———有一种友情,叫做《海贼王》;有一种治愈,叫做《夏目友人帐》;有一种羁绊,叫做《火影忍者》;有一种凄美,叫做《薄樱鬼》;有一种青春,叫做《灌篮高手》;有一种欢乐,叫做《樱兰高校男公关部》有一种感动,叫做《CLANNAD》;有一种邪恶,叫做《亲吻姐姐》;有一种火焰,叫做《家庭教师》;有一种爱情,叫做《刀剑神域》;有一种坚强,叫做《神魔遮天》;有一种感人,叫做《最终幻想》;有一种热血,叫做《妖精的尾巴》;有一种牺牲,叫做《叛逆的鲁鲁修》;有一种梦想,叫做《食梦者玛丽》;有一个神话,叫做《Ange lBeats 》;有一种守护,叫做《死神》;有一种梦想,叫做《网球王子》;有一种童年,叫做《哆来A梦》;有一种固执,叫做《通灵王》;有一种轮回,叫做《名侦探柯南》;有一种唯美,叫做《黑执事》;有一种华丽,叫做《吸血鬼骑士》;有一种悲情,叫做《罪恶王冠》;有一种心痛,叫做《萤火之森》;有一种天真,叫做《中二病也要谈恋爱》有一种人性,叫做《尸鬼》;有一种宿命,叫做《X战记》;有一种真实,叫做《地狱少女》;有一种眷恋,叫做《犬夜叉》;有一种纯真,叫做《风之谷》;有一种坚持,叫做《大剑》;有一种温柔,叫做《蔷薇少女》;有一种心情,叫做《好想告诉你》;有一种智商,叫做《死亡笔记》;有一种怀疑,叫做《K》;有一种交换,叫做《钢之炼金术师》;有一种纯情,叫做《只要你说你爱我》有一种逆袭,叫做《加速世界》;有一种无奈,叫做《未闻花名》;有一种缘分,叫做《元气少女缘结神》有一种绝望,叫做《弹丸论破》;有一种畸恋,叫做《缘之空》;有一种音乐,叫做《轻音少女》;有一种天使,叫做《天降之物》;有一种战士,叫做《EVA》;有一种管家,叫做《旋风管家》;有一种萝莉,叫做《灼眼的夏娜》;有一种契约,叫做《零之使魔》;有一种巧合,叫做《龙与虎》;有一种抑郁,叫做《我们的存在》;有一种基情,叫做《世界第一初恋》;有一种初恋,叫做《秒速五厘米》;有一种完美,叫做《会长是女仆大人》有一种孤独,叫做《我的朋友很少》;有一种喜爱,叫做动漫;有一种美好,叫做二次元。 搬运的,500字够呛 但感觉不错最好起别的题目 如果你不想被批评的话 还是积极向上的 老师肯定接受不了
动漫的话.....说到底还是二次元的,说到二次元的话写的东西就多了......比如说音乐,物语CD这种音乐形式就是二次元的骄傲之一,其鼻祖自然就是soundhorizon了,LZ有兴趣可以听听。还有轻小说吧,最近以来轻小说不是动画化热潮不减吗?或者就是周边吧....说白了就是商业化.....说白了二次元的东西都可以来挂钩~还有就是pixiv,日本的同人画网站(P站)这也是对网络的影响吧?好...就这些了,祝你写作顺利~
二次元毕竟是跟三次元的现实有很大差别的,虚构和科幻成分比较多,不建议采用。《红楼梦》是小说,不是二次元动漫,它隐藏的社会背景成分,有很大的历史价值,里面一些诗句典故可以用,比如林黛玉葬花,宝玉和黛玉读《西厢记》。人物的性格之类你可以引点评。
e...我不负责任的随便说点哦COSPLAY和网路文化关系很大吗?没觉得唉。。。游戏也不都是单机的吗。。。最大的影响就是产生了众多御宅族吧。。。OTAKU御宅一般都是在论坛混的多啦不过出宅男女神的也很多都是游戏党呢广义理解动漫的话应该说是卡通文化 多应用在网络图文上 二次元的说的就是介个啦狭义的话包括了动画漫画轻小说周边COS等等,具体对中国的影响还是在现实世界中比较大吧现阶段中国的网络文化集中表现在对政治/社会的炒作-围观-围拍上动漫份额不多 哪怕在现实上也不过是有待发展吧但动漫的影响力惊人(我指的是在世界中哦)天朝也不能忽视啊文化与经济相交融,文化产业的经济潜力很高啊国人的消费需求也很大啊LZ为何要局限于网络 而不关注于生活的实在呢一点拙见 得罪莫怪
一、教学目标1.掌握一元二次方程根与系数的关系式,能运用它由已知一元二次方程的一个根求出另一个根与未知系数;2.通过根与系数的教学,进一步培养学生分析、观察、归纳的能力和推理论证的能力;3.通过本节课的教学,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。教学重点和难点:二、重点·难点·疑点及解决办法1.教学重点:根与系数的关系及其推导。2.教学难点:正确理解根与系数的关系。3.教学疑点:一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系。4.解决办法;在实数范围内运用韦达定理,必须注意这个前提条件,而应用判别式的前提条件是方程必须是一元二次方程,即二次项系数,因此,解题时,要根据题目分析题中有没有隐含条件和。三、教学步骤(一)教学过程1.复习提问(1)写出一元二次方程的一般式和求根公式。(2)解方程①,②。观察、思考两根和、两根积与系数的关系。在教师的引导和点拨下,由沉重得出结论,教师提问:所有的一元二次方程的两个根都有这样的规律吗?2.推导一元二次方程两根和与两根积和系数的关系。设是方程的两个根。∴ ∴以上一名学生板书,其他学生在练习本上推导。由此得出,一元二次方程的根与系数的关系。(一元二次方程两根和与两根积与系数的关系)结论1.如果的两个根是,那么。如果把方程变形为。我们就可把它写成。的形式,其中。从而得出:结论2.如果方程的两个根是,那么。结论1具有一般形式,结论2有时给研究问题带来方便。练习1.(口答)下列方程中,两根的和与两根的积各是多少?(1);(2);(3);(4);(5);(6)此组练习的目的是更加熟练掌握根与系数的关系。
本文从以下几方面探讨如何学好二次函数 . 一、理解二次函数的内涵及本质 . 二次函数 y=ax2 + bx + c ( a ≠ 0 , a 、 b 、 c 是常数)中含有两个变量 x 、 y ,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解;而一组解就是一个点的坐标,实际上二次函数的图象就是由无数个这样的点构成的图形 . 二、熟悉几个特殊型二次函数的图象及性质 . 1 、通过描点,观察 y=ax2 、 y=ax2 + k 、 y=a ( x + h ) 2 图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式 . 2 、理解图象的平移口诀“加上减下,加左减右” . y=ax2 → y=a ( x + h ) 2 + k “加上减下”是针对 k 而言的,“加左减右”是针对 h 而言的 . 总之,如果两个二次函数的二次项系数相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般形式,应先化为顶点式再平移 . 3 、通过描点画图、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征; 4 、在熟悉函数图象的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质;利用图象来判别二次函数的系数 a 、 b 、 c 、△以及由系数组成的代数式的符号等问题 . 三、要充分利用抛物线“顶点”的作用 . 1 、要能准确灵活地求出“顶点” . 形如 y=a ( x + h ) 2 + K →顶点(- h,k ),对于其它形式的二次函数,我们可化为顶点式而求出顶点 . 2 、理解顶点、对称轴、函数最值三者的关系 . 若顶点为(- h , k ),则对称轴为 x= - h , y 最大(小) =k ;反之,若对称轴为 x=m , y 最值 =n ,则顶点为( m , n );理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果 . 3 、利用顶点画草图 . 在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象 . 四、理解掌握抛物线与坐标轴交点的求法 . 一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中一个坐标,再利用解析式求出另一个坐标 . 如果方程无实数根,则说明抛物线与 x 轴无交点 . 从以上求交点的过程可以看出,求交点的实质就是解方程,而且与方程的根的判别式联系起来,利用根的判别式判定抛物线与 x 轴的交点个数 . 五、灵活应用待定系数法求二次函数的解析式 . 用待定系数法求二次函数的解析式是我们求解析式时最常规有效的方法,求解析式时往往可选择多种方法,如能综合利用二次函数的图象与性质,灵活应用数形结合的思想,不仅可以简化计算,而且对进一步理解二次函数的本质及数与形的关系大有裨益 .〖教学目标〗 ◆1,经历一元二次方程概念的发生过程. ◆2,理解一元二次方程的概念. ◆3,了解一元二次方程的一般形式,会辨别一元二次方程的二次项系数,一次项系数及常数项. 〖教学重点与难点〗 ◆教学重点:一元二次方程的概念,包括一般形式. ◆教学难点:例1第4题计算容易产生差错,是本节教学的难点. 〖教学过程〗 合作学习 列出下列问题中关于未知数x的方程 ①正方形的面积为80,边长为x,则可列出方程 . ②某村的粮食年产量,在两年内从60万千克增长到72万千克,问平均每年增长的百分率是多少 设年平均增长率为x,则可列出方程 . 引入新课 观察方程x2=80 和 两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,我们把这样的方程叫做一元二次方程,能使一元二次方程两边相等的未知数的值叫一元二次方程的解(或根) 练一练:1,判断下列方程是否为一元二次方程:① 2(3x+2)=x2 ② +x+3=0 ③ ④ ⑤ 2,判断未知数的值,,是否是方程的根. 一般地,任何一个关于x 的一元二次方程都可以化为的形式,我们把形如(,,为常数,)称为一元二次方程的一般形式,其中,,分别称为二次项,一次项和常数项.,分别称为二次项系数和一次项系数. 思考:为什么,,可以为零吗 三,范例讲解: 例1:把下列方程化成一元二次方程的一般形式,并写出它的二次项系数,一次项系数和常数项. ① ② ③ ④ 解:① 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. ② 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. ③ 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. ④ 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. 我们在写一元二次方程的一般形式时,通常按未知数的系数从高到低排列,先写二次项,再写一次项,最后是常数项. 四,练习巩固: 1,方程 ① ② ③ ④ 中是一元二次方程的为 (填序号). 2,关于的一元二次方程的一个解是,则 3,判断下列各方程后面的两个数是不是它的解. ① ( ) ② ( ) ③ (3 , 1) ( ) ④ () ( ) 五,小结: 记住一元二次方程的一般形式,并会判断方程是否为一元二次方程; 化成一元二次方程的一般形式后,能说出二次项系数,一次项系数和常数项; 能判断的值是不是方程的解. 作业:见作业本 一元二次方程(2) 【教学目标】 ◆1.掌握因式分解法解一元二次方程的基本步骤. ◆2.会用因式分解法解一元二次方程. 【教学重点与难点】 ◆教学重点:用因式分解法解一元二次方程. ◆教学难点:例3方程中含有无理系数,需将常数项2看成,才能分解因式,是本节教学的难点. 【教学过程】 复习引入 1,将下列各式分解因式: 教师指出:把一个多项式化成几个整式的积的形式叫做因式分解. 2,你能利用因式分解解下列方程吗 请中等程度的学生上来板演,其余学生写在练习本上,教师巡视. 之后教师指出:像上面这种利用因式分解解一元二次方程的方法叫做因式分解法.(板书课题) 新课学习 归纳因式分解法解一元二次方程的步骤: 教师首先指出:当方程的一边为0,另一边容易分解成两个一次因式的积时,用因式分解法求解方程比较方便.然后归纳步骤:(板书) 若方程的右边不是零,则先移项,使方程的右边为零; 将方程的左边分解因式; 根据若M·N=0,则M=0或N=0,将解一元二次方程转化为解两个一元一次方程. 2,讲解例2. (1)解下列一元二次方程: 教师在讲解中不仅要突出整体的思想:把x-2及3x-4和4x-3看成整体,还要突出化归的思想:通过因式分解把一元二次方程转化为一元一次方程来求解.并且教师要认真板演,示范表述格式,强调两个一元一次方程之间的连结词要用"或",而不能用且. (2)想一想:将第(1),(2),(3)题的解分别代人原方程的左,右两边,等式成立吗 (3)归纳用因式分解法解的一元二次方程的基本类型: ①先变形成一般形式,再因式分解: ②移项后直接因式分解. 在选择方法时通常可先考虑移项后能否直接分解因式,然后再考虑化简后能否分解因式. 讲解例3. 解方程 在本例中出现无理系数,要注意引导学生将将常数项2看成,另外对于方程中出现两个相等的根,教师要做好板书示范. 3,补充例4 若一个数的平方等于这个数本身,你能求出这个数吗 首先让学生设出未知数,列出方程(),再让学生求解.根据学生的求解情况强调:对于此类方程不能两边同时约去x,因为这里的x可以是0. 三,巩固练习: 课本第32页课内练习. 四,体会和分享 能说出你这节课的收获和体验让大家与你分享吗 先由学生自由发言,教师再投影演示: 1.能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积; 2.用分解因式法解一元二次方程的一般步骤: (1)将方程的右边化为零; (2)将方程的左边分解为两个一次因式的乘积; (3)令每一个因式为零,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 3. 用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0. 4,用分解因式法解一元二次方程的注意点:1.必须将方程的右边化为零;2.方程两边不能同时除以含有未知数的代数式. 5,数学思想:整体思想和化归思想. 五.课后作业 1.书本作业题 2.作业本 【板书设计】 屏幕 一元二次方程(二) ——因式分解法解一元二次方程 1. 用分解因式法解一元二次方程的一般步骤: (1)将方程的右边化为零; (2)将方程的左边分解为两个一次因式的乘积; (3)令每一个因式为零,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2. 数学思想:整体思想和化归思想. 一元二次方程的解法(1) 【教学目标】 ◆1. 理解开平方法解一元二次方程的依据是平方根的意义. ◆2. 会用开平方法解一元二次方程. ◆3. 理解配方法. ◆4. 会用配方法解二次项系数为1的一元二次方程. 【教学重点与难点】 ◆教学重点:开平方法. ◆教学难点:配方法有一个比较复杂的过程,无论从理解和运用上,对学生来说都有一定的难度. 【教学手段】 用多媒体powerpoint和黑板的形式. 【教学过程】 (一)引入新课 问题1: 在修建甬(宁波)金(金华)高速公路时,遇到高山,需要开掘隧道,为了预计这座山隧道的长度,工程人员测量了山的高度约AB=3千米,坡面的长度约AC=5千米.请你估算开掘这座山的隧道约有多少千米 从甬金高速公路入手引出 型的一元二次方程,体现方程与几何图形性质的应用,对一元二次方程概念的理解,方程根的检验等起着复习巩固的作用. (二)由问题1可得 即 再利用因式分解法得出方程的根. 如果把 变形为 ,进而可以理解为x是16的平方根,引出求这种方程的根可以用两边直接开方的方法进行,再得出开平方法的概念. 通过让学生观察体会得出开平方法的两个特征:1,它适合于什么样的方程 (左边是一个关于x的完全平方,右边为一个非负常数即 ).2:用什么样的方法来解 (方程的两边直接开平方的方法) 然后通过一系列,连续的例题来巩固用开平方法解一元二次方程,既突出本节课的重点,又比较自然的过渡到用配方法解一元二次方程. 例1, (1 ) (2) (3) (4) 通过第4个例题的讲解学生已经了解到,如果左边不是一个直接的完全平方,那么通过观察,变形,把它配成完全平方,就可以用开平方法来解一元二次方程. (三),问题2: 把方程变形:左边是一个含有x的式子的完全平方,而右边是一个非负数. 1:先移项:含有未知数的项移到左边,含有常数的项移到右边. 2:方程两边同加上一个合适的数. 3:左边是一个完全平方,右边是一个非负常数. 4:最后用开平方法来解 即可引出配方法的概念.像这样,把一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法. 然后让学生回答:用配方法解一元二次方程关键在哪里 (就是如何在方程左,右两边同加上一个合适的数使左边配成一个完全平方.) 为了弄清楚在方程的左右两边究竟应加上一个什么样的合适的数,可以通过专门的3个练习来得出.即突破本节课的难点. (1) (2) (3) 最后让学生得出结论:1:加上一次项系数一半的平方; 2:前提条件:二次项系数为1 例2, (1) (2) 再次总结:形如 (二次项系数为1时),可以用配方法来解一元二次方程. 具体的步骤有: 第一:移项. 第二:等式两边同加上一次项系数一半的平方. 第三:再用开平方法来解方程. (四)提出挑战题:当二次项系数不是1时,怎么办 为下节课的教学打下了基础. 例3, 课堂小结 让学生回答1:用开平方法,配方法解一元二次方程的概念.2:用这两种方法解方程时,方程的特点.3:用这两种方法解方程时的步骤.4:让学生回答在解方程过程中应注意的事项. 六,布置作业. 一元二次方程和解法(2) 【教学目标】 ◆1. 巩固用配方法解一元二次方程的基本步骤. ◆2. 会用配方法解二次项系数的绝对值不为1的一元二次方程. 【教学重点与难点】 ◆教学重点:用配方法解二次项的系数的绝对值不是1的一元二次方程. ◆教学难点:当二次项系数为小数或分数时,用配方法解一元二次方程. 【教学过程】 一.复习旧知 用适当的方法解下列方程: 1,(x-2)2=3 2, x2+3x+1=0 请学生上来板演,老师点评归纳. 二.新课讲授 1.出示引例:用配方法解方程5x2=10x+1 提出问题:当一元二次方程的二次项系数的绝对值不是1时,怎样用配方法来解 经学生讨论后,指定一名学生(中等程度)回答. 教师总结:对于二次项系数的绝对值不是1的一元二次方程,只要将方程的两边都除以二次项系数,就转化为我们已经能解决的问题.即用配方法解二次项系数是1的一元二次方程. 2.讲解例题 例3:用配方法解下列一元二次方程 (1)2x2+4x-3=0 (2) 3x2-8x-3=0 评注(1)本例讲解可由上一课时的复习来引入,先给出方程x2+2x-1=0,让学生解答,并板书过程,同时解答方程3x2+6x-3=0,让学生作比较,学生容易发现,两个方程同解.再把6x改成4x,并提出问题:方程3x2+4x-3=0又应该如何解 从而把问题化归. (2)本例中两个小题的解法是相通的,在讲解时,需要让学生明确配上去的值到底应该是多少,即解决的一半是多少这一问题,常用的解决方法是把该数乘以. 教师总结:1:用配方法解系数为1的一元二次方程x2+px+q=0时,一般步骤为: (1)x2+px=-q(移); (2)x2+px+() 2=-q+() 2(配); (3)(x+)2= (化); (4)解得x=- (解) 2,当二次项系数不为1时,则在 "移"之前先要有个"除",即两边同除以二次项系数,使二次项系数为1. 练习:用配方法解下列方程 练习: 一个长方形牧场的面积为8100平方米,长比宽多19米.这个牧场的周长是多少米 三:小结 本课时的重点用配方法解答各种一元二次方程. 本课时的难点是对二次项系数的处理. 四:布置作业 课本""作业本"及习题精选中对应的练习. 一元二次方程的解法(3) 【教学目标】 ◆知识教学点:理解一元二次方程求根公式的推导,会运用公式法解一元二次方程. ◆能力训练点:1.通过求根公式的推导,培养学生数学推理的严密性及严谨性. 2.培养学生快速而准确的计算能力. ◆德育渗透点:1.通过公式的引入,培养学生寻求简便方法的探索精神及创新意识. 2.让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美,简洁美,产生热爱数学的情感. 【教学重点与难点】 ◆教学重点:求根公式的推导及用公式法解一元二次方程. ◆教学难点:对求根公式推导过程中依据的理论的深刻理解. 【教学过程】 (一)复习引入 1.用配方法解下列方程. (1)x2-7x+11=0,(2)9x2=12x+14. (通过两题练习,使学生复习用配方法解一元二次方程的思路和步骤,为本节课求根公式的推导做第一次铺垫.) 2.用配方法解关于x的方程 x2+2px+q=0. 解:移项,得x2+2px=-q 配方,得x2+2px+p2=-q+p2 即(x+p)2=p2-q. (教师板书,学生回答,此题为求根公式的推导做第二次铺垫.)3.用配方法推导出一元二次方程ax2+bx+c=0(a≠0)的根. 解:因为a≠0,所以方程的两边同除以a, ∵ a≠0, ∴4a2>0 当b2-4ac≥0时. 从上面的结论可以发现: (1)一元二次方程a2+bx+c=0(a≠0)的根是由一元二次方程的系数a,b,c确定的. (2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac≥0的前提下,把a,b,c的值代入上式中,可求得方程的两个根. 的求根公式,用此公式解一元二次方程的方法叫做公式法. (二)师生互动,应用新知 互动1 师:一元二次方程ax2+bx+c=0(a≠0)的求根公式中,要求b2-4ac ≥0 , 那么b2-4ac<0时会怎样呢 生:当b2-4ac<0时,没有意义,此时一元二次方程ax2+bx+c=0(a≠0)无实数解. 明确: b2-4ac≥0是公式的一个重要组成部分,是求根公式成立的前提条件,这一点是解一元二次方程的一个隐藏条件.当b2-4ac0, ∴ x1=2,x2=1. 在教师的引导下,学生回答,教师板书,提醒学生一定要先"代"后"算".不要边代边算.引导学生总结步骤 1.确定a,b,c的值.2.算出b2-4ac的值.3.代入求根公式求出方程的根. 例2不是一般形式,所以在利用公式法之前应先化成一般形式,另外注意例2中的b2-4ac=0,方程有两个相同的实数根,应写成x1= 例3用公式法解一元二次方程: (1)X(x-1)=(X-2)2; (2) x2+x+1=0 其中第一题要先化简成一般形式,如系数是分数或小数,可以直接代公式,也可以先把系数化成整系数后再代公式,视实际清况而定.第二题b2-4ac<0,方程无实数根. 明确:运用公式法解一元二次方程的步骤:( 1) 把方程化为一般形式, 确定a,b,c的值;(2)求出b2-4ac的值;(3)若b2-4ac≥0,把a,b,c及b2-4ac的值代入一元二次方程的求根公式,求出方程的根;若b2-4ac<0,此时方程无解. 练习:课内练习1.熟悉公式法的步骤,训练快速准确的计算能力. 互动3 请同学们根据学习体会,小结一下解一元二次方程的几种方法,通常你是如何选择的 请同学们交流,教师鼓励发言. 明确: 解一元二次方程一般有以下四种方法:直接开平方法,因式分解法,配方法,求根公式法.(1)当方程形如(x-a)2=b(b≥0)时,可用直接开平方法;(2) 当方程左边可以直接简单因式分解时,可选用因式分解法;(3) 配方法是一种重要的解法,尤其要熟悉配方法的整个过程,但解一般方程不选用这种解法;(4) 公式法是一元二次方程最重要的,最常用的解法,任何一元二次方程都可以选用这种解法,我们有时也称它为万能公式. 练习:课内练习2.合理选择解法. (三)达标反馈,深化新知 (1)用公式法解方程4x2+12x+3=0,得到 (A) (2)关于x的一元二次方程x2-2x+2+K=0有两个实数根,则k的取值范围是 (3)不解方程,你能说出下列方程解的个数吗: x2-2x-2=0 4x2-4x+1=0 2x2-x+2=0, (四)总结及布置作业 引导学生从以下几个方面总结: ≥0). (2)利用公式法求一元二次方程的解的步骤:①化方程为一般式.②确定a,b,c的值.③算出b2-4ac的值.④代入求根公式求根.公式法与配方法都是通法,前者较之后者简单. 2.求根公式是指在b2-4ac≥0对方程的解,如果b2-4ac<0时,则在实数范围内无实数解.渗透一种分类的思想. 一元二次方程的应用(2) 【教学目标】 ◆1. 继续探索一元二次方程的实际应用,进一步体验列一元二次方程解应用题的应用价值. ◆2. 进一步掌握列一元二次方程解应用题的方法和技能. 【教学重点与难点】 ◆教学重点:本节教学的重点是继续探索一元二次方程的应用. ◆教学难点:"合作学习"的问题教为复杂,计算量大,是本节的难点. 【教学过程】 1.复习提问, (1)列方程解应用题的基本步骤 答: ①审题; ②找出题中的量,分清有哪些已知量,哪些未知量,哪些是要求的未知量; ③找出所涉及的基本数量关系; ④列方程; ⑤解方程; ⑥检验. 2.新课讲解, 列一元儿次方程解应用题在初中阶段主要有三类问题:(1)变化率问题;(2)市场营销中单价,销量,销售额以及利润之间的相互关系问题;(3)根据图形中的线段长度,面积之间的相互关系建立方程的问题.而我们今天要解决的就是根据图形中的线段长度,面积之间的相互关系建立方程的问题. 如图2-4,有一张长40cm,宽25cm的长方形硬纸片,裁去角上四个小正方形之后,折成如图2-5那样的无盖纸盒.若纸盒的底面积是450cm,那么纸盒的高是多少 分析 设纸盒的高为x (cm),那么裁去的四个小正方形的边长也是x(cm),这样就可以用关于x的代数式表示纸盒底面长方形的长和宽,根据纸盒的底面积是450cm,就可以列出方程. 解 设纸盒的高为x(cm),则纸盒底面长方形的长和宽分别为(40-2x)cm,(25-2x)cm.由题意,得 化简,整理,得 解这个方程,得 (不合题意,舍去) 答:纸盒的高为5cm. 接下来,同学们来做一下课内练习题1. 围绕长方形公园的栅栏长280m.已知该公园的面积为4800㎡,求这个公园的长与宽. 解: 设公园的一边长为x(m),则另一边长为(140-x)m,由题意,得 化简,整理,得 解这个方程,得 答:略. 合作学习: 一轮船一30km/h的速度由西向东航行(如图2-6),在途中接到台风警报,台风中心正以20km/h的速度由南向北移动.已知距台风中心200km的区域(包括边界)都属于受台风影响区.当轮船接到台风警报时,测得BC=500km,BA=300km. 如果轮船不改变航向,轮船会不会进入台风影响区 你采用什么方法来判断 如果你认为轮船会进入台风影响区,那么从接到报警开始,经过多少时间就进入台风影响区 建议: ①假设经过t时后,轮船和台风中心分别在cb位置; ②运用数形结合的方法寻找相等关系,并列出方程; ③通过相互交流,检查列方程,计算等过程是否正确; ④讨论:如果把航速改为10km/h,结果该怎样 提示:①几何画版给出演示; ②若从接到台风警报开始,经过t时,轮船到达C'点,台风中心到达B'点,那么船是否受到台风影响与什么有关 ③当B'C'符合什么条件时船受到台风影响 ④你能用关于t的代数式表示B',C'两点之间的距离吗 ⑤你能用一元二次方程表示船开始受台风影响的条件吗 解答(略) 练习 练习:P40——课内练习2 补充练习:P40---作业题5 课堂小结: 体会如何根据图形中的线段长度,面积之间的相互关系建立方程的问题.从中学到了什么
用配方的方法来求最快,如,x2+4x+3=0,可以配方为(x+2)2-1=0,那么它的值域是.大于或等于-1…2.用点描绘出一元二次方程的图象,看它和x轴有多少个交点,有多少个交点,那么方程就有多少个解…
函数与方程是初中数学中两个最基本的概念,它们的形式虽然不同,但本质上是相互连接的,有密切关系。如:一元二次方程与二次函数。我们知道形如ax2+bx+c=0的方程是一元二次方程,而形式为y= ax2+bx+c(a、b、c为常数,a≠0)是二次函数。它们在形式上几乎相同,差别只是一元二次方程的表达式等于0,而二次函数的表达式等于y。这种形式上的类似使得它们之间的关系格外密切,很多题型都是以此来命题。为什么会这样?主要是因为当二次函数中的变量y取0时,二次函数就变成一元二次方程。由此可见,方程中的很多知识点可以运用在函数中。下面,我们就它们间的具体运用详细的了解一下。一、 配方法解方程与二次函数的应用关系在解方程的四种方法就有一种用配方法来解方程的。而在二次函数中,我们经常要将一般形式 转化成 的样式,这个转化过程实际上就是对其进行配方,与方程配方相同。例1:用配方法解方程 解: (1) (2) (3) (4) ……例2:指出函数 的顶点坐标。解: (5) (6) (7) (8) ∴顶点为(-2,-17)方程中的(1)、(2)、(3)、(4)四个步骤与函数中的(5)、(6)、(7)、(8)四个步骤的方法是完全一样的。可见,方程与函数密切相关。我们通过课本的学习可知;二次函数y= ax2+bx+c(a≠0)的图象与x轴有交点时,交点横坐标的值就是方程ax2+bx+c=0(a≠0)的根。二、 一元二次方程根的判别式与二次函数的结合应用在二次函数中,当函数与x轴分别有两个交点、一个交点和无交点时,该函数所对应的一元二次方程根的判别式分别是:△>0、△=0和△<0。而在一元二次方程中有以下结论:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根。 例3:判断二次函数y= x2-4x+3与x轴的交点个数 分析:因为二次函数与x轴的交点个数可由对应方程根的判别式△来确定。若△>0,则有两个交点;若△=0,则有一个交点;若△<0,则无交点。该题中△=4>0,所以有两个交点。 例4:试说明函数y= x2-4x+5,无论x取何值,y>0。 分析:第一种方法:用配方法将其化成y= (x-2)2 +1的形式来说明。(但如果系数取值不好,该方法就比较麻烦) 第二种方法:用△来说明,因为△=-4<0,所以函数与x轴无交点,又因为该函数的二次项系数a=1>0,所以图象开口向上。于是,图象在x轴上方,因此无论x取何值,y>0。 例5:求证:不论m取什么实数,方程x2-(m2+m)x+m-2=0必有两个不相等的实数根。 分析:这道题如果用常规做法,就是证明一元二次方程的△>0的问题。然而本题的判别式△是一个关于m的一元四次多项式,符号不易判断,这就给证明带来了麻烦,若用函数思想分析题意,设f(x)=x2-(m2+m)x+m-2,由于它的开口向上,所以只要找到一个实数x0,使得f(x0)<0,就说明这个二次函数的图象与x轴有两个交点,问题就得到了解决。 注意观察,容易发现当x=1时,f(1)=1-(m2+m)+m-2=-m2-1<0,故这个图象必与x轴有两个交点。 这就说明要证明的结论是成立的。证明 略。三、 一元二次方程中根与系数的关系在函数中的应用例6:二次函数图象过点(-1,0)、(3,0),且与y轴交于(0,3),求函数解析式。分析:此类题型的常规解法是待定系数法。然而在这里可以用根与系数的关系来解,因为(-1,0)、(3,0)实际在x轴上,所以-1和3是函数所对应方程的两个根。解:设函数形式为 ∵函数过点(0,3) ∴ c=3 ∴ 又∵函数过点(-1,0)、(3,0) 即函数与x轴交点的横坐标是-1和3 ∴ 解得 a=-1,b=2∴函数形式为y= -x2+29x+3 很明显,此方法要比待定系数法简单。 一元二次方程与二次函数之间的密切关系还有很多巧妙的用处。在这里,我们只探讨这么多,更多的地方需要在实践中去慢慢体会。论文格式:1、论文格式的论文题目:(下附署名)要求准确、简练、醒目、新颖。 2、论文格式的目录 目录是论文中主要段落的简表。(短篇论文不必列目录) 3、论文格式的内容提要: 是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。 4、论文格式的关键词或主题词 关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。 主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。 5、论文格式的论文正文: (1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容: a.提出问题-论点; b.分析问题-论据和论证; c.解决问题-论证方法与步骤; d.结论。 6、论文格式的参考文献 一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。 中文:标题--作者--出版物信息(版地、版者、版期) 英文:作者--标题--出版物信息 所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证。 (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
我们先来理解一下空间维度的概念:从广义上讲:维度是事物“有联系”的抽象概念的数量,“有联系”的抽象概念指的是由多个抽象概念联系而成的抽象概念,和任何一个组成它的抽象概念都有联系,组成它的抽象概念的个数就是它变化的维度,如面积。此概念成立的基础是一切事物都有相对联系。 我们所知,第一维度是只有长度的一条直线,在一维的长度基础上,向周围延伸,这就是二维。从二维平面上做延伸的高,即为第三维度。高一级的维度总是包含它以下的所有维度,并可以加以展现。 正是因为这样,我们才能在我们所处的三维空间中在相对处于二维的平面上做图,加以生活层面结合,并产生了我们所谓的“二次元”。即二维(The second dimension )。 因为艺术品是三第三维度所展现的,所以能被称为“二次元”的仅仅是其中说会内容作品的表达,并不能称为整体艺术品为“二次元”。二次元中物的表现是以三维立体的形式展现的,并且能在三维中存在的物体均有一定的高度。所以对于三维空间来说,“二次元”作品仅仅是一个“三维无生命实体”。即是一个无意义(相对于三维来说)的三维物体。 现代社会,二次元多被描述为动漫作品,具有着有着多种表达形式。可无论以什么方法表现在我们眼前,实质上都是用一种方式对其内容进行表述。即:所属于三维的无生命体。 即使是由电屏展现,它也是由电源光子光排列出的,属于三维。 我个人是很喜欢动漫的,但我认为称其实质为“二次元”是不合适的。动漫中的人物对于他所处的平面环境来说是立体的,均是以三维展现。可真正的“二次元”的空问如真有生命体(那也只能是微观),那它将有着无限细节,无遮挡关系。并且运动仅限长宽两种形式,并只能用直接转换的方式运动。举个例子,一个人处在二维,那么他的身体各个器官且至分子结构都将展现出,根本不存在立体这一概念。 至此之言,动漫并非“二次元”,很遗憾,它仍为三维。 (此文仅限于作者本人的研究与理解,希望大家能够支持。如有不足之处,请提出宝贵意见。谢谢~:)
二次元毕竟是跟三次元的现实有很大差别的,虚构和科幻成分比较多,不建议采用。《红楼梦》是小说,不是二次元动漫,它隐藏的社会背景成分,有很大的历史价值,里面一些诗句典故可以用,比如林黛玉葬花,宝玉和黛玉读《西厢记》。人物的性格之类你可以引点评。
就是提两个分论点
国内的动漫杂志有《漫友》《漫画SHOW》《飒漫乐画》《幽默大师·连环泡》《乐漫》。
1、《漫友》是1997年漫友杂志社出版的,是中国大陆地区尤其是南方影响度较高的漫画杂志,也是大陆主要的动漫期刊之一。
2、《漫画SHOW》以“青春无极限,梦想斗秀场”为口号,主要刊载本土原创漫画,采用16开全彩色印刷流行开本,每期定价10元。
该刊瞄准了青少年漫画阅读的市场需求,邀请著名漫画家颜开和姚非拉以及他们旗下的三剑客工作室、SUMMER工作室联手合作,并由四位历届金龙奖故事漫画大奖得主王小洋、于彦舒、爱欧、白骁联袂推出新作。
3、《飒漫乐画》是《飒漫画》的姊妹刊。第一期《飒漫乐画》随《飒漫画》2012年一月中旬刊(总第64期)免费附赠!
4、《幽默大师·连环泡》创刊于1985年,是浙江出版联合集团主管,浙江人民美术出版主办的半月刊,主要刊登漫画故事作品。
5、《乐漫》是凤凰出版传媒集团出版的大16开100P全彩漫画半月刊漫画杂志,于2014年4月15号发行。
看你是哪里的人了好多杂志都只是地方性的比较好的有动新(动新的DVD一直大受好评)动漫贩(俗称的贩子)24格(也有电影的介绍 24格就算是比较专业的杂志)上面的2个是1个编辑部的... 而且是综合素质最好的杂志最动漫(这个的DVD也不错的 而且会报道一些关于动画的新闻)有东西动漫个人觉得 东西比较低幼 写的文章比较冷东西的副产物 萌动漫 最近刚出的当然还有其他的 象慢友的100 和 comic新视点的小开本杂志那些比较无聊了 都是剧透之类的 太弱智了...
我比较喜欢看动漫的。比如说动漫前线,这个创刊有8年了吧。价格合理,赠品也很好,我每期都买。动漫里还有《动漫水晶》,《动画萌王》,《动感新势力》,《东西动漫社》,《动漫社》《动画基地》《漫友·动画100》《萌动漫》《动漫贩》。这些我都看过,都不错。漫画的我不太看,但最有名的应该还是漫友吧!日本最有名的当然就是少年JUMP啦!还有《集英社》《LALA》 《花语梦》,像《死神》,《NARUTO》,《ONE PIECE》等著名连载都是先刊登在那里的。不过我也没看过,看不懂
我小时候最喜欢看的是《知音漫客》,其他的还有《动漫贩》、《萌动漫》、《动漫基地》、《动漫新时代》、《动漫水晶》、《二次元狂热》、《动漫前线》、《东西动漫社》。有一些可能停更了
动漫迷城每期赠送18G内容动画,有热门连载海贼王火影死神柯南家教还有新番连载,那是AB盘内容,CD是剧场版或OVA,一月一期,我每月买动画基地或前者价低是因为赠盘内容少,一月一期动漫周刊3元有一部分讲中国的
我经常看的也就是动漫前线和动漫贩了。有赠品,每期送的东西都不一样,比如有送水瓶,纸巾(你懂得),剧场光盘,福利,原声歌曲什么都有。而且也很容易买到。当然如果你是土豪可以买jump什么的。。(貌似难买到正版。。)
动漫之家,手机可以下载app
1.《动感新势力》:(目前更名为《动感新时代》)每月中旬出刊,分为普通版元&DVD版15元(有时还有特别版18元),资源一向都很丰富~网络每季新番,有时还会收录动漫的剧场版~每期还有一张动漫音乐CD~~首推~>-<2.《动漫前线》:半月刊,每月13号、28号左右出刊,一般定价12元(价格会视赠品调整)动漫资讯类杂志,还有一些不错的评论文~涉及动画&漫画,对新番也有追踪评价,还有一定的漫画连载~是一本不错的杂志~3.《听动漫》:每月上旬出刊,定价18元,动漫音乐资讯杂志,网络了许多新番的music,目前出版一年了,是一本很有潜力的杂志~内容也很丰富~~4.《动漫迷城》:每月下旬出刊,定价元,属于新番连载杂志,DVD的质量还不错,不过杂志的内容排版有点乱...但信息还是很全面。(如果亲能买到《动画狂热》更好,相同类型的杂志,不知道是不是真的停刊了)以上是ME长时间以来买着看的杂志,希望亲也能喜欢~^-^