你要先有论文的目的和分析思路,然后根据目的的论文和分析思路,确定需要收集的数据和类型,最后才考虑 应该用spss什么方法来实现。下面是我自己写的一个 带数据分析的论文写作指导首先,我要说明这里的指导并非常规意义的指导,我这里说的指导是到底应该如何写论文(应该还是很抽象,不过看完就知道了)。迄今为止,我大约也帮忙做了能有上千份的学生论文数据分析部分,包括一部分的整篇论文写作,其中涉及到有医学类、护理类、人文社科类、教育类、经济学类、心理学类等,单凡需要用到数据分析的论文。因为我是做市场研究与数据分析的,擅长的主要工具是spss,不敢说百分百精通spss,但是应付个八九十应该是足够了,很自然的平时就利用下班和业余时间帮学生做一些论文数据分析以及论文写作指导。很多论文的核心部分都包括数据分析,而统计学也应该是所有学科应该学习的一门重要课程,但是恰恰相反,很多学科只是把统计学和数据分析作为一项选修甚至不重要的课程对待,这样导致学生在最后做论文时完全不懂。而在这种情况下,很多学生因为对数据分析的一窍不通,导致论文从开始的设计到后续的数据收集、整理等都会出现问题,最终导致分析出问题。因此,在对数据分析一窍不通的情况下,应该如何从头构建论文及写作呢?很多论文虽然数据分析部分是核心,但是不管哪种论文的写作,都脱离不了论文的框架。因此,具体的过程应该如下:首先是选题,当然很多时候是导师直接给选题,这个没有太多讨论。其次是选题确定后,马上要做的不是想我应该怎么去写作,或者在哪抱怨“哎~~郁闷,完全不知道怎么写嘛”。而是先通过文献查找,看前人在这个选题方面已经做了哪些研究,都是如何做的。通过查找文献找到跟选题有关的资料,然后对这些资料进行整理,整理不需要计较参考文献的结论和数据细节等,而是要把每篇文献的研究目的、采用的研究方法、采用的分析方法整理出来。当然参考文献中的分析方法你可能还完全不懂,但是没关系,你先把这些参考文献中使用的分析方法全部罗列出来,如线性回归、方差分析、均值t检验、logistic回归等,把这些文献中常用的统计方法罗列出来,你需要弄清楚对应关系,即每种分析方法是用来支持和实现什么样的研究目的,以及能够得出什么样的结论,认真阅读文献就能实现这一步。第三.通过上一步,你应该朦胧的知道你选题相关的参考文献中常用的统计方法名称,以及这些统计方法能够帮助实现哪些目的,或者得出什么结论,同时也不会对自己的选题那么恐惧和迷茫了,因为可能你的选题已经有前人做过了,你的论文只是“复制”一遍而已了,我说的复制是重复一遍前人的研究。在这种情况下,可以构思下自己的选题,这一步属于纯理论层面的,你需要将自己的思路具体化,比如要实现什么目的,很自然的需要什么数据分析方法也就能确定了。当然很多论文会预先设计一系列待验证的假设,也是在这一步完成,因为你找到的文献中可能会存在矛盾的结论,可能会存在一些你认为的研究缺陷(文献看多了,自然自己就会有想法出来了),提出自己的一系列假设,能够很清楚的指导后面的数据收集和分析。第四.选题、假设还有研究方法这些经过前面几步都能确定了,接下来就是要考虑具体研究和收集数据的环节了。这个环节最重要的也是首要的是弄清楚你的数据应该是什么类型的,通过哪种方法来获取。其实也容易了,因为前面你已经确定了统计分析方法,而每种方法有它特定的数据类型要求,比如是分类数据(如性别、民族、年级等)、比如连续性数据(如年龄、身高、体重、温度、长度、距离等)。分类数据简单通俗点的理解就是这些数字本身是没有意义的,是人为赋予它一定的含义,这些数据之间不存在连续性,且加减乘除没有意义,而连续性数据是数据本身有意义,且能够进行一些加减乘除运算。确定了所需要的数据类型,就大致能够知道在数据收集时,应该注意的问题。比如一份问卷调查,其中应该如何设计问题也就大致清楚了,通常问卷设计时就要考虑两种数据类型的问题,因为不同的选项设计会导致不同的数据类型。如你设计一个问题的答案选项是“有/没有”、“是/否”这种是属于分类数据,如果你的答案选项是李克特量表式“非常满意----非常不满意”这种,在处理时可以按照分类数据,只能统计出一些百分比,也可能将其按照连续数据如12345打分形式,这样可以求均值,可以做很多其他多元统计分析。因此这一步确定数据类型很关键,如果数据类型弄错的话,则收集的数据完全无用。第五.具体收集数据过程,不细说了,收集回来之后就是数据的录入。记住一定要录入原始的数据,而不是经过加减整理汇总后的数据。数据录入格式也是有要求的,一般大致同样的情况下,都是一行代表一个个案或者一份问卷的数据,而一列对应表示的是问卷中的一个问题,即变量。因此数据录入完成后,应该是有多少样本数据,就有多少行,数据中包含多少个指标,那就有多少列。第六.这一步才是你应该开始头疼的数据分析不会了怎么办。因为到这里才开始是数据的具体分析过程了。不会怎么办,前面已经知道了分析方法,这种情况,只有找本教材,然后找对应的方法介绍学习即可,或者实在不行找人指导,找人帮忙等等。最后。分析完成后,开始整篇论文的写作。其实完成前面的每一步,到最后写文献综述以及讨论时,自然就会得心应手了,很少会需要绞尽脑汁甚至东拼西凑。
1. Introduction 简介2. Data Screening & Cleaning 数据筛选和整理3. Profile of Respondents 受访者介绍4. Reliability of the Measurement 测量的可靠性分析5. Descriptive of Main Variables 主要变量描述6. Correlation Analysis 相关性分析7. Multiple Regression Analysis 多元回归分析8. Summary of Findings 调查结果总结This chapter focuses on presenting the results of this research. It begins with Data Screening & Cleaning. Next, Profile of Respondents will be presented followed by Reliability of the Measurement, Descriptive of Main Variables and Correlation Analysis.
选择什么分析方法,主要依据研究数据的数据类型以及研究目标选择。
可以分为几个步骤:1)确定分析目标、2)判断数据类型、3)选择分析方法。
一、 确定分析目标
确定研究目标,即确定研究的思路,也就是你想研究什么,从哪些题中得到什么结果?
一般在开始分析前都需要先对自己的问卷确定一个大致的研究思路,这也是最重要的部分。
缺少思路,或者不知道从哪里开始入手,可以查看spssau关于问卷思路框架的总结。
参考资料:分析思路总结-SPSSAU
二、 判断数据类型
有了基本框架后,就进入到具体的分析方法选择。
所有数据大致可以分为两种:定量数据和定类数据。
定量数据是年龄、身高这类数字大小有具体意义的。定类数据如性别、职业数字大小没有实际意义。
三、选择分析方法
变量的关系最常见有:相关关系、影响关系、差异关系,及其他关系。
结合数据类型和所要研究的目的,即可选出分析方法,spssau中就有详细的方法选择说明。
参考资料:分析方法选择-SPSSAU
最后就是分析数据,spssau提供标准三线表格式结果和智能文字分析,方便快速解读结果撰写分析报告。
论文数据分析做spss方法如下:
1、首先,在spss中画散点图,点击【图形】-【旧对话框】-【散点/点状】。
2、然后,选择【简单分布】,并在出现的对话框中点击【定义】。
3、之后,在接下来的弹出框中设置x轴和y轴,然后点击确定。
4、接着,点击【分析】-【回归】-【线性】。
5、最后、spss就已经完成了数据的汇总分析。
这要看你的数据量,如果巨大,可能是要用SPSS。如果数据量不是很大,EXCEL也是可以的,只是要自己运用函数额处理。
用logistics回归分析吧,但是你的这个数据有点看不太懂。。。你可以用SPSS做一个数据库,添加各种变量,如关系、经济状况、文化程度、照顾时间等,50个人也不算多,重新输入一遍。再用logistics回归分析去做一下单因素分析,看看焦虑程度与单因素有无相关性,有相关性再放到多因素分析。如果P<,再看OR是>1,还是<1。
excel只能做简单的数据处理,稍微难度些的建模分析,则需要用spss或者r等,一般毕业设计中都是不承认excel的吧
这要看你的数据量,如果巨大,可能是要用SPSS。如果数据量不是很大,EXCEL也是可以的,只是要自己运用函数额处理。
excel只能做简单的数据处理,稍微难度些的建模分析,则需要用spss或者r等,一般毕业设计中都是不承认excel的吧
SPSS软件主要用于对数据做统计学方面的一些分析和检验,是用于对数据进行一些基本处理、分析,以及做一些统计检验的软件,使用SPSS分析数据通常有以下几步:导入数据——>数据基本处理——>数据分析——>总结并得出结论。打开SPSS后会出现两个界面,如下图;图一是数据处理分析区,包括数据视图(数据处理区)和变量视图(数据包含各字段编辑区);图二是分析结果区,分析的各类结果都会在此显示。导入数据:在数据处理区左上方选择“文件”——>“导入数据”,导入相应格式的数据,此处我以csv文件格式为例。点击之后,出现如下对话框,选择好要处理的数据,点击“打开”,对要导入数据数据按需要进行预处理,再点击确定。
用spss分析数据的具体操作如下:
1、首先,在spss中画散点图,点击【图形】---【旧对话框】---【散点/点状】:
2、然后,选择【简单分布】,并在出现的对话框中点击【定义】:
3、之后,在接下来的弹出框中设置x轴和y轴,然后点击确定:
4、接着,点击【分析】---【回归】---【线性】:
5、最后、spss就已经完成了数据的汇总分析:
录入完数据后,你可以先进行基础的数据统计--描述性统计。然后根据你的数据结果再看是否需要相关回归或者其他分析。spss里面的描述统计主要在analyze——descriptive里面,其中有描述统计、频数统计、交叉分析。 描述性统计分析是统计分析的第一步,先选择analyze,你就能看到descriptive,然后鼠标再选Descriptive 菜单中,最常用的是列在最前面的四个过程:Frequencies过程的特色是产生频数表;Descriptives过程则进行一般性的统计描述;Explore过程用于对数据概况不清时的探索性分析;Crosstabs过程则完成计数资料和等级资料的统计描述和一般的统计检验。先选择analyze,---再选descriptive打开任意的分析窗口后,你把想分析的数据选入,可以一起按鼠标左键选中按中间按钮加入,然后选择单击后弹出Statistics对话框,用于定义需要计算的其他描述统计量。你可以分析均数(Mean)、中位数(Median)、众数(Mode)、总和(Sum)等等。 然后还可以点Charts对话框,选择直方图、饼图等来绘图。都确定好后,选择单击Continue钮 ,然后选择OK。就可以了。直接就会有输出结果。你可以先看看描述性统计的结果,有没有什么缺失值或者不符合实际的数据出现。要是有,你需要纠正数据,再用描述统计进行分析。我觉得说的挺详细的了。呵呵~~~~
spss数据分析论文写法如下:
1、适用于自变量为定类数据且仅为两组时。
2、适用于因变量为定量数据。
3、各个观察值相互独立,不能相互影响,即满足独立性。这个一般根据专业背景考察,如遗传性疾病、传染性疾病的数据就可能存在非独立性问题,也就是不同数据会相互影响,而不同学生身高可认为相互独立,彼此不相互影响。
4、各个样本均来自正态分布的总体,即满足正态性。独立样本t建议对于数据资料的正态性存在一定的耐受能力,一般认为样本量大于30即可满足正态分布。
5、各个样本所在总体方差相等,即满足方差齐性。很多同学对于这个概念不太了解,这没有关系,在SPSS进行独立样本t检验时,自动会进行使用Levene’s检验来方差齐性,我们只需要根据相应结果解读数据即可。
撰写摘要注意事项:
1、不得简单重复题名中已有的信息,忌讳把引言中出现的内容写入摘要,不要照搬论文正文中的小标题(目录)或论文结论部分的文字,也不要诠释论文内容。
2、尽量采用文字叙述,不要将文中的数据罗列在摘要中;文字要简洁,应排除本学科领域已成为常识的内容,应删除无意义的或不必要的字眼;内容不宜展开论证说明,不要列举例证,不介绍研究过程。
3、摘要的内容必须完整,不能把论文中所阐述的主要内容(或观点)遗漏,应写成一篇可以独立使用的短文。
4、摘要一般不分段,切忌以条列式书写法。陈述要客观,对研究过程、方法和成果等不宜作主观评价,也不宜与别人的研究作对比说明。
1、选取在理论上有一定关系的两个变量,如用X,Y表示,数据输入到SPSS中。
2、从总体上来看、X和Y的趋势有一定的一致性。
3、为了解决相似性强弱用SPSS进行分析、从分析-相关-双变量。
4、打开双变量相关对话框,将X和Y选中导入到变量窗口。
5、然后相关系数选择Pearson相关系数,也可以选择其他两个。
6、点击确定在结果输出窗口显示相关性分析结果。
随着信息时代的发展,社会各领域都存在大量的数据和信息需要人们收集和处理,在医学这一特殊领域中,大量的临床数据资料和医学科研中的实验数据等各种数据信息都需要进行科学的统计与分析,才能得到正确的统计分析结果和科学的结论。因此,对医学数据信息的采集、存储、整理和统计分析这一系列处理过程就显得非常重要,而SPSS正是一款能够进行数据信息处理的、功能强大的统计分析软件。SPSS(StatisticalPrOductandSe而ceSOlution)是世界上著名的统计分析软件之一,具有界面友好、操作简便易学、统计功能强大等特点,广泛应用于社会科学和自然科学的各个领域。本书从医学统计实际应用角度出发,针对临床医务人员及医学科研人员在工作中经常遇到的医学统计学问题,详细介绍了sF’SS软件在医学数据统计分析中的具体使用方法,包括根据实际问题选择合适的统计方法、多种统计方法的软件操作步骤及对统计分析结果的医学解释等内容。本书具有内容充实、语言简练、图文并茂、深入浅出等特点,具有很强的实用性和参考价值。本书适用于医学高等院校相关专业的师生、医疗系统科研人员及医务工作者等,特别适合作为医学类本科生、研究生的辅助教材或医务工作者的培训教材和继续教育用书。建议读者应具备一定的医学统计知识基础,以便更好地利用SPSS的强大统计分析功能。本书基于版本编写,全书共分13章,通过大量医学统计具体案例详细介绍了在SPSS软件系统环境下医学统计分析中常用方法的具体操作步骤。各章节的主要内容如下。第1章为概述部分,概括介绍SPSS软件特点及界面。第2章主要介绍了sPSS软件中数据文件的建立、编辑及处理方法。第3~12章为本书的核心部分,主要介绍SPSS中常用的统计功能模块在医学统计应用中的具体操作步骤,其中包括Frequencies、Descriptives、Explore三种基本统计分析方法和t检验、方差分析、协方差分析、卡方检验、秩和检验、相关与回归分析、Logistic回归分析、生存分析及聚类分析与判别分析等统计方法。第13章介绍了统计图的制作与编辑方法。书中实例的数据文件可通过出版社网站下载获得。本书采用图文并茂的方式,重点突出实用性,力求为从事医务工作的读者提供一本简明易懂且非常切合实际需要的工具书,能够帮助读者迅速掌握统计软件SPSS在医学统计方面的应用方法。本书由孔晓荣、张星光主编,在编写过程中参阅了大量的相关参考文献,还参阅了近年来国内医学统计学文献,在此向相关作者表示衷心的感谢。由于编者水平有限,书中难免有疏漏与不足之处,还望读者提出宝贵意见,批评指正,以利提高。编者2009年8月
1、首先我们打开是SPSS分析软件,打开软件之后就是一个空白的表格,我们也可以添加本地的数据和数据表格。
2、打开软件之后,我们首先可以看到是数据视图,数据视图是由一个一个的变量组成。
3、接着我们来看变量视图,变量视图是对变量进行一个一个的控制,控制的类型包括名称,宽度,小数,标签等变量规定。
4、要想做数据分析,首先我们需要定义变量,这里小编定义了三个变量姓名,性别和体育成绩这三个变量。姓名变量,每个人都有一个不同的姓名,我们选择字符型数据即可,
5、接着设置性别变量和体育成绩变量,性别变量,0代表女性,1代表男性。而体育成绩我们选择数值型数据。
6、设置好变量之后,我们输入几列数据。每一组数据包括姓名,性别,性别代码和体育成绩,我们写九个数据即可。
7、设置好数据之后,我们选中所有数据,点击上方的分析-非参数检验-卡方检验。检验性别和体育成绩之间的关系。
8、经过检验,软件输出卡方检验的结果。经过卡方分析,性别和体育成绩不是独立关系。性别影响体育成绩。
方法:
1、首先,打开一组数据,没有数据的统计就像没有水的鱼,统计不了,不过,也可以自己建立一组数据。
2、数据打开或者新建力之后,就可以开始求数据中的均值了。打开分析,比较均值,找到均值并且单击打开。
3、打开之后会看到一个均值的窗口,里面就是我们自定义设定的均值以及比较方式。
4、根据本经验打开的数据,我的设定如下。
5、然后打开选项,找到需要比较的类型,均值是其中的一项,还可以自定义选择其它的项进行比较
6、全部设定好之后,直接单击确定获得均值比较。
7、上述操作获得的均值以及比较结果如下所示,一目了然。