了很多发现新材料的机遇;2.运用现代合成化学的理论和方法,能够有目的的改变分子的结构,进行功能组合和集成;3.运用组装和质组装的原理,能够在分子层次上组装功能分子,调控材料的性能。有机材料化学的发展方向有以下:1. 有机固体、半导体、超导体、光导体、非线性光学、铁磁体、聚合物材料。2. 具有特殊和潜在光、电、磁功能分子的合成和器件有序组装。3. 功能分子的结构、排列、组合和物化性能、机制的关系,新分子材料的设计和应用。有机分离分析化学研究有机物的分离、定性定量分析和结构解析的科学。研究方向:1. 基于近代光谱、波谱、色谱技术的进步对微(痕)量有机物的高效分析鉴定。2. 复杂的生物活性大分子和混合物中的有效组份及环境样品的分离分析方法的建立。绿色化学面对环境保护的重大压力,绿色化学提出来一些新的观念,起基本点是,通过研究和改进化学化工反应以及相关的工艺,从根本上减少以至消除副产物的生成,从源头上解决环境污染的问题。以此为目的的研究所带来的新的高效化工工艺也会大大提高经济效益。可以看出,绿色化学是对世纪化学化工研究的重要发展方向,是实现可持续发展的重要保障。本领域的发展和研究:1.发展高效、高选择性的“原子经济性”反应其中,催化的不对称合成反应仍是获得单一性分子的方法之一,应加强有关的新反应、新技术、新配体及催化剂的研究,加强开发和改进与绿色有关的生物催化的有机反应的研究。2.开发符合绿色化学要求的新反应以及相关的工艺降低或者避免使用对环境有害的原料,减少副产物的排放,直至实现零排放。3. 环境友好的反应介质的开发和利用其中可包括水、超临界流体、近临界流体、离子液体等,以替代传统反应介质的研究。4.可重复使用材料、可降解材料和生物质的利用以及生活中废弃物的再利用。在我们的生活中,有机化学的身影无处不在。能否好好的利用和发展有机化学也将在一定程度上影响着我们生活水平的高低。相信随着科学理论的发展,更多的基础学科相互交融,将在更多的领域发挥更大的作用。
287 浏览 3 回答
292 浏览 4 回答
208 浏览 2 回答
310 浏览 5 回答
107 浏览 3 回答
237 浏览 4 回答
243 浏览 5 回答
288 浏览 4 回答
123 浏览 6 回答
220 浏览 3 回答
335 浏览 9 回答
360 浏览 2 回答
306 浏览 5 回答
335 浏览 4 回答
124 浏览 4 回答