在这篇文章中,我们将使用来自 AWS 上的 COCO 数据集(可定制)的图像设置和运行 YOLO。
一般来说,分类技术在自动驾驶 汽车 中没有多大帮助,因为它只预测图像中的一个对象,并且不给出该图像的位置。 而目标检测在自动驾驶 汽车 中非常重要,可以检测场景中的对象及其位置。 YOLO(你只看一次)是由 Joseph Redmon 等人创建的一种高速实时对象检测算法。 YOLO使用卷积神经网络 (CNN)解决概率的回归问题。 后来又进行了一些修改。 为了进行预测,YOLO 只需要通过 CNN 进行一次前向传播。 它输出具有相应边界框的对象。 它广泛用于自动驾驶 汽车 以检测场景中的物体。
第 1 步:设置帐户(这步可以跳过)
登录网站并复制以下内容:
来自 的 API 密钥 中的团队名称。 默认团队名称将是用户 ID。
第 2 步:创建 AWS 实例(如果你在本机训练这步也可以跳过)
在创建实例时,选择“Deep Learning AMI (Ubuntu ) Version — ami-01f1096e6659d38fa”AMI,因为它具有深度学习任务所需的库。 如果我们在“选择AWS机器映像 (AMI)”步骤中搜索“deep learning”,我们可以找到这。为“实例类型”选择 P3 实例。 实例类型 (V100) 就足够了。为了节省成本,请在“配置实例”步骤下选择 Spot 实例。
第 3 步:安装依赖项
登录 AWS 实例后,使用以下命令创建 conda 环境并设置 Weights & Bias 环境变量:
第 4 步:训练、验证和测试
第 5 步:检查指标
验证集真实标签
验证集预测标签
训练的损失
测试
以上所有结果都会保存在文件夹yolov5runsdetectexp下