首页

职称论文知识库

首页 职称论文知识库 问题

9位院士发表人工智能论文

发布时间:

9位院士发表人工智能论文

小西:小迪小迪,我发现人工智能发展史上很多事情都跟下棋有关呐。 小迪:是啊,人工智能发展史还是要从下棋说起,棋类游戏很多时候都被人类看做高智商游戏,在棋类游戏中让机器与人类博弈自然再好不过了。早在1769年,匈牙利作家兼发明家Wolfgang von Kempelen就建造了机器人TheTurk,用于与国际象棋高手博弈,但是最终被揭穿,原来是机器人的箱子里藏着一个人。虽然这是个,但是也体现了棋类游戏是人机博弈中的焦点。 小西:哇,这么早啊! 小迪:是啊,在1968年上映的电影《2001太空漫游》里,有个情节是机器人HAL与人类Frank下国际象棋,最终人类在机器人面前甘拜下风。 小西:哈哈,看来很早人们就觉得有一天,机器人会在下棋方面超过人类哦。 小迪:是啊,直到1997年,IBM的深蓝智能系统战胜了国际象棋世界冠军Kasparov,这是一次正式意义上的机器在国际象棋领域战胜了人类。不过,当时时代杂志发表的文章还认为,计算机想要在围棋上战胜人类,需要再过上一百年甚至更长的时间。因为围棋相比于国际象棋复杂很多,而IBM的深蓝也只是一个暴力求解的系统,当时的计算机能力在围棋千千万万种变化情况下取胜是不可能的。 小西:后来我知道。没有过100年,20年后AlphaGo在20年后的2016年打败了围棋高手李世石,这下人工智能引起了全世界的关注。 小迪:恭喜你,学会抢答了! 小西:哈哈,过奖过奖。除了下棋,人工智能发展史上有没有什么特别著名的事件或者有名的大师呢,快给我科普科普呀! 小迪:那可就太多了啊,无数科学家默默地耕耘才有了今天智能化的社会,三天三夜都说不完。我就说说近些年火爆的深度学习的发展史吧。 小西:好,洗耳恭听呢! 感知器的发明 1943年Warren McCulloch和Walter Pitts一起提出计算模型,在1957年康奈尔大学的Frank Rosenblatt提出了感知器的概念,这是整个深度学习的开端,感知器是第一个具有自组织自学习能力的数学模型。Rosenblatt乐观地预测感知器最终可以学习,做决定和翻译语言。感知器技术在六十年代非常火热,受到了美国海军的资金支持,希望它以后能够像人一样活动,并且有自我意识。 第一次低潮 Rosenblatt有一个高中校友叫做Minsky,在60年代,两人在感知器的问题上吵得不可开交。R认为感知器将无所不能,M觉得感知器存在很大的缺陷,应用有限。1969年,Minsky出版了新书《感知器:计算几何简介》,这本书中描述了感知器的两个重要问题: 单层神经网络不能解决不可线性分割的问题,典型例子:异或门;当时的电脑完全没有能力承受神经网络的超大规模计算。 随后的十多年,人工智能转入第一次低潮,而Rosenblatt也在他43生日时,因海事丧生,遗憾未能见到神经网络后期的复兴。 Geoffrey Hinton与神经网络 1970年,此时的神经网络正处于第一次低潮期,爱丁堡大学的心理学学士Geoffrey Hinton刚刚毕业。他一直对脑科学非常着迷,同学告诉他,大脑对事物和概念的记忆,不是存储在某个单一的地方,而是分布式的存在一个巨大的神经网络中。分布式表征让Hinton感悟很多,随后的多年里他一直从事神经网络方面的研究,在爱丁堡继续攻读博士学位的他把人工智能作为自己的研究领域。 Rumelhart与BP算法 传统的神经网络拥有巨大的计算量,上世纪的计算机计算能力尚未能满足神经网络的训练。1986年7月,Hinton和David Rumelhart合作在Nature杂志上发表论文系统地阐述了BP算法: 反向传播算法(BP)把纠错运算量下降到只和神经元数目有关;BP算法在神经网络中加入隐层,能够解决非线性问题。 BP算法的效率相比传统神经网络大大提高,计算机的算力在上世纪后期也大幅提高,神经网络开始复苏,引领人工智能走向第二次辉煌。 Yann Lecun与卷积神经网络 1960年Yann Lecun在巴黎出身,在法国获得博士学位后,追随Hinton做了一年博士后,随后加入贝尔实验室。在1989年,Lecun发表论文提出卷积神经网络,并且结合反向传播算法应用在手写邮政编码上,取得了非常好的效果,识别率高达95%。基于这项技术的支票识别系统在90年代占据了美国接近20%的市场。 但也是在贝尔实验室,Yann Lecun的同事Vladmir Vapnik的研究又把神经网络的研究带入了第二个寒冬。 Hinton与深度学习 2003年,Geoffrey Hinton在多伦多大学苦苦钻研着神经网络。在与加拿大先进研究院(CIFAR)的负责人Melvin Silverman交谈后,负责人决定支持Hinton团队十年来进行神经网络的研究。在拿到资助后,Hinton做的第一件事就是把神经网络改名为深度学习。此后的一段时间里,同事经常会听到Hinton在办公室大叫:“我知道神经网络是如何工作的了!” DBN与RBN 2006年Hinton与合作者发表论文——《A Fast Algorithm for Deep BeliefNet》(DBN)。这篇文章中的算法借用了统计力学中“波尔兹曼分布”的概念,使用了所谓的“受限玻尔兹曼机”,也就是RBN来学习。而DBN也就是几层RBN叠加在一起。RBN可以从输入数据进行预训练,自己发现重要的特征,对神经网络的权重进行有效的初始化。这里就出现了另外两个技术——特征提取器与自动编码器。经过MNIST数据集的训练后,识别错误率最低降到了只有1.25%。 吴恩达与GPU 2007年,英伟达推出cuda的GPU软件接口,GPU编程得以极大发展。2009年6月,斯坦福大学的Rajat Raina和吴恩达合作发表文章,论文采用DBNs模型和稀疏编码,模型参数高达一亿,使用GPU运行速度训练模型,相比传统双核CPU最快时相差70倍,把本来需要几周训练的时间降到了一天。算力的进步再次加速了人工智能的快速发展。 黄仁勋与GPU 黄仁勋也是一名华人,1963年出生于台湾,在1993年于斯坦福毕业后创立了英伟达公司,英伟达起家时主要做图像处理芯片,后来黄仁勋发明GPU这个词。相比于CPU架构,GPU善于大批量数据并行处理。而神经网络的计算工作,本质上就是大量的矩阵计算的操作,GPU的发展为深度学习奠定了算力的基础。 李飞飞与ImageNet 深度学习的三大基础——算法,算力和数据。上面提到的主要是算法与算力的发展,而数据集在深度学习发展也起到了至关重要的作用。又是一位华人学者——李飞飞,于2009年建立ImageNet数据集,以供计算机视觉工作者使用,数据集建立的时候,包含320个图像。2010年,ILSVRC2010第一次举办,这是以ImageNet为基础的大型图像识别大赛,比赛也推动了图像识别技术的飞速发展。2012年的比赛,神经网络第一次在图像识别领域击败其他技术,人工智能步入深度学习时代,这也是一个历史性的转折点。 Yoshua Bengio与RELU 2011年,加拿大学者Xavier Glorot与Yoshua Bengio联合发表文章,在算法中提出一种激活函数——RELU,也被称为修正线性单元,不仅识别错误率普遍降低,而且其有效性对于神经网络是否预训练过并不敏感。而且在计算力方面得到提升,也不存在传统激活函数的梯度消失问题。 Schmidhuber与LSTM 其实早在1997年,瑞士Lugano大学的Suhmidhuber和他的学生合作,提出了长短期记忆模型(LSTM)。LSTM背后要解决的问题就是如何将有效的信息,在多层循环神经网络传递之后,仍能传送到需要的地方去。LSTM模块,是通过内在参数的设定,决定某个输入参数在很久之后是否还值得记住,何时取出使用,何时废弃不用。 后记 小迪:其实还有好多有突出贡献的的大师,要是都列出来可以出一本很厚很厚的书啦! 小西:这些大师都好厉害呀,为了我们的智能化生活体验,辛勤付出了一辈子。 小迪:是啊,还有很多学者默默无闻地工作,一生清苦。 小西:他们都好伟大,有突出贡献的都应该发奖发奖金,对对对,诺贝尔奖! 小迪:哈哈。诺贝尔奖多数是为基础学科设立的。不过计算机界也有“诺贝尔奖”——图灵奖,这可是计算机界最高奖项哦!2019年3月27日,ACM宣布,Geoffrey Hinton,Yann LeCun ,和Yoshua Bengio共同获得了2018年的图灵奖。 小西:太棒了,实至名归! 小迪:当然,图灵奖在此之前也授予了很多在人工智能领域的大牛,像Minsky,John McCarthy这些,还有华人科学家,现在在清华大学任职从事人工智能教育的姚期智先生在2000也获得过图灵奖呢! 小西:大师们太不容易了,我们也要好好学习呀! 小迪:是呀!如今我们站在巨人的肩膀上,许多人都可以接触到深度学习,机器学习的内容,不管是工业界还是学术界,人工智能都是一片火热! 小西:希望这一轮人工智能的兴起不会有低潮,一直蓬勃发展下去,更好地造福人类。 小迪:嗯!

2017年,我国制定了《新一代人工智能发展规划》,描绘了未来十几年我国人工智能发展的宏伟蓝图,确立了 “三步走” 目标:

可以说中国的人工智能领域在世界排名第二,这是由于在人工智能领域的国际科技论文发表量和发明专利授权量已居世界第二,依托于庞大的网络和用户,国内拥有先进的语音、视觉、传感等人工智能相关领域的技术优势。

科技竞争的胜负不仅决定国家命运,也决定未来全球经济竞争格局的走向。未来,人工智能,将在推动各国经济发展以及产业升级道路中扮演重要角色。

近日,China Daily在文章"Artificia Intelligence Accelerating Nation's Industrial Upgrade Efforts"(《人工智能加速中国产业升级》)中提及,中国人工智能技术发展势头日益增强,已广泛应用于各个领域。

文章认为,在过去五年里,中国在人工智能领域取得了巨大的进步,中国在全球人工智能相关专利申请数量上超过了美国,而作为在中国人工智能专利申请量中排名第一的百度,在中国人工智能产业发展中扮演了重要角色,成为我国产业智能化升级的中坚力量。2017年,由李彦宏带领的百度被国家选中牵头成立深度学习技术及应用国家工程实验室,以解决中国人工智能基础支撑能力不足等问题,全方面提升中国人工智能领域整体竞争力。

文章中提到,人工智能迅速改变了人们的生活方式和生产方式,在城市规划、智能交通、社会管理、医疗保健、国家安全等领域有着广泛的应用。对于大众来说,自动驾驶的普及程度,成为最直观衡量城市是否向智能化转型的标准之一。在今年9月的百度世界大会上,李彦宏预测,未来5年内,自动驾驶将全面商用,中国的很多城市拥堵将大大缓解,不再需要限购限行。最近,百度在北京等数个城市开放的Apollo Go自动驾驶出租车服务,也成为China Daily关注的话题。

同样在今年,全球知名调研机构Navigant Research将百度Apollo列为全球自动驾驶领域四大“领导者”之一。今年2月加州车辆管理局(DMV)公布的自动驾驶脱离报告中,百度Apollo超越谷歌Waymo和通用Cruise,位列全球提交报告的60家公司中的第一名,中国速度可见一斑。

人工智能也将在推动全球经济中发挥巨大作用,预计到2030年,人工智能对全球经济的贡献将从2018年的2万亿美元跃升至15.7万亿美元。李彦宏认为 :AI驱动的智能经济将成为经济增长的新引擎,AI将从人机交互、基础设施和行业应用三个方面对社会、经济和生活产生深远影响。

百度表示,将继续开展人工智能核心领域的研究,为中国科技创新贡献力量,积极推动人工智能在更多垂直领域的应用。报道也提及阿里巴巴、腾讯等企业巨头,矿视科技、云从科技等初创企业也将在人工智能领域深耕。在全球竞争格局进入新赛道之下,这些中国企业的持续发力,将为中国经济在全球格局中持续领跑提供强劲动力。

人工智能博士论文发表

带队力压微软、谷歌、FB三大巨头夺得全球竞赛冠军,孙剑是著名的图像识别深度残差网络ResNet发明人之一,拥有超过40项专利,顶级学术会议和期刊上发表学术论文100余篇。

据科技宣布讣告,该公司首席科学家、广视研究院院长孙剑因突发疾病抢救无效去世,享年45岁。 作为资深的人工智能领域专家,孙剑的去世是我国科技界的一大损失。 孙剑主要研究计算机摄影学、人脸识别等技术,他发明的残差网络技术力压微软、谷歌、FB三巨头,在世界大赛中胜出。 此外,孙剑还拥有40多项专利技术,发表权威论文100多篇。 孙剑毕业于西安交通大学,完成了学士、硕士和博士学位的学习。

在毕业后,他进入著名的微软亚洲研究院,通过自己的不断努力,担任微软研究院首席研究员,主要从事计算机摄影学和人脸识别等研究,取得了骄人的成绩。 在孙剑的不断创新和奋斗下,逐渐在人工智能领域崭露头角,并得到业界的认可,为自己的事业发展奠定了坚实的基础。 孙剑于1976年10月~2022年6月14日毕业于西安交通大学人工智能机器人研究所。

生前是矿山首席科学家,世界研究院院长,全面负责世界技术开发,发展成为世界最大规模的计算机视觉研究院。 在孙建博士的指导下,矿石研究院开发出包括移动端在内的高效卷积是神经网络。 开源深度学习框架、天元AI生产力平台等多项创新技术引领前沿人工智能APP应用。 孙剑博士的主要研究方向是计算机视觉和计算机摄影学,拥有40多项专利,2022年以来在顶级科学学术研讨会和期刊上发表学术论文100多篇。

孙建博士是世界人工智能领域著名科学家,西安交通大学优秀毕业生,西安交通大学人工智能学院首任院长,为世界人工智能发展做出了里程碑式的贡献。

在这个领域发表了特别多的论文,而且参加了很多研讨会,而且也做出了特别多的贡献,是一个科研工作者,也获得了特别多的奖项,也培养了很多人才。

在很多平台上面发表了学术论文,将近发表了100多篇,而且还获得了最佳论文奖,而且也是很多国家重点计划的重点负责人,也培育了很多人才。

您好,可以安排各专业的核心期刊,SCI、EI、南北核心等,希望我的回答对您有帮助,望采纳!!!

人工智能发论文

自从计算机诞生以来,计算机的发展十分迅猛快速,而且计算机的运算速度已经超过了人脑的运算速度。目前对于计算机科学的研究已经出现了很多的分支,其中的人工智能在整个计算机科学领域中也是一个十分热门的课题。以下是我整理分享的人工智能发展的结课论文的相关资料,欢迎阅读!

浅谈人工智能技术的发展

摘要:自从计算机诞生以来,计算机的发展十分迅猛快速,而且计算机的运算速度已经超过了人脑的运算速度。目前对于计算机科学的研究已经出现了很多的分支,其中的人工智能在整个计算机科学领域中也是一个十分热门的课题。本文从人工智能的概念开始,对人工智能的发展进行讲述,并从哲学的角度对人工智能能否超过人的智能这个问题进行了分析。

关键词:人工智能 发展 智能

1、人工智能的概念

人工智能(Artificial Intelligence,简称AI)是计算机科学的一个分支,它探究智能的实质,并以制造一种能以人类智能相类似的方式做出反应的智能机器为目的。人工智能的产生和发展首先是一场思维科学的革命,它的产生和发展一定程度上依赖于思维科学的革命,同时它也对人类的 思维方式 和 方法 产生了深刻的变革。人工智能是与哲学关系最为紧密的科学话题,它集合了来自认知心理学、语言学、神经科学、逻辑学、数学、计算机科学、机器人学、经济学、社会学等等学科的研究成果。过去的半个多世纪以来人工智能在人类认识自身及改造世界的道路上扮演了重要角色。一直以来,对人工智能研究存在两种态度:强人工智能和弱人工智能,前者认为AI可以达到具备思维理解的程度,可以具有真正的智能;后者认为研究AI只是通过它来探索人类认知,其智能只是模仿的不完全的智能。

2、人工智能的发展

对于人工智能的研究一共可以分为五个阶段。

第一个阶段是人工智能的兴起与冷落,这个时间是在20世纪的50年代。这个阶段是人工智能的起始阶段,人工智能的概念首次被提出,并相继涌现出一批科技成果,例如机器定理证明、 跳棋 程序、LISP语言等。由于人工智能处于起始阶段,很多地方都存在着缺陷,在加上对自然语言的翻译失败等诸多原因,人工智能的发展一度陷入低谷。同时在这一个阶段的人工智能研究有一个十分明显的特点:对问题求解的方法过度重视,而忽视了知识重要性。

第二个阶段从20世纪的60年代末到70年代。专家系统的出现将人工智能的研究再一次推向高潮。其中比较著名的专家系统有DENDAL化学质谱分析系统、MTCIN疾病诊断和治疗系统、Hearsay-11语言理解系统等。这些专家系统的出现标志着人工智能已经进入了实际运用的阶段。

第三个阶段是20世纪80年代。这个阶段伴随着第五代计算机的研制,人工智能的研究也取得了极大的进展。日本为了能够使推理的速度达到数值运算的速度那么快,于1982年开始了“第五代计算机研制计划”。这个计划虽然最终结果是以失败结束,但是它却带来了人工智能研究的又一轮热潮。

第四个阶段是20世纪的80年代末。1987年是神经网络这一新兴科学诞生的年份。1987年,美国召开了第一次神经网络国际会议,并向世人宣告了这一新兴科学的诞生。此后,世界各国在神经网络上的投资也开始逐渐的增加。

第五个阶段是20世纪90年代后。 网络技术 的出现和发展,为人工智能的研究提供了新的方向。人工智能的研究已经从曾经的单个智能主体研究开始转向基于网络环境下的分布式人工智能研究。在这个阶段人工智能不仅仅对基于同一目标的分布式问题求解进行研究,同时还对多个智能主体的多目标问题求解进行研究,让人工智能有更多的实际用途。

3、人工智能可否超过人的智能

那么人工智能可否超过人的智能呢?关于这个问题可以从下面几个方面来分析:

首先,从哲学量变会引起质变的角度来说,人工智能的不断发展必定会产生质的飞跃。大家都知道,人工智能从最初的简单模拟功能,到现在能进行推理分析 (比如计算机战胜了 国际象棋 世界冠军),这本身就是巨大的量变。在一部科幻电影中,父亲把儿子生前的记忆输人芯片,装在机器人中,这个机器人就与他的儿子死去时具有相同的思维和记忆,虽然他不会长大。从技术的角度来说,科幻电影中的东西在不久的将来也可以成为现实。到那个时候,真的就很难辨别是人还是机器了。

第二,有的人会说,人工智能不会超过人的智能,因为人工智能是人制造出来的,所以不可能超过人的智能。对于这个观点,我们这样想一想,起重机也是人造出来的,它的力量不是超过人类很多吗?汽车也是人制造出来的,它的速度不也远超过人类的速度吗?从科学技术的角度来说,智能和力气、速度一样,也是人的某个方面的特性,为什么人工智能就不能超过人类的智能呢?

第三,还有的人认为,人工智能是人制造的,必有其致命的弱点,所以人的智能胜于人工智能。我认为这一点也不成立,因为人与机器人比较,也可以说有致命弱点,比如说人如果没有空气的话,就不能生存,就好比是机器人没有电一样。再比如,人体在超过一定的温度或压力的环境下,不能生存,在这一点上,机器人却可以远胜于人类。因此,在弱点比较方面,我认为人工智能的机器人并不比人差,在某些方面还远胜于人类。

第四,随着科学技术的发展,人工智能不单需要 逻辑思维 与模仿。科学家对人类大脑和精神系统研究得越多,他们越加肯定情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能不仅在于赋予它情感能力。

4、结束语

人工智能一直处于计算机技术的前沿,其研究的理论和发现在很大程度上将决定计算机技术、控制科学与技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和 教育 等带来更大的影响。

下一页分享更优秀的<<<人工智能发展的结课论文

智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。以下是我整理的人工智能的论文的相关 文章 ,欢迎阅读!

建筑智能化设计的相关探讨

【摘要】智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。智能化系统在智能建筑中起着重要的作用,在管理过程中,要科学管理、综合考究、有效安排、合理利用。以求达到最佳效果,确保建筑项目安全施工。本文将综合阐述有关智能建筑中智能化系统的设计概念、以及在设计和施工的过程中应该注意的相关问题。

【关键词】智能建筑;智能化系统;设计

一、建筑智能化系统的设计原则

(一)先进性。智能建筑的智能化系统是随着信息电子科学技术的发展而不断发展的,因此,在系统设计时应当分析智能化系统的发展状况,吸收开放的先进设计理念,以完善智能建筑功能的发挥。

(二)可靠性。在智能化系统设计时应当采用模块化设计理念,将智能化系统的各个子系统相互隔离,以确保在部分子系统发生故障的过程中不会影响其他子系统或链路的正常运行,由此提高系统运行的可靠性。

(三)标准化。随着智能化系统的快速发展,相关的系统设计标准也相继制定。在系统设计中应当严格按照系统标准进行设计,以方便系统的施工与维护。

(四)实用性。智能化系统的设计应当能够充分实现接收有线电视、图像、监控设备、多媒体通信、安全防范、语音、数据等功能,确保其在完善用户的信息沟通与娱乐的同时能够提高用户环境的安全性。

(五)经济性。智能化系统内部包含着多个子系统,其子系统又包含多种构件和设备,因此在系统设计过程中应当在考虑质量保证的同时尽量节省投资成本。

(六)扩展性。在电子信息技术的迅速发展状况下,当前的智能化系统设计内容会出现一定程度的约束与局限。所以,在进行智能化系统设计时应当考虑设计内容的可扩展性,确保智能建筑能够在未来的技术发展下得到更新扩展。

二、建筑智能化系统的设计

(一)供电系统设计

智能化系统的子系统通常需要进行单独供电,因此需要重视供电系统的设计。一般计算机网络系统会采用UPS 进行集中供电,在不间断电源机房其供电出线也需要进行集中供电,而供电进线则满足一定的容量要求即可;对于未使用不间断电源供电的的工作站,也应当采用单独回路进行供电,以避免电路混用危害系统运行,如安全防范系统应当使用单独回路进行集中供电,以保证其与消防联动系统在应对紧急情况时能够正常工作。

(二)接地系统设计

智能建筑的接地将直接影响到设备与工作人员安全、系统工作的可靠性与稳定性、信息传输的质量等。在建筑接地系统设计时应当根据建筑的功用与智能化系统工作要求进行设计,保证能够为其在应用部位提供响应接地端。其需要安装的有静电接地系统、辅助等电位铜排、防雷接地系统、安全保护接地系统、工作接地系统、直流接地系统等部分。其包括两种接地方式:

1、联合接地方式,其在应用中需注意:由于计算机等设备的抗雷击性能不高,且其系统包含超大规模的集成电路容易造成抗高频干扰差,很可能会受到其他系统的干扰,所以应当对计算的直流电源采用单独接地的方式;在使用联合接地方式时其接地电阻有可能会大于1Ω,所以对有特殊要求的智能化子系统均要采用单独接地。

2、单独接地方式,在使用统一接地时主要利用自然接地体,若不再使用人工接地体其应当满足以下条件:接地电阻应当在1Ω以下,即小于规定值;建筑基础内部的钢筋应当互相连接形成电气通路及闭合环,且闭合环英应当与地面保持0.7m以上的距离;建筑基础表面未设置绝缘防水层。由于单独接地方式具有施工简单方便、接地可靠、节省成本等优点,因此在智能建筑接地系统设计中得到了较广泛的应用。

(三)智能化管理间与智能化竖井

通常计算机网络系统对于数据通信线路有必要的长度与性能要求,在智能建筑智能化系统设计中,一般使用铜质双绞线作为计算机系统的水平线路,而铜质双绞线会影响到网络传输的带宽,所以根据布线标准与规范,应当保证网络交换机与计算机之间使用的铜质双绞线长度在100m的范围以内;根据管路的弯度与竖直条件,智能化管理间到建筑物的边缘距离应当在60m的范围内;在网络管理间应当安置相应的网络机柜,其周围要留设合理的安装与维护空间,其平面面积应当在5~10m2之间。

(四)综合布线系统设计

在综合布线系统设计中,一般的语音电缆或水平子系统数据电缆应当采用支持带宽100M的D级别系统和5e类的UTP电缆,以满足大量用户的扩展要求;其水平线缆的总长度应当在100m范围以内,其中水平布线电缆的最佳长度为90m,电信间配线架上的跳线与接线软线长度应当不小于5m,对于情况不明确的公共空间其电缆应当按照以下公式进行计算:

C=(102-H)/1.2 W=C-5

其中H表示水平电缆的长度;C表示设备电缆、工作区电缆与电信间跳线的长度总和;W表示工作区电缆的最大长度,其值应当在22m以下;D表示设备电缆与电信间跳线的总长度。

三、目前智能建筑存在的问题

(一)国产化系统集成产品

现在占据国内智能建筑市场的产品仍然属于国外的几家公司,如美国的江森自控、IBM、朗讯科技和Honeywell等。国产系统集成产品没有主动权,这就很难使智能建筑完全真正地适应中国国情。

(二)技术障碍

在整个智能建筑领域仍然存在着一些技术上的缺陷,比如网络频宽的限制:数据传输量迅速增加和多媒体的使用,要求有宽阔的通讯空间;使用天线局域网络也要重新分配宝贵的音波频律。在新网络科技如ATM、Frame-relay等问世后,通讯空间的问题可获部分解决,但缺乏全面而完整的数据模型,各个建筑物自动化和应用系统之间仍然无法有效地交换数据。另外数据安全性和无缝话音与数据通讯之间还存在着矛盾,很多机构非常关注其内部资讯系统的安全性,以及保护其电脑和话音系统免被非法接达的问题,但如果把某建筑物隔离起来提供保护的话,就会导致无法使用更先进的通讯工具。

(三)人才缺乏

从事智能建筑的人才包括设计专门管理人才、安防产品技术支持工程师、布线、安防产品开发高级工程师、销售工程师(负责安防、综合布线产品的区域市场销售工作)、防盗报警、监控产品、大屏幕开发高级工程师、软件开发工程师(主要负责楼宇自控系统软件开发),而最为紧缺的是智能建筑系统设计管理人才。它需要懂得电子、通讯和建筑三方面专业知识的复合型人才。就智能建筑项目来说,工程的设计和施工是两个方面。而既懂工程设计,又懂施工方案的人,却是少而又少。设计与施工如何衔接和连贯好,关系到工程的进度与质量。

智能建筑是高科技的产物,智能建筑学科是多学科的交叉和融汇,人才培养应该是多层次、多方位的,只有强调理论与实践紧密结合,设计与技术紧密结合,施工与产品紧密结合,才能培养出新一代的智能建筑人才。

四、结束语

智能建筑设计中的智能化系统是一项科技水平高施工难度大的高科技建筑,无论是对智能化系统的规划还是对其进行管理,都要进行优化控制,以达到智能建筑的最优化设计。智能化系统施工设计质量好坏将直接关系着智能建筑整体质量和使用寿命。因此,相关研究和设计人员应当加强智能化系统的综合分析与管理, 总结 智能化系统施工中的 经验 与问题,以不断提高智能化系统施工设计水平和质量。

参考文献:

[1] 翟伟盛,浅谈智能化系统管理及维护,消费导刊,2009年10期

[2] 金红峰,浅谈智能化系统管理及维护的一点心得,艺术科技,2007年03期

[3] 邵胜华,智能化建筑智能化安装工程管理探究[J] 理论研究,2010(7)

下一页分享更优秀的>>>人工智能的论文

人工智能博士论文怎么发表

学术堂整理了一份在核心期刊上发表论文的技巧,供大家参考:1、投稿要对路每个刊物都有自己的办刊方针以及刊文方向.在投稿之前必须做到心中有数,首先要了解刊物的发文方向,如果刊物是社科类的期刊,那么你发数学、物理、生物这些就有点不太合适了.其次还要了解刊物的出版周期,出版周期有双月刊、季刊、月刊……有的作者可能认为出版周期是小事,是编辑部的事情,跟我们投稿有什么关系呢?这样想就打错特错了,出版周期越长说明文章见刊的时间越长,文章的录用率可能会更低一些,如果是评职称用的话,一定要参考一下出版周期,这决定了你的准备时间.再次,了解刊物的栏目.栏目决定了刊物的发文方向,一般有两种情况:一、栏目是固定不变的.那么你在发文章的时候就可以根据栏目去投稿了,比较有针对性.二、栏目是变动的,比如说今年是建国七十周年,大部分刊物会出建国的专栏,你可以根据这个栏目进行专项写稿.变动的栏目一般都在年初的时候再刊物上做一个预告,如果你有意向投稿,一定要去关注一下,避免写出来的稿件与刊物方向不符,导致退稿.最后,在投寄时最好在信封上注明栏目名称,以便于编辑人员及时准确地处理稿件.2、注意把握时机教研论文按时效性大体可分为两类:一类时效性强,与教学进度配合(例如《中学化学教学参考》的新教材教学参考,各种同步练习等),另一类时效性不强,与教学进度无关.后者什么时候投稿都行,而前者必须掌握一定的提前量,到底提前多长时间投稿,一般报刊都会通过报刊启示提醒读者和作者.正常情况下,如果报刊没有规定,与教学进度配合的稿件,双月刊、月刊应提前4-6个月.总的说来,新闻类稿件越及时越好,报刊发行周期越短,提前量相应要小些.论文发表就像是新闻报道,越新的选题越近的时间越容易被录用.但是学术期刊毕竟不是"日报",就出版周期而言,滞后性太强,你投稿的时候还是一个热点,等到出刊的时候可能已经没有话题度了.3、注意格式要规范现在大部分都是邮箱投稿,需要形成电子版文档,建议投稿之前先观察一下刊物的排版习惯,最好能够将格式调整成刊物的标准格式.如果刊物没有提供参考格式,也一定要整理一下,最起码要美观、可读.编辑部每天都会收到大量的稿件,如果每一篇文章格式都是乱的,极不方便编辑审稿,如此一来,被退稿也是很常见的.建议一定要规范格式,另外如果有基金一定要带上,提高录用率.当然,这些并不是投稿被录用的决定性因素.关键还是要看稿件的质量,提高命中率的根本还在于稿件质量.4、适当控制字数不同的刊物,对论文字数的要求不同,而且差别很大,有的喜欢长篇大论,有的喜欢短小精悍,投稿时应对各刊物发表的文章进行研究,总结归纳出一些规律,这样投稿才有针对性.一般说来,寄给报刊发表的文章,应尽量短些,选题最好小一点,内容实用些,可操作一些,让别人看了能受到启发教育或拿过来就可以用;而参加评选的论文,理论性应强些,选题可稍大点,字数亦应适当多一些,这样才能将问题说清说透.通常组织论文评选的部门下通知或发启示时,对论文选题、格式、字数都有明确要求,撰写时应充分注意,如果没有要求,笔者以为参加评选的论文字数以3000- 5000字为宜,一般不要少于3000字,也不要多于7000字,根据选题只要论述清楚了就行,不必把过多的注意力放在字数多少上.不论哪类文章,在控制字数的同时应十分注意文章的科学性和可读性.所谓科学性是指文章的观点不能出错,引用的论据资料应准确无误,论证过程应经得住推敲;所谓可读性主要是指文字表述要让人喜闻乐读,一看题目就想看内容,一看内容就让人爱不释手,非一口气读完不可,当然这不是一日之功,需要长时间磨炼,文字功底是练出来的.5、讲究投稿策略刚开始投稿的人,将稿子投出后总希望尽快得到编辑部的回音.事实上,由于编辑部每天要处理的稿件无以数计,所以,不少刊物收到稿件后常常连收稿通知都懒得发,这挫伤了不少作者的积极性.还有个别刊物大量地照顾"关系稿件",眼睛只盯住几个"名人",结果使很多新人退避三舍.但应该承认,任何刊物都会考虑自己的信誉,真正有生命力的刊物在用稿上一定会坚持认稿不认人的原则,只要稿件对路时机合适,质量属于上乘之作,任何编辑部都没有舍优求次的道理.

中山大学人工智能学院博士毕业要求是,学生需要完成一定量的课程学习,并在研究领域取得一定的成果,才能获得博士学位。学生需要完成学位论文,提出新的理论或方法,并在学术期刊上发表论文,以证明自己的研究成果。此外,学生还需要参加学术会议,发表报告,并参加研讨会,以展示自己的研究成果。最后,学生需要通过博士论文答辩,以证明自己的研究成果。总之,中山大学人工智能学院博士毕业要求是,学生需要完成一定量的课程学习,并在研究领域取得一定的成果,才能获得博士学位。

北师大人工智能博士毕业要求如下。1、北京师范大学的博士要是想毕业要求4篇以上(含4篇)学术论文公开发表(其中至少1篇为CSSCI期刊论文),或2篇以上(含2篇)学术论文在CSSCI期刊上发表。所以还是比较难的。2、论文第一作者应为博士生本人(与导师共同署名文章同视为第一作者),第一署名单位应为北京师范大学某学院。

三年硕士? 不是顶尖学校的话, 人工智能专业对口的工作不是太好找, 但是人工智能的应用也挺广的, 说不定什么时候工作中就用上了. 所以一般学校的话, 作为过来人, 我靠谱的说一下, 练练编程或者别的什么工作技能, 然后把人工智能的概念和名词搞熟了, 具体专精到什么程度其实无所谓啦, 毕业就好. 找工作的话那就是能找到啥公司, 就去做哪一行, 学校的专业就不要太看中了.

发表人工智能论文

《人工智能与机器人研究》是一本关于人工智能的期刊,该期刊杂志上发表的文章包含这些领域:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工业过程建模与智能控制、智能计算与机器博弈、人工智能理论、语音识别与合成、机器翻译、图像处理与计算机视觉、计算机感知、计算机神经网络、知识发现与机器学习、建筑智能化技术与应用、人工智能其他学科等等。另外,这本期刊就是一本开源期刊,与传统期刊相比,采用了同行评审的方法审稿,具体开源期刊的特点可以百度了解更多;而且发表了的文章传播范围更广,受众更多,文章的影响力也更大。

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。以下是我精心整理的有关人工智能论文的相关资料,希望对你有帮助!

浅谈逻辑学与人工智能

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

1 人工智能学科的诞生

12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N 形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机) ,创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。

以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

2 逻辑学的发展

2.1逻辑学的大体分类

逻辑学是一门研究思维形式及思维规律的科学。 从17世纪德国数学家、哲学家莱布尼兹(G. LEibniz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

2.2 泛逻辑的基本原理

当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

3 逻辑学在人工智能学科的研究方面的应用

逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

3.1 经典逻辑的应用

人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

3.2 非经典逻辑的应用

(1)不确定性的推理研究

人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型, 1978年查德提出的可能性模型, 1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

(2)不完全信息的推理研究

常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

4 人工智能——当代逻辑发展的动力

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

5 结语

人工智能的产生与发展和逻辑学的发展密不可分。

一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

相关百科

热门百科

首页
发表服务