国内外研究现状需要在论文中写出你的研究综述,写出关于你做的课题的国内研究的现在和国外目前的研究现状,比如研究糖尿病课题你需要写清楚国内对于糖尿病研究到了什么层次,治疗药物,治疗方法以及治疗的精确程度,写国内外现状需要你阅读大量文献。
在写开题报告时,一定要重视“国内外研究现状”部分的撰写,国内外研究现状是重灾区,很多同学说我复制别人的,老师也不一定去查,那你就错了,老师看过的文献比你吃的大米还多,而且由于不同学者的文风不同,你复制的时候如果不修改,很容易被看出来不是一个人写的。
论文的撰写
在写作之前,同学们应该先收集和阅读相关的论文,整理主要内容和主题思想,选择最具有代表性的作者,在写作过程中,要对其观点进行充分阐述论证,并按照时间,国家进行分类,最后再进行客观评述,也就是说是否存在研究空白,是否亟待解决的问题,还需要进一步研究。
述评评述是对前面论述的内容做一个总结,或是提出自己的取舍褒贬,指出存在的问题及解决问题的方法和所需的条件,或是提出预测及今后的发展方向,还可提出展望和希望。结语的作用是突出重点,结束整篇文献。
字数以200~300字为宜。参考文献部分是指本文献综述引用和参考的文献。应当详细列举井注明篇目、著者、出处等。参考文献著录不仅表示对被引用文献作者的尊重及引用文献的依据;而且为读者深入探讨有关问题提供了文献查找索。
如下:
首先要把收集和阅读过的与所写毕业论文选题有关的专著和论文中的主要观点归类整理,并从中选择最具有代表性的作者。在写毕业论文时,对这些主要观点进行概要阐述,并指明具有代表性的作者和其发表观点的年份。
还要分别国内外研究现状评述研究的不足之处,即还有哪方面没有涉及,是否有研究空白,或者研究不深入,还有哪些理论问题没有解决,或者在研究方法上还有什么缺陷,需要进一步研究。 可以写国内外研究现状应注意的问题。反映最新研究成果。
不要写得太少。如果只写一小段,那就说明你没有看多少材料。 如果没有与毕业论文选题直接相关的文献,就选择一些与毕业论文选题比较靠近的内容来写。
国内外研究现状的两种写法
国内外研究现状有两种写法,要不就是从相关部门对于研究对象的研究,或者就是从学者对于相关研究现状的研究来写。
正常来说,国内外研究现状都需要大家去阅读大量的文献,然后总结学者的主要观点,这里给大家一个小技巧,可以直接从一篇文章的摘要看出来,一个学者的研究观点主要集中在哪些,这样的话,即便你不完整的阅读文章,也能知道文章的主要观点。
还有一种方法,可以直接从硕士论文里面去摘抄,大家可以找一些和自己题目一样,或者是关键词一样的硕士论文,我们在里面摘抄国内外研究现状,并且将这个话改成自己的意思,这也是一种写作方法。但是注意标注引用的时候,一定要找到最根本的文章,而不是你参考的这篇硕士论文。
数学归纳思想在各学段之特点和教学启示
第一章 导论
《冰雹猜想有规可循》冰雹猜想又名考拉兹猜想、角谷猜想、3x+1猜想等等。其描述为:任一正整数x如果是奇数就乘3加1,如果是偶数就除以2,,反复计算,最终都将会得到数字1。如:11,34,17,52,26,13,40,20,10,5,16,8,4,2,1.该问题一出现就风靡全球,无论是小学、中学还是高校师生都为之着迷。近百年来,数学家、物理学家、计算机科学家等都对此进行过研究;涉及的数学领域也很广,有数论、遍历理论、动态分析、数理逻辑与计算理论、随机过程与概率论和计算机科学等等。虽然取得了一定的成果,但始终没能被彻底解决。这个问题似乎是无解的,几乎无人能破解其中的秘密。世界著名华裔数学家陶哲轩在2019年曾发文证明约99%的初始值大于1千万亿的考拉兹数列,最终值小于200,但依旧没有改变现状。你或许会好奇的说找个反例不就行了,是的,全球计算机在没日没夜的找,可惜都没找到反例。对于这个极其简单又无聊又超有趣的问题,别说常人,数学家几乎都不敢专职研究并直呼:“不要试图去解决这些难题!”;“没有希望,绝对没有希望。”;“当今数学还没有解决此类难题的方法。”等等。那么冰雹猜想就真的如此没有规律吗?那倒也不是,因为无论它怎么变化,也不会背离白言规则(LiKe's rule):对于任一正整数,如果它是奇数则乘3加1;如果它是偶数则除以2,如此循环,最终都将转变到LiKe第二数列(2, 8, 26, 80, …, 3^n-1)中的数,3^n-1再变为更小的3^n-1并最终变为8回到1。如11必变到26(3^3-1),再变为更小的8(3^2-1),并回到1;另外27是个极其强悍的数字,按照规则77步才能到达巅峰值9232(27的342倍多),具有同样步数的2的幂为2的111次方,很惊人吧!其变化更是起伏不定,但按照白言规则却显而易见:27必会转变到3^n-1(242),定会降至3^2-1(8)并回到1。真是太神奇了。这个问题很有趣吧,还超简单,感兴趣的可以自己试试哦。
数学美学中的对称美并不局限于客观事物外形的对称。正如魏尔所说: “对称是一种思想。多少世纪以来,人们希望借助它来解释和创造秩序,美和完善.”数学的对称主要是一种思想,它着重追求的是数学对象乃至整个数学体系的合理,匀称与协调。数学概念,数学公式,数学运算,数学方程式,数学结论甚至数学方法中,都蕴含着奇妙的对称性。 数学的对称思想是数学思想的一种平移,对称,或者是类比。研究对称思想不仅使人眼界豁然开阔,而且能推陈出新出一种新的领域。 从数学发展的历史来看,对称性的考虑在一定程度上促进了数学的发展。例如,加法与减法,乘法与除法。微分与积分等逆运算的建立,甚至黎曼积分与 Lesbegue积分(对定义域的划分与值域的分割),这些都是追求数学美的产物。真数N与对数的增长表现出明显的不对称性,而且真数的增长均匀,而对数的增长不均匀,数学家从对数的对称美考虑,而导致自然对数的产生。又比如,在射影平面内,两点那能确定一条直线,反之两直线未必有一个交点,为解除这个不对称关系,法国数学家笛沙格大胆猜想:两条平行线相交于一个理想点(无穷远点)这样就创立了对偶原理(射影平面内的定理中将直线与点互换后成立)以至射影几何学 。
范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。
思路:根据题目数学科普小论文展开,并结合实际情况加以说明。
今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍,我百思不得其解。
后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。
画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。
解是:26-2=24(岁)
24÷(3—1)=12(岁)
12-2=10(年)
答:10年后爸爸的年龄是小华的3倍。
妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。
(26+10)÷(2+10)=36÷12=3
耶!我答对了。看来做题先得画图,画了图就能就一目了然了。
绘本教学中开展幼儿生命教育的教学策略论文
无论是在学习还是在工作中,大家都不可避免地会接触到论文吧,论文是探讨问题进行学术研究的一种手段。写起论文来就毫无头绪?以下是我收集整理的绘本教学中开展幼儿生命教育的教学策略论文,仅供参考,希望能够帮助到大家。
摘要:
绘本作为幼儿园生命教育的载体,不仅能够丰富幼儿园生命教育的内容,还能优化生命教育的形式,进而在提升生命教育质量的同时,更加适宜幼儿身心的全面发展。因此,本文主要从选择符合幼儿身心特征、具有明确主题、激发亲子情感的方面入手,简要分析在生命教育背景下的幼儿园绘本教学的选择策略。
关键词 :
生命教育;幼儿园绘本教学;教学策略;
引言:
幼儿园的生命教育主要是引导幼儿探寻生命的本质,使其在认识生命的过程中能够更好地认识自己、感知生命和肯定自我。但是,由于生命教育的抽象性,幼儿在理解中难免会出现问题,而通过绘本践行生命教育,以故事的形式引导幼儿展开对生命交流和思考,会更贴近幼儿的生活,对幼儿的成长有着重要的教育意义。因此,如何选择适合且科学的生命教育绘本就成为了实际生命教育开展过程中的重中之重。
一、选择符合幼儿身心特征的生命教育绘本
幼儿园是幼儿身心发育的重要时期,在这一时期幼儿的年龄特点虽差异不明显,但是因年龄产生的身心特征差异和心理需求差异却很明显。因此,在挑选生命教育绘本时,教师不仅要看是否符合幼儿的年龄,还要看是否符合不同年龄段幼儿的心理需求,进而才能挑选出适合且能够发挥出最大教育意义的绘本材料,为生命教育的有效开展奠定基础。
例如,幼儿园小班的学生由于年龄比较小,又是刚进入幼儿园学习,对幼儿园的环境、教师和同学都比较陌生,进而就会造成部分幼儿在幼儿园生活中出现谨慎、不自信、不自在和不适应的情况。因此,在对小班幼儿开展生命教育时,教师就可以选择《大脚丫跳芭蕾》《小猪变形记》《第一次上街买东西》等这一类的幼儿生命教育绘本,在趣味故事情节的引导下,在故事主人公勇于探索、乐观自信精神的感染下,使幼儿获得面对生活的勇气与自信,进一步地优化其对自我的认知,使其能够更好地适应幼儿园的生活环境,以更加饱满的热情投入到全新的生活当中。
二、选择具有明确主题的生命教育绘本
面对当今"鱼龙混杂"的绘本市场,在选择关于生命教育的幼儿绘本教学资源时,教师不仅要选择具有儿童视角、儿童趣味的绘本,更要避免选择"矮化"儿童的绘本,即选择具有明确的教育主题且承认幼儿独立人格和幼儿内心世界的独立价值的绘本,将幼儿看成一个独立的个体,尊重其内心想法,这样才能使幼儿主动参与到绘本的阅读当中,从而实现绘本的教育价值。
例如,在生命教育中关于"生死"的教育看似是一个比较严肃、沉重的话题,但是教师可以借助绘本,利用温暖的感情引导幼儿了解生命的循环,理解生命的真相。就此,教师就可以引入《再见了,艾玛奶奶》这则绘本,以故事和图片的形式带领幼儿了解"艾玛奶奶"人生中最后一年的'时光,感受"艾玛奶奶"面对死亡时的乐观与勇敢,感受"艾玛奶奶"的家人与她共同珍惜人生最后时光的过程,进而使幼儿体会到"死亡"并不可怕,使其获得面对生死的勇气。
三、选择能够激发亲子情感的生命教育绘本
幼儿园时期是幼儿心理成长的重要时期,这一时期不仅需要教师给予幼儿必要的引领与关怀,更需要家长给予幼儿更多的关爱与陪伴。因此,在生命教育中教师要给家长推荐一些能够引起亲子共鸣、激发亲子情感的绘本,进而使家长在陪伴幼儿进行阅读时能够融入情感,引发与幼儿情感交流的同时,使幼儿感受到父母对自己无私的爱。
例如,幼儿园阶段的父母大多数都是第一次当父母,在教育幼儿的过程中难免会产生困惑、出现问题,于是教师就可以推荐家长和幼儿一起阅读《狐狸爸爸鸭儿子》这则绘本,使家长在阅读的过程中,感受到自己身上对于幼儿的责任。在分享的过程中,幼儿只能给予家长稚嫩的回应或者只会咯咯地笑,但幼儿能够感知到父母的爱,心中"爱"的种子也已在发芽,进而在爱的氛围中,增进亲子关系,引导幼儿感恩遇见,感恩生命。
综上所述,幼儿园幼儿的生命教育不是一个"堆积"的过程,而是一个潜移默化、长期积累的过程,借助绘本教学展开幼儿园生命教育,不仅能够给单纯的生命教育增添一些童趣的色彩,还能给予幼儿更多的指引和启发,进而使其在教师的指导下,能够懂得爱人、学会分享、敢于担当,真正实现以绘本为载体的生命教育价值。
参考文献
[1]陈英姿.和孩子在阅读中感悟绘本的生命教育理念-以绘本《小熊的小船》为例[J].山东教育:幼教版,2016(4):30-31.
[2]凌斯嘉.用绘本阅读之匙扣生命教育之门[J].中学课程辅导:教师教育,2016(21):49-50.
[ 摘要 ]提问是教师组织教学活动的重要手段和师生沟通的重要方式,针对幼儿园小班绘本教学中教师提问的不足,比如低认知水平问题为主、图文结合的提问较少、候答时间过短、单一机械的应答方式,本研究提出了提高教学效率和改善课堂气氛的提问策略,使教师提问有助于幼儿的思维发展。
[ 关键词 ]幼儿园;绘本教学;提问
提问是教师组织教学活动的重要手段,很大程度上决定了教学活动的有效性,在幼儿和教师之间架起了沟通交流的桥梁。美国教育专家斯特林.G.卡尔汉认为,“提问是教师促进学生思维、评价教学效果以及推动幼儿实现预期目标的基本控制手段”[1]。已有研究表明,教师提问在具体的教学活动中存在一些问题,比如指向不明确、提问质量和有效性不高,因此,基于幼儿园小班绘本教学中教师提问现状的分析,本研究提出了提高教学效率和改善课堂气氛的提问策略,教师需要根据绘本内容选择不同的提问方式,旨在激发幼儿的学习兴趣和促进幼儿的语言发展。
一、研究方法
本研究主要采取现场观察法,在2015年3月至5月间观察了苏州市某幼儿园8个小班的绘本教学活动,由8位教师执教,笔者重点观察和记录绘本教学中教师的提问和应答方式以及幼儿的反应,在深入分析的基础上全面了解小班绘本教学中教师提问的基本情况和特点。
二、结果与分析
(一)低认知水平问题为主
笔者现场观察时记录了361次教师提问,并根据布鲁姆提出的认知领域学习结果分类区分出六种问题类型,即识记型、理解型、分析型、应用型、综合型以及评价型问题,上述问题类型可以按照认知水平的高低区分为三种水平,即较低水平、中等水平以及较高水平。由表1可知,小班绘本教学中较低认知水平的提问占比为,说明教师提问对于幼儿认知水平的要求不高,主要关注幼儿对知识的识记与理解;需要幼儿分析应用和综合应用评价的中、高水平问题占比为和,较高水平问题的数量远低于中低水平问题,问题的结构比例不太合理,说明教师虽然尝试提出中高水平问题,但是关注度远远不够。虽然小班幼儿以识记和理解知识为主,但是分析应用与综合评价的能力也很重要,提问应当促进幼儿的分析、判断、推理以及综合等思维能力发展。
(二)问题重图轻文字
绘本是图片和文字共同构成的艺术,兼顾图片和文字并把握图文关系是教师应该重点思考的问题,从教师提问的内容来看,可以分为文字为主、图片为主、图文结合等三种方式。统计结果显示(表2),教师在小班绘本教学中主要提出以图片为主的问题,占比,以文字为主和图文结合的问题占比分比为和,说明教师比较重视儿童的图片认知,较少涉及幼儿对文字或图文结合的认知。儿童文学理论家彭懿认为,“单纯地用文字或者图画来讲故事都是有局限的,图画擅长表现空间,却不擅长表现时间、味道、声音和人的心理活动等等,而对于文字来说这些都不在话下,但又很难让它来形容一座桥的外观”[2]。由此可见,教师只提问文字或图片的方式都不太科学,图画和文字是互补的.关系,绘本应该是图画和文字共同讲述的故事。《3-6岁儿童学习与发展指南》指出,“小班幼儿要能理解图书上的文字是和画面对应的,是用来表达画面意义的”。因此,教师需要有策略地运用各种提问方式,引导幼儿采取图文结合的绘本阅读方式,丰富幼儿的前阅读和前识字经验。
(三)候答时间较短
教师提问的候答时间包括两种,“第一类等候时间指刚开始问一个问题时教师让学生考虑回答的时间;第二类等候时间指一个学生回答之后,教师或其他学生肯定或否定答案,再继续下去的间隔”[3],本研究观察到的几乎都是第一类候答时间,统计结果显示(表3),教师的候答时间非常短,1-3秒的占比高达,意味着教师刚提出问题就要求幼儿给出答案。究其原因,一是教师多提出识记理解型问题,此类问题较为浅显简单,幼儿几乎不需要深入思考即可得出答案;二是教师多针对绘本图片提问,“所见即所得”,幼儿只需要稍加观察就能回答;三是教师权威控制教学现场,不愿意教学活动出现“冷场”的现象。
(四)单一机械的应答方式
应答方式是教师对于幼儿正确、不正确、不完整或不回答问题的反馈。基于其他研究者的分类方式[4],笔者针对研究样本的特点将教师应答方式分为终止性应答和拓展性应答两个维度六小类。统计结果显示(表4),复述答案和肯定表扬在教师的终止性应答方式中位列前两位,占比分比为和,“自己代答”占比最小()。复述答案指教师通过复述幼儿的回答帮助他们加强活动内容的理解,笔者在教学现场的观察中发现,大多数教师复述答案属于习惯行为,通常是简单重复幼儿的回答,平淡的语气和机械的复述方式无助于幼儿更好地理解内容的重点。拓展性应答方式包括积极追问、引导提示以及鼓励质疑,其中,追问的占比最高(),说明教师能够在幼儿回答后追加新问题,以期促使幼儿进一步思考;但是,教师往往追问浅层次或形式化的问题,无助于幼儿培养发散性思维和积极思考。总体而言,教师使用拓展性应答方式()的比例远低于终止性应答方式(),说明教师的应答方式较为单一机械,且缺乏必要的教学技巧和经验。
(五)问题的有效性不高
教师需要注意提问策略的有效性,以期每一个问题都能激发幼儿的思考,发挥出启发和引导的作用。笔者认为,提问可以分为有效性提问、低效性提问以及无效性提问,有效性提问指提出有启发引导性的问题,能够激励幼儿思考和积极参与;低效性提问指过于简单或教师表达不够清楚的问题;无效性提问指完全没有用处的问题。统计结果显示(表5),有效性提问()的占比较大,然后是低效性提问()和无效性提问()。总体而言,教师能够发挥出提问的基本作用,利用问题推动教学活动的开展,大量的有效性提问可以很好地启发幼儿。王翠萍认为,“要提高教师提问的有效性,教师必须把问题描述得清楚、简短、有序,帮助幼儿打开思路”[5]。因此,教师需要进一步提高问题的有效性,进而改善教学活动的效果。
三、建议与对策
(一)关注幼儿的思维特点,增加高认知水平问题
在绘本教学中,教师应根据幼儿的年龄特点、最近发展区和思维特点以及绘本内容选择合适的提问方式,注意提问的条理性。首先,低认知水平的问题应保持一定的比例;其次,适当提高中、高认知水平问题的比例,并将不同认知水平的问题有机组合在一起;再次,教师能够根据幼儿在教学活动中的表现灵活运用三类问题,提问时注意层次性,能够由浅入深、由表及里的提问;最后,教师应该提出难度适中的问题,旨在帮助幼儿更好地理解绘本内容。
(二)合理把握绘本内容的图文关系,引导幼儿积极主动的思考
绘本是图画与文字相结合的艺术,二者是互补的关系。培利诺德曼在著作《阅读儿童文学的乐趣》中指出,“图画书至少包含三种故事:文字讲的故事、图画暗示的故事,以及两者结合所产生的故事”。因此,教师应该合理把握绘本中图画与文字的关系,通过有效提问促使幼儿通过观察画面、理解文字以及图文结合进行创造性思考;此外,教师需要综合运用各种提问方式,既活跃课堂气氛,又突出幼儿在活动中的主体地位,增强幼儿的学习兴趣和相互之间的互动交流。
(三)重视沟通,科学把握候答时间与应答方式
候答时间过短和单一机械的教师应答方式都不利于幼儿的积极思考,因此,教师要学会等待,合理反馈幼儿的回答。当幼儿针对同一问题给出不同的答案时,教师需要总结和归纳内容,方便幼儿理解;当幼儿不能回答或回答不完整时,教师不能不耐烦地打断,而是善于运用语言或动作引导幼儿说出正确的答案,使幼儿体验成功的喜悦;当幼儿回答错误时,教师不能全盘否定甚至批评,既要引导同伴帮忙,也要及时鼓励幼儿。此外,教师可以实时追问,如“为什么”“还有其他方法吗”,鼓励幼儿深入思考问题和拓展学习经验,从而提高应答的有效性。
[参考文献]
[1]杨继英.幼儿园教师提问行为及其观念的研究[D].长春:东北师范大学,2006.
[2]彭懿.怎样阅读一本图画书[J].语文教学通讯,2008,(36).
[3][美]鲍里奇.有效教学方法[M].易东平,译.南京:江苏教育出版社,2004:226.
[4]王甜.民汉双语幼儿园集体教学活动中教师提问研究[D].乌鲁木齐:新疆师范大学,2014.
[5]王翠萍.试析绘本阅读教学教师有效提问策略[J].教育导刊(下半月),2014,(2).
目前在国内,儿童电子绘事业是一个新兴产业,基础相对薄弱,但同时又面临着ju'dju'da巨大的发展前景。
是的,优秀的 好 的
数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。
数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学 方法 传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体 措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.
[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.
数学建模论文范文二:数学建模教学中数学素养和创新意识的培养
前言
创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.
用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.
而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.
教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.
参考文献:
[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.
[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。
[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.
[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.
[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.
[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。
Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。
5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。
7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。
8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。
9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。
数学建模全国优秀论文相关 文章 :
★ 数学建模全国优秀论文范文
★ 2017年全国数学建模大赛获奖优秀论文
★ 数学建模竞赛获奖论文范文
★ 小学数学建模的优秀论文范文
★ 初中数学建模论文范文
★ 学习数学建模心得体会3篇
★ 数学建模论文优秀范文
★ 大学生数学建模论文范文(2)
★ 数学建模获奖论文模板范文
★ 大学生数学建模论文范文
高中数学是培养高中升思维能力的重要的学科,也是高考考试中占重要地位的一门学科,如何才能提高数学教学的有效性呢?本文是我为大家整理的高中数学有效性教学研究论文,欢迎阅读! 高中数学有效性教学研究论文篇一:高中数学作业的有效性 一切实把握好“度”。 教师要认真钻研教材,正确掌握教学目标和学生实际,认真挑选与教学目标密切关联的作业内容,合理安排作业的量,正确把握作业的难易度,哪些是必做题,哪些是选做题。让学生根据自己的知识水平量力而行。 二做好作业前期准备。 作业前期准备有学生和教师的准备。学生首先认真阅读课本,本节知识点有哪些,需要掌握到什么程度,知识点之间有什么联络,研究例题,反思老师怎么分析、怎么讲解、怎么板书。其次反思本节知识难点的分解,反思所涉及的数学思想。最后再做作业。教师根据所任教班级的学生学情来把握是否有必要题意解释,适当地点拨,甚至详讲。 三精选作业内容。 1.选择涉及本节知识的部分较易的作为作业。如:学习全集补集概念课后布置作业:1若C∪A={5},则5与U,A的关系如何2已知全集U={1,2,3,4,5,6},C∪A={5,6},则A=____2.选择以涉及本节知识为主,但相对稍难的作为选作作业。例如,学习全集补集概念课后布置作业:已知 *** A={1,3,x},B={1,x2},设全集为U,若B∪〔UB=A,求〔.选择以章节知识为主,但具有一定的综合性、拓展性的作为章节复习作业。例如, *** 复习课后布置作业:设全集U={x∈N+|x≤8},若A∩C∪B={2,8},C∪A∪C∪B={1,2,3,4,5,6,7,8},求 *** A 四精选题型 要注重变式题、同类题、多解题、易错题、探究题题型的精选。1.变式题变式题指对原命题交换条件和结论或变换部分条件得出新题。这类题型有助于学生开阔思路,思维灵活多变,培养解题的灵活性,思维的发散性以及创新能力。例如,学习空间图形的基本关系与公理后布置作业:在平面几何中,对于三条直线a,b,c存在下面三个重要命题:若a‖b,b‖c,则有a‖c;若a⊥c,a‖b则有b⊥c:若a⊥c,b⊥c则有a‖b,它们都是真命题,若把a,b,c换成i不在同一个平面内的三条直钱,ii三个平面α,β,γ,iii其中两条直线换成两个平面,另一条还是直线,iv其中一条直线换成平面,另两条还是直线。一共可得到16个不同的命题,其中将正确的命题写在空白处。2.同类题同类题指具有多题一解的一类题。这类题型让学生领悟一类题解题的一般规律,加深对知识的理解,培养类聚思维,化归思想。例如,学习了简单的幂函式后布置作业:1已知fx+2f1x=2x,求fx的解析式。2若函式fxgx分别是R上的奇函式,偶函式,且满足fx-gx=x3+2x2+1求fx的解析式。3.多解题多解题是指是有多种解法的一类题。这类题型可以开拓学生解题思路,激发学生发散性思维和创新能力。但要注意多解不是目的,主要是能从多解中寻求最佳解法。例如,学习完直线与圆的位置关系后布置作业:已知x,y满足x+y=3,求证:x+52+y-22≥184.易错题易错题是一类具有隐含条件,解题稍一疏忽,就会因考虑不周到而失误的题目。这类题型能够考察出学生考虑问题是否全面,思维是否缜密。例如,在学习了 *** 间的基本关系后布置作业:已知 *** A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B哿A,求实数m的取值范围没有考虑B=Φ时的特殊情况而失误在学习了导数后布置作业求过点P1,2且与曲线fx=x3-2x+3相切的直线方程。没有考虑P不是切点的情况而失误5.探究题探究题是指提供情境,从中发现问题进行探究的一类问题。这类题型可以培养学生观察能力与思维能力,分析问题和解决问题能力。例如,学习完指数函式后布置作业:fx是定义在R上的函式,且满足fx•gx=fx+y,当x>0时,fx>1,f0≠0,求证:1f0=1;2fxf-x=1;3当x<0时,0 五做好作业的指导 对学生作业的指导是提高有效性的重要保证。成绩好的学生往往喜欢独立思考,独立完成作业;而成绩不理想的学生往往不善于独立思考,喜欢依赖别人。教师要根据学生在课堂上掌握情况预知作业进展情况,预料学生做作业时可能存在的问题,布置作业前在课堂上进行提示或讲解,之后学生再做作业,效果会更好一些,真正达到做作业的实效。 六改进作业的评价 批改作业,教师要做到及时,认真,把批改作业中发现的问题,错误以及所犯错误的数量,性质进行记录分析,并在下一次课中有针对性的指出,纠正。教师往往对作业评价只打“√”或“×,这样不利于调动学生学习的积极性。教师应改变对作业简单地打“√”或“×”的评价方式。可以改“×”为在出错的地方打“?”或提示语的方式,使学生明确错在何处或何因出错。根据学生作业情况反馈资讯及时作出正确评价。对于优秀作业或解题有创意的作业用赞美的语言或采用优秀作业展览的形式来激励学生。总之,让学生感受到老师的关爱,以及自己勤奋严谨获得的成功,增加学好数学自信心。 作者:姜长虹 单位:内蒙古扎兰屯第一中学 高中数学有效性教学研究论文篇二:高中数学教学模式 一、在高中数学实现有效的教学模式的意义 高中数学是培养高中升思维能力的重要的学科,也是高考考试中占重要地位的一门学科。纵观高中数学的内容,我们发现高中数学的难度比较大,单单依靠学生自学是无法完全掌握这门学科的,还需要教师对于知识的归纳和总结,提供给学生一种解题的思维和技巧。因此在提高高中数学课堂的有效性显得尤为重要。实现高中课堂学习的有效性,可以提高学生学习的效率。高中课程的学习不同于初中课程,高中每门课程的难度都比较大,要全面兼顾好每门课程的学习,因此学习效率对于高中生而言尤为重要,只有提高了学生的学习效率,学生才有更多的时间用于身体锻炼和学习更多的内容,这样才能培养全面的人才,贯彻新课改的要求。 二、如何实现高中数学有效的教学模式 一高中数学教师要创新教学模式,改变沉闷的教学氛围。在传统的高中数学教学模式之中,教师往往忽视教学氛围对于学生学习的重要作用,在枯燥的教学环境中,学生往往对课程的学习也不感兴趣。因此为了使高中数学课堂更加高效率,教师在教学模式上也要创新和改革,改变以往不符合学生学习规律的教学方法,建立起新的教学模式,活跃课堂气氛,提高学生学习的积极性。例如教师在教学生抛物线这个知识点的时候,老师可以在上课时,用一根粉笔,直接用手将粉笔往上抛,以这种生动的形式来作为课堂导课。这样不仅仅在一瞬间抓住了学生的注意力,还能够让学生将今天所学的知识与自己的生活实际联络在一起,不仅仅体现了新课改的要求,还极大的激发了学生学习的兴趣。 二高中数学教师要以学生作为教学的主体,给予学生更多的关注和鼓励。总所周知,学生对于这个老师的好感与学好这门课程是密切相关的,因此,教师要和学生建立良好的师生关系。高中数学的知识点比较难,考验学生较强的思维能力,但是很多学生在面对高中数学时常常有挫败感和恐惧感,这些挫败感和恐惧感极大的阻碍了学生学习高中数学。因此高中数学老师在教学中应该这样做,例如,在为学生讲述数列这一个知识点的时候,要求学生做相应的基础知识的练习,刚开始对学生要求做的练习的难度不应该太大,慢慢培养学生的成就感和对于高中数学的喜爱。除此之外,教师在教授课程的速度也不应该太快,要考虑到学生的接受能力,对于那些数学基础比较差的学生,教师要有足够的耐心去教,不要随意放弃任何一位学生,对于基础差的,跟不上全班学习进度的学生,高中数学教师可以为这些学生在课前找一些基础的练习题,让这些学生提前练习,学会笨鸟先飞,逐步跟上全班的数学水平。 三高中数学教师要创新自我的课堂教学设计,善于使用肢体语言让学生得到肯定。在新课改的背景下,高中数学教师不仅仅作为一名传授课堂知识的工作者,还要学会如何有效地将课堂知识传授到学生的身上,让学生真正的掌握知识。课堂知识的传授不在于教师讲授了多少,而在于学生吸收了多少。在创新课堂教学设计中,例如高中教师在讲授函式的单调性的时候,可以采用设问的方法,让学生主动思考,例如,教师可以让学生回答一次函式的单调性,然后再想想我们所学的函式方程,他们的单调性又存在什么特点,通过问题教学法,层层的问题的设定,让学生在思考问题中自己发现函式单调性的内在规律,除此之外,教师在教学的过程中,要常常对学生微笑,运用肢体语言给予学生更多的鼓励和肯定,让学生在学习中逐渐找到自我的学习方法和成就感。 作者:黄兵 单位:贵州省遵义县第一中学 高中数学有效性教学研究论文篇三:高中数学的有效教学 一、采取恰当的教学方法 高中数学这门学科虽然是一门对逻辑性思维具有较高要求的一门学科,但是在整个的教学过程中,笔者认为教师还应该积极地根据教学的不同内容和知识特点采取不一样的教学方法,从而更好地促进学生的能力发展和实现有效教学这一目标.所谓采取恰当的教学方法具体而言就是要根据函式和三角函式这一类的知识点采取数形结合、讲练结合的方式来开展教学;要根据立体几何的立体空间特点引导学生通过观察立体图形的方式开展教学;要根据 *** 、命题、概率等内容采取透析概念、侧重语言文字转化为数学语言的方式来开展教学;等等. 通过这样一系列的各种各样的方式,将有效地提升学生的认识,引导学生分别从不同的方面找出不同的思考方式,从而更好地开展高中数学教学,有效地提升学生对知识的理解.例如,在讲“ *** ”时,教师要注意加强对 *** 、元素、子集、 *** 的特征等概念的学习,加强学生对 *** 的基本运算交集、补集、并集的概念区分.特别是要引导学生对 *** 内元素的互异性这一具体运用以及具体的教学例子的讲解,帮助学生获得提升和发展.通过这样一种细化不同知识点的方式,将有效地提升学生对 *** 内各个概念的理解,也将更好地提升整个教学的效率,从而实现高中数学有效教学. 二、注重教学的启发性 高中数学这门学科因为具有很强的逻辑性所以对学生的思维发展是一个挑战,也是一个重要的契机.所以,在整个的教学实施过程中,笔者认为教师还应该积极地引导学生在教学实施的过程中注重教学的启发性,从而更好地发散学生的思维,促进学生的创新行思维和经纬网式的综合性思维的发展.在教学过程中,教师要注意通过一些具有启发性的题目和内容来锻炼学生的思维,鼓励学生去探究有关的知识点和激励学生去思考,激发学生的潜力。这样一改,学生能够在第一眼就发现这个题目解答的最便捷方法就是属性结合,可以将已知内容看做一个圆,而需要求解的内容则是一条直线.然后就是求解该直线与圆之间相交的范围.随后,教师再引导学生切入到之前的题目中,从而更好地激发学生的思维,有效地启发了学生思考. 作者:陈督武 单位:浙江乐清市白象中学 看过" 高中数学有效性教学研究论文"的还:
国内外对错题提前干预研究现象。可以将错误这一资源进行有效利用,进而使学生能够真正的理解知识,并且能够将所学到的知识得到更深层次的掌握。近些年来,随着课程改革的不断深入,众多教师从不同的层面对教学策略进行研究和分析,目的就是有效推动课堂教学效率能够得到进一步的提升。该篇文章以数学学科作为例子,阐述了学生在学习过程中常会出现哪几种易错题型,并就如何对学生的易错题型进行提前干预提出几点具体可行的方法措施。学生对与该题型相关的基础知识理解不透彻、对问题考虑不周全等等,都导致在解题的时候出现各种各样的失误。随着教学改革的不断深入,教师从学生的认知角度来分析易错题产生的原因,并且利用易错题为工具,对易错题进行提前干预,以达到减少学生错误率,提高学生学习效率的目的。
初中数学易错题形成原因与破解策略论文
在学习和工作的日常里,大家对论文都再熟悉不过了吧,论文是探讨问题进行学术研究的一种手段。你知道论文怎样才能写的好吗?下面是我收集整理的初中数学易错题形成原因与破解策略论文,希望能够帮助到大家。
摘要: 文章对一些常见的易错题出现的原因进行分析探究,希望能对初中学生数学易错知识点的学习和教师易错题的教学有所帮助,加深学生对基础知识的理解和解题技巧的掌握,为学生数学思维严密性的训练提供方法途径,加强对学生逻辑思维能力的培养。
关键词: 初中数学;典型易错题;成因探究;
对具有代表性的例题的讲解,能让学生在掌握解题思路和解题方法与技巧的同时,掌握与例题类似的同类习题的解法。“授之以鱼,不如授之以渔”,一种解题方法与技巧的掌握比做一百道题更有效率,更加实用。所以在初中数学教学中,教师应善于利用学生的易错题,帮助他们找到正确的解题方法、思路和技巧。
一、易错题教学的意义
易错题的出现通常会暴露很多小问题,所以教师应善于观察、仔细留意和寻找发现那些学生在解题过程中,思路混乱、思维不严密、叙述不严谨的习题,将这类学生容易出错的习题作为讲解范例,通过对易错题范例的讲解,帮助学生分析得出习题出错的原因,抓住出错原因进行纠错改正,完成对以前所学知识的查漏补缺,重新带领学生回顾复习容易出错的知识点和内容。这样做的目的不仅仅是让学生对错题进行改正,更是在纠错改错的过程中认真反思出错的根本原因,杜绝同类错误的再次发生,有助于培养学生在日常学习中养成良好的学习思考习惯。
二、初中数学易错题成因剖析
(一)忽视概念理解
数学概念的学习是解题的基础也是解题的依据,一些学生对概念的掌握模糊不清、理解不到位,解题时对概念的使用生搬硬套,使用错误概念解析题目,方法与题目不匹配。因为在初中数学学习中,很多知识点的概念之间是存在内在关联的,但是,如果学生无法理清楚知识点、概念之间的差异和不同,很容易发生记忆错误或者混乱,在解题或者理解题目的时候,很容易偷换概念,导致解题错误或者无法顺利解题。
(二)审题不清,滥用条件
因为审题不仔细,看漏、看错题中所给条件,导致错误解答。对于综合性问题的解决,考虑不全面,局限于题目中列出的条件,缺乏深度思考能力和信息挖掘能力,忽视所给条件的适用范围。在解二次方程、二次函数相关题目时,常常会忽略题目中所包含的隐藏条件,例如二次项系数不可为零、根的判别式大于等于零等等。初中阶段的学生本身心理不够成熟,他们不够沉着冷静,尤其是大部分学生会表现出比较马虎,不够认真、仔细等心理特征,在读题或者审题的时候,还没有理解清楚题目,就直接动手开始解题,最终导致问题理解不清楚,解答的过程出现错误,整个计算结果不正确。
(三)忽视解题的全面性
当数学问题所给的条件变化后,随之改变的是问题的结果和结论,那么就需要对题目进行分类讨论,全面考虑所有可能发生的情况和可能得出的结果。通过对问题进行全面的讨论、分类,不重不漏,才能得到完整的答案。在条件多变的题目中,学生往往会漏掉其中的一些情况,导致答案的`不完整和错解。
三、初中数学易错题的破解策略
(一)教学过程经验的总结
教师在对某一部分易错数学知识点进行讲解时,对学生可能出现的错误和容易混淆的知识点重点讲解,注重学生对概念的理解,仔细区分混淆概念间的异同,并加以强调,控制预防易错题的出现。在课堂练习中普遍出现的问题,尽量在课堂上解决,现场批改,及时剖析、及时纠正,加深学生对于易错题的记忆。坚持教师讲课和学生自练相结合,在讲解与练习中吸取经验教训,提高数学逻辑思维水平。课后结合课堂表现对暴露的问题进行小结,总结典型性错误,客观点评学生的课堂表现,反思教学,引导学生不断总结经验,在总结中形成较强的数学解题逻辑能力。
(二)运用范例、比较分类
概念理解不到位、知识迁移能力不强、粗心大意等原因都会造成题目的错解。这就需要教师在平时的教学过程中,通过对教材的分析、典型错误的剖析、错因的寻找和归纳总结、上好错题分析课等,发现问题所在,吸取教训。在单元和章节的学习后,指导学生以不同的形式和原因把错题进行分类,整理出代表性习题,分析对照正误解题过程,反思自身学习行为,加深对所学知识的记忆,查漏补缺弥补薄弱环节。
四、结语
初中数学教学工作中易错题的教学,对学生初中数学易错知识点的学习和教师易错题教学有所帮助,可以重新带领学生回顾复习出错的知识点和内容,杜绝同类错误的再次发生,加深了学生对基础知识的理解和解题技巧的掌握,加强了对学生逻辑思维能力的培养。所以在初中数学教学中,教师应善于利用学生的错题和易错题,让他们在改错中找到正确的解题方法、思路和技巧,在此过程中不断巩固、加深对基础知识的理解。
五、参考文献
[1]李维国.初中数学典型易错题成因分析[J].甘肃教育,2017(7).
[2]蒯海峰.初中数学典型易错题的分析及对策[J].中学数学月刊,2016(8).