气体的存储和传递过程不仅具有工程上的重要价值,也是理论方面很热门的一个话题。最主要的推动力是储氢,同时二氧化碳补集也是一种需求。另外一个角度,就是含能材料。我没有读过也没有检索过针对性的综述文章,只是总结一下我接触过的类似材料和技术。大概可以分为两类,一类是物理方法实现高密度气体存储,另一类是利用化学方法在晶体中实现气体高密度存储。除了压缩相变,最常用的物理方法是吸附(可能同时存在化学作用)。吸附的基本原理就是气体在固体表面形成一层或几层分子膜。乍一看这种只在表面形成的薄膜是不可能实现高密度气体存储的,但是当我们有一个很大的表面,其吸附分子的量也是非常可观的。在工程实践中,我们可以制备超大比表面积的材料,让很小很轻的一块材料具有超大的比表面积。目前有一个报道,吉大制备的一种MOFs(材料每克拥有7000平米的表面积,可以吸附的苯。Ben,化学方法则更着眼于分子的相互作用及其结构决定的性质特殊性,对不同的分子开发针对性的方法。在化学方法实现气体高密度存储的实践中,人们往往利用晶体的结构将气体分子关进笼子里。一个经典的例子是LaNi5,它是人们曾一度非常看好的高密度储能材料。合金类储氢材料在早期非常热门,目前由于其储氢密度提升程度有限,似乎已经不再受到追捧。