图像配准和图像融合是图像拼接的两个关键技术。图像配准是图像融合的基础,而且图像配准算法的计算量一般非常大,因此图像拼接技术的发展很大程度上取决于图像配准技术的创新。
一般来说,图像拼接主要包括以下五步:
a)图像预处理。包括数字图像处理的基本操作(如去噪、边缘提取、直方图处理等)、建立图像的匹配模板以及对图像进行某种变换(如傅里叶变换、小波变换等)等操作。
b)图像配准。就是采用一定的匹配策略,找出待拼接图像中的模板或特征点在参考图像中对应的位置,进而确定两幅图像之间的变换关系。
c)建立变换模型。根据模板或者图像特征之间的对应关系,计算出数学模型中的各参数值,从而建立两幅图像的数学变换模型。
d)统一坐标变换。根据建立的数学转换模型,将待拼接图像转换到参考图像的坐标系中,完成统一坐标变换。
e)融合重构。将带拼接图像的重合区域进行融合得到拼接重构的平滑无缝全景图像。
相邻图像的配准及拼接是全景图生成技术的关键,有关图像配准技术的研究至今已有很长的历史,其主要的方法有以下两种:基于两幅图像的亮度差最小的方法和基于特征的方法。全景图的拼接主要包括以下4个步骤:图像的预拼接,即确定两幅相邻图像重合的较精确位置,为特征点的搜索奠定基础。特征点的提取,即在基本重合位置确定后,找到待匹配的特征点。图像矩阵变换及拼接,即根据匹配点建立图像的变换矩阵并实现图像的拼接。最后是图像的平滑处理。
在遥感图像处理方面,eCognition是PCIGeomatica公司的产品,它的主要特点在于基于影像空间和波谱两方面信息的信息提取。传统的遥感影像分类,包括监督分类或者非监督分类,都是在影像的光谱特征空间中,依靠不同光谱数据的组合在统计上的差别来进行的。但是由于QuickBird数据的空间分辨率很高,图像上地物景观的结构、形状、纹理和细节等信息都非常突出,而光谱分辨率不高,因此,在分类时不能仅依靠其光谱特征,更多的是要利用其几何信息和结构信息。eCognition将采用面向对象的遥感影像分析技术来进行影像的分类和信息提取。
首先对QuickBird数据进行影像分割,从二维化的图像信息陈列中恢复出图像所反映的景观场景中的目标地物的空间形状及组合方式。影像的最小单元不再是单个的像素,而是一个个对象,后续的影像分析和处理也都基于对象进行。
采用决策支持的模糊分类算法,并不将每个对象简单地分到某一类,而是给出_个对象隶属于某一类的概率,便于用户根据实际情况进行调整,同时,也可以按照最大概率产生确定分类结果。在建立专家决策支持系统时,建立不同尺度的分类层次,在每一层次上分别定义对象的光谱特征、形状特征、纹理特征和相邻关系特征。其中:光谱特征包括均值、方差、灰度比;形状特征包括面积、长度、宽度、边界长度、长宽比、形状因子、密度、主方向、对称性、位置、对于线状地物包括线长、线宽、线长宽比、曲率、曲率与长度之比等,对于面状地物包括面积、周长、紧凑度、多边形边数、各边长度的方差、各边的平均长度、最长边的长度;纹理特征包括对象方差、面积、密度、对称性、主方向的均值和方差等。通过定义多种特征并指定不同权|重,建立分类标准,然后对影像分类。分类时先在大尺度上分出父类,在根据实际需要对感兴趣的地物在小尺度上定义特征分出子类。