统计分析是运用统计 方法 与分析对象有关的知识,从定量与定性的结合上进行的研究活动。下文是我为大家整理的关于统计分析论文的 范文 ,欢迎大家阅读参考!
浅谈统计分析与决策
[摘要] 统计分析与决策二者有联系又有区别。统计要参与决策,必须搞好统计分析。搞好统计分析,需要解决选题、分析、撰写 报告 三个问题。
[关键词] 统计分析 分析方法 决策
统计工作的全过程分为四个阶段,即统计设计,统计调查,统计整理,统计分析。其中,统计分析是统计工作的最后一个阶段,是出统计成果的阶段。现在倡导统计要参与决策,这是不是说统计工作还要增加一个决策阶段呢?如果不是,那么,统计分析与决策是什么关系呢?
狭义的说,统计分析与决策是有区别的。统计分析是以统计数字为基础,以统计方法为手段,对社会经济情况进行科学的分析和综合研究,以认识其本质和规律的过程。而决策则是为了达到某一预定目标,运用逻辑方法和统计方法,对两种或两种以上可能采取的方案进行比较、分析、研究,以做出合理的、科学的抉择的行为过程。假若把统计分析与决策比作医生看病,统计分析就是对病情的诊断,决策就是开处方,“诊断”和“处方”是有区别的。
广义的讲,统计分析与决策是密不可分的。一方面,统计分析贯穿于决策过程之中。一个决策过程大体上可分为下列三个大步骤:第一,诊断问题所在,确定决策目标;第二,探索和拟定各种可能的备选方案;第三,从各种备选方案中选出最合适的方案。从这三大步骤看,尽管要用到多种方法和手段,但哪一步也离不开统计分析,第一步就是通过统计分析,诊断问题所在,并在分析的基础上确定决策目标;第二步拟定备选方案,要经过“轮廊设想”和“细部设计”这个阶段对轮廊设想的方案要做初步筛选,对每一方案要充实具体内容,“筛选”和“充实”都要经过统计分析;第三步选择最佳方案,首先要对各个备选方案进行评价、论证,这又需要统计分析。因此可以说,没有统计分析,也就没有科学决策。另一方面,从某种意义上讲,决策是统计分析的结果。一般来说,统计分析报告是提出问题、分析问题、指出解决问题的办法,其实,决策方案也就是解决问题实现决策目标的办法,只不过比“今后意见”“几条 措施 ”之类的办法更全面、更详细、更科学罢了。医生诊断是为了正确处方,治病救人,不能只诊断不处方。统计分析是为了发现问题,解决问题,推动社会经济的顺利发展;也不能只提出问题,而不寻找解决问题的办法。从这个意义上讲,统计分析也就包括预测和决策。我们不能为统计而统计,也不能为分析而分析。统计应该参与决策,为了决策科学化,必须搞好统计分析。
搞好统计分析,需要解决选题、分析、撰写报告三个问题。
一、统计分析选题
所谓选题,就是在复杂的社会经济现象中,确定统计分析的内容和范围。进行统计分析,选题很重要。成功的选题是成功的分析的前提。
怎样选好题呢?选好题标准有两条:―是分析对象有意义,二是适合决策层和群众需要。关键是抓住党和国家的方针政策和企业的经济效益。
统计分析课题是很广泛的。工业统计分析课题如:计划执行情况分析、工业净产值统计分析、工业产品销售统计分析、工业原材料供应和消耗统计分析、工业能源消耗统计分析、工业生产设备统计分析、工业劳动与工资统计分析、成本利润统计分析、综合经济效益统计分析等。商品流通企业统计分析课题如:市场供求状况分析、市场占有率分析、主要商品经济寿命周期分析、市场商品价格分析、计划执行情况分析、购销合同执行情况分析、商品购进质量分析、商品销售动态分析、商品销售构成分析、商品库存分析、企业经济效益分析等。对于以上内容,可根据不同的时间、地点、条件,按两条选题标准适当选择。
统计分析有专题分析与综合分析之分。在一定的总体范围内,研究总体的各个方面及其相互关系,或研究总体的主要方面的统计分析,属于综合分析;只研究其中某一方面,或某一部分的统计分析,属于专题分析。两者各有不同的特点,都是必要的,但专题分析宜多,综合分析宜少。
二、统计分析方法
统计分析的关键是分析,怎样进行统计分析呢?统计分析有两个特点:一是以统计数字为基础,二是以统计方法为手段。因此,统计分析在选题之后,就要根据分析的需要,搜集整理有关数字资料及具体情况,在充分占有材料的基础上,灵活运用统计方法进行分析。
统计分析方法很多。统计学原理中除了有关统计调查、统计整理的内容外,综合指标、统计指数、时间数列、抽样推断等内容全部是统计分析方法。从方法角度上讲,统计分析就是统计学原理的运用。
统计方法与人们的认识过程是相适应的。人们的认识分感性认识和理性认识两个阶段。感性认识阶段所认识的是事物的现象,可采用统计调查和统计整理。理性认识阶段所认识的是事物的本质和规律,这个阶段要经过形成概念、进行判断和推理等思维活动。与此相适应,要分别采用不同的统计分析方法。
形成概念一般用描述性的综合指标法,即总量指标、相对指标和平均指标,以说明现象的规模大小、水平高低、速度快慢、内部结构以及比例关系等。判断推理就是要判断事物的性质,分析事物变化的原因,找出事物发展的规律。这一般要用分组分析法、动态分析法、因素分析法、相关回归分析法、平衡分析法等。
对统计学原理中的各种统计分析方法要熟练地掌握,灵活地运用。怎样灵活运用呢?这里有个技巧问题。技巧就是定性分析与定量分析巧妙结合。
所谓定性分析是指对事物的性质和影响事物发展变化的因素进行分析。定量分析就是分析事物的规模、水平、速度、结构、比例,以及各个因素对事物总体变化的影响方向和影响程度。定性分析与定量分析巧妙结合有两层含义,一是二者不可偏废,二是二者密不可分,
没有定性分析,定量分析就没有方向。没有定量分析,定性分析就不准确。结合的目的是在质与量的辩证统一中探寻事物的内在联系。
从根本上讲,统计分析就是完成从感性认识到理性认识,从现象到本质的飞跃。完成了这―飞跃,才是高质量的统计分析。有些统计分析质量不高,往往就是没有完成这一飞跃,仍然停留在表面现象上。
三、统计分析报告的撰写
统计分析报告是统计的最终产品。如果说统计数字的准确性是统计的生命,那么,统计分析报告的质量则关系到统计作用的发挥。对高质量的统计分析报告的要求,可以概括为五个字,就是“准、快、新、深、活”。
准:就是实事求是地反映客观实际。做到数字准确,情况准确,论点准确。
快:就是在决策层决策之前,不失时机地及时提供分析报告。
新:就是不断创新。要求不断开拓新领域,钻研新课题,反映新情况和新问题。
深:就是要在充分占有材料的基础上,提高分析的深度,使认识不只停留在反映现象上,而要揭示事物的本质和规律,并且用观点统帅材料,用材料说明观点,做到材料和观点的统一。
活:就是文字生动活泼,形式灵活多样。资料要多样化和生动具体,要有群众语言,要通俗易懂,文字要精精炼。
统计分析报告是在统计分析的基础上撰写出来的。没有好的分析,不可能写出好的报告。经过分析阶段,弄清了事实,判明了性质,探索出规律,得出了结论,在此基础上就可以撰写统计分析报告。但分析得好,并不等于报告写得好,这里还有个撰写的技巧问题,那就是准确地表述事实,透彻地阐明本质,深刻地揭示规律,恰当地提出建议。
1.准确地表述事实
每一篇统计分析报告,都需要表述所分析的现象,即说明“是什么”。准确地表述事实,才能给读者一个明确的概念。为此,须注意如下几点:(1)数字要真实;(2)运用数字要适当,不要堆砌数字,搞数字文字化;(3)语言要素准确。
2.透彻地阐明本质
现象只说明事物的各个片面,本质才说明事物的整体。撰写统计分析报告,必须深刻地揭示事物的本质,它是统计认识事物的正确程度和深度的反映。如果不能深刻地阐明事物的本质,那只能是现象罗列,没有多大价值。
阐明事物的本质,也就是阐明事物的基本性质。事物的性质是由事物内部矛盾的主要方面决定的。例如,某企业利润增加,是靠涨价,还是靠降低成本?经过分析,认识到利润增加主要是靠降低成本,这是矛盾的主要方面,这就反映出事物的性质。因此,在报告中就应阐明降低成本在提高经济效益中的重要作用。再如某企业,本质问题是钢材浪费严重,在报告中就应揭示浪费的若干方面和严重程度。
3.深刻地揭示规律
规律是事物内部固有的、本质的、必然联系。成本高低与产量多少有联系,经过推理,这种联系是事物内部固有的、本质的必然联系,反映了事物发展变化的规律性,而且存在一定的回归关系。而回归方程反映这种关系,所以在统计分析报告中,要利用回归方程揭示这种必然联系及其回归关系。
4.恰当地提出建议
认识世界的目的是为了改造世界。经过统计分析,透过现象认识到事物的本质和规律,还必须提出解决问题的建议,如“今后意见”、“几点建议”、“决策方案”等等。怎样才算恰当地建议呢?恰当的建议要符合三个条件:(1)符合分析目的;(2)合乎客观规律;(3)切实可行。
以上四点,一般可以作为分析报告的结构和顺序,但不能千篇一律。
统计分析报告是统计分析结果的反映。既要注意提高写作水平,更要努力锻炼分析问题和解决问题的能力。
试谈统计分析方法应用
【摘要】统计分析方法应用于各个领域,解决了很多工业、农业、经济、医学等领域的实际问题,本文分析多元统计分析方法的主要应用和构建多元统计方法检验体系的必要性,针对性的提出了需要引起注意的共性问题,具有很强的现实意义。
【关键词】统计分析方法;应用;检验体系;共性问题;现实意义前言
随着信息技术的普及和广泛应用,它推动了社会、经济和科学技术的发展,多元统计分析方法的难题得到了攻破,各个领域广泛采用,推动了各行各业经济的快速发展。
二、多元统计分析方法的主要应用
统计方法是科学研究的一种重要工具,其应用颇为广泛。在工业,农业,经济,生物和医学等领域的实际问题中,常常需要处理多个变量的观测数据,因此对多个变量进行综合处理的多元统计分析方法显得尤为重要。随着电子计算机技术的普及,以及社会,经济和科学技术的发展,过去被认为具有数学难度的多元统计分析方法,已越来越广泛地应用于实际。
聚类分析
它是研究分类问题的一种多元统计方法,聚类分析的基本思想是首先将每个样本当作一类,然后根据样本之间的相似程度并类计算新类与 其它 类之间距离,再选择近似者并类每合并一次减少一类,继续这一过程直到所有样本都合并成为一类为止。所以聚类分析依赖于对观测间的接近程度或相似程度的理解,定义不同的距离量度和相似性量度就可以产生不同的聚类结果。企业制定 市场营销 战略时要弄清在同一市场中哪些企业是直接竞争者,哪些是间接竞争者是非常关键的一个环节。要解决这个问题,企业首先可以通过 市场调查 ,获取自己和所有主要竟争者,从而寻找企业在市场中的机会。
判别分析
判别分析是已知研究对象分成若干类型,并取得各种类型的一批已知样品的观测数据、在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析,企业在市场预测中往往根据以往所调查的种种指标,用判别分析方法判断下季度产品是畅销平销或滞销。一般情况下判别分析经常与聚类分析联合起来使用。
主成分分析
主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标,来代替原来指标,同时根据实际需要从中可取几个较少的综台指标,尽可能多反映原来指标的信息,在市场研究中常常利用主成分析方法分析顾客的偏好和当前市场的产品与顾客之间的差别,从而提供给生产企业新产品开发方向的信息。
因子分析
因子分析是主成分分析的推广和应用。它是将错综复杂的随机变量综合为数量较少的随机变量去描述,多个变量之间的相关关系以再现原始指标与因子之间的相互关系。也可以认为因子分析是将指标按原始数据的内在结构分类。例如:对Y个调查区的商业网点数、人口数、金融机构服务数、收入情况等N个指标进行因子分析,如果按照一般的分析方法,我们就需要处理N个指标,并给它们以不同的权重。这样不仅工作量变大而且由干指标之间存在比较高的相关性,会给分析结果带来偏差另外给具有较高相关性的众多指标,从而计算出各个调查区平均综合实力得分以便决定在某个调查区拟建何种类型的销售点。
三、构建多元统计分析方法检验体系的必要性
(一)构建多元统计分析方法检验体系,提高多元统计分析应用质量
多元统计分析方法已经越来越为人们广泛应用,但应用中盲目套用分析方法的情况很多,只关心模型方法的应用。许多教科书也只侧重介绍多元统计分析方法的思想、原理和分析步骤,对多元统计分析方法应用结果的统计检验叙述不多。这就直接影响了多元统计分析方法的应用效果和可信性。因此,本文拟对多元统计分析方法的统计检验问题进行探讨。构建多元统计分析方法检验体系的目的在于进一步丰富和完善多元统计分析方法的内容体系;实践上,使多元统计分析方法的应用更加合理、规范。推动多元统计分析方法应用质量的提高,推动多元统计分析方法获得更广泛的应用。
(二)多元统计分析统计检验体系的基础理论
多元正态分布总体的样本分布,即维希特分布,霍特林分布,威尔克斯分布,多元正态总体均值向量假设检验,包括一个正态总体均值向量假设检验,两个正态总体均值向量假设检验,多个正态总体均值向量假设检验;多元正态总体协方差阵假设检验,包括一个正态总体协方差阵假设检验,多个协差阵相等假设检验。
(三)关于统计检验体系
将上述统计检验体系有机结合在一起,就构成了多元统计分析方法检验体系的基本框架。多元统计分析方法检验体系的构建,用多元统计分析方法,充分发挥多元统计分析方法的应用价值,提高应用质量,我们建议,在应用时,应该按照上述框架进行相应的统计检验。当然。上述统计检验体系还是一个初步的框架,随着多元统计分析方法理论的逐步完善,上述检验体系也需要不断完善,也需要更多的同行关注此类问题并不断加以研究。另一方面,在实际应用中,即便是某种方法根据上述内容都进行了统计检验,由于各种方法自身存在的缺陷或局限性,也还会存在许多应用中考虑不周之处。应该引起注意。但是,因子分析结果还是具有较大主观性。特别是对公共主因子在专业方面实际意义的解释上,仍然保留着一种艺术气息,并没有统一做法,因此很多情况下也是不能令人满意的。总之,我们在应用时,对因子分析的适用性、公因子的估计方法、公因子选取的数目。公因子的实际意义的解释等一系列问题都要引起足够注意。检验体系有如下几个分类:
a.主成分分析统计检验体系
b.因子分析统计检验体裂引
c.系统聚类分析统计检验体系
d.判别分析统计检验体裂
e.对应分析统计检验体系
f.典型相关分析统计检验体系
四、多元统计分析方法应用中需要注意的几个共性问题
1.关于原始数据变量的总体分布问题。
对原始变量的总体分布各种方法各有不同的要求。有的方法对原始数据变量总体分布没有特殊的要求,如主成分分析、聚类分析、对应分析。有的方法在不同情况下,对原始变量分布有不同的要求,如因子分析中,公共因子的估计方法不同,对原始变量分布要求不同,采用极大似然估计方法估计主因子时,是假定原始变量是服从多元正态分布的,因此,应用时要引起重视,如典型相关分析要求原始变量服从正态分布,但在严格意义上,如果变量的分布形式比如高度偏态不会降低其他变量的相关关系,典型相关分析是可以包含这种非正态变量的。
样本容量问题。
进行多元统计分析时,样本容量n达到多少为宜,目前尚没有统一的结论。有的认为样本容量应是变量个数的10~20倍,有的认为样本容量要在100以上比较合适,有的认为进行巴特莱特检验时的样本容量应该大于150方可,也有的认为不必苛求太多的样本容量,如在进行主成分分析和因子分析时当原始变量之间的相关性很小时,即使再扩大样本容量,也难以得到满意效果。
原始变量之间的相关性以及非线性关系问题。
多元统计分析方法中,有的是的要求原始变量中要具有相关性。有的则不要求原始变量具有相关性。如聚类分析中,进行Q型系统聚类分析时对原始数据变量之间的相关性也是有要求的,如选择欧式距离、明氏距离、兰氏距离时,则要求原始变量之间是不相关的。只有对原始数据的相关性进行了处理后,才可以选择使用上述距离。若原始变量存在相关性,则选择马氏距离比较合适。另外原始变量之间的非线性关系也是需要注意的问题。如主成分分析、因子分析以及典型相关分析当基于相关矩阵来进行计算时,这里的相关矩阵实际上是Pearson的积差相关。但是,如果变量之间的关系不是线性的,而是非性相关关系,于是,所进行的分析以及结论也就失去应有的意义了。
数据处理问题。
多元统计分析中涉及多个变量,不同变量往往具有不同的量纲及不同的数量级别。在分析时,具有不同量纲的变量进行线性组合是没有意义的,不同的数量级别的变量之间进行分析时。会导致“以大吃小”,即数量级的变量的影响会被忽略,从而影响了分析结果的合理性。因此。为了消除量纲和数量级别的影响,进行多元统计分析时,必须对原始数据进行处里,最常用的是先作标准化变换处理,然后再作相应的分析。
五、结束语
在统计分析方法的应用中,会涉及到多个变量,因此,必须根据原来有的数量进行处理,然后才能得出相应的分析结论。本文结合多元统计分析方法的理论基础,对相关检验体系和分析体系进行了分析,具有现实的理论指导意义。
【参考文献】
[1]于秀林.多元统计分析[M].北京,中国统计出版社,1999:223—224.
[2]高惠璇.应用多元统计分析[M].北京,北京大学出版社 ,2005:343—366.
[3]郭志刚.社会科学分析方法一SPSS软件应用[M].,中国人民大学出版社,1999.
[4]傅德印.主成分分析中的统计检验问题 [J].统计 教育 ,2007(9):4—7.
国民经济是一个错综复杂的多维度的整体,涉及到一个国家所有的经济利益群体,意义重大,因此需要通过国民经济统计来反映其总体状况和发展趋势。下面是我为大家推荐的国民经济学论文,供大家参考。
国民经济学论文 范文 一:国民经济管理论文
第1章 前言
长期而言,我国的产业结构域经济正常之间具有共同的随机变动趋势。因此,通过调整和优化产业结构从而控制经济增长的产业政策在中国是有效的。
中国经济结构的不合理及需要重组是一个老话题。应该肯定,自从改革开放以来,中国的经济结构业已有所调整。例如,农业在GDP中所占比重的下降;外贸结构中初级产品比例有所调整;但随着经济全球化的发展及中国加入WTO,经济结构的调整与重组,已成为十分迫切的问题。经济结构调整是十分复杂的话题,需要做大量深入的调查研究工作及基础工作。
第2章 我国三大产业结构现状
2.1产业结构的现状
产业结构,指的是国民经济各个产业部门之间和每个产业部门内部的构成以及它们之间相互制约的经济联系和数量对比关系,亦称国民经济的部门结构。它是通过产业之间的关系有机结合,在一般分工和特殊分工的基础上产生和发展起来的。而所谓产业优化升级,其含义一是指随着经济发展水平的提高或在相关政府政策引导下,一国的产业结构演变呈现由低级向高级发展并优化完善的过程,即推动产业结构合理化和高度化发展的过程。二是指产业个体向劳动密集型向资本和技术密集型经济领域发展的过程,即产业由低技术水平、低附加值状态向高技术、高附加值状态演变的过程。
改革开放以来,尤其是进入新世纪以来,为适应全球高新技术产业竞争发展的大局和趋势,我国坚持体制创新与技术创新相结合,着力发展对经济增长有突破性重大带动作用的高新技术产业,有力地促进了产业结构调整。2010年国内生初步核实数计算的三次产业结构为,2010年国内生产总值现价总量为401202亿元,比初步核算数增加3219亿元,按不变价格计算的增长速度为10.4%,比初步核算数提高0.1个百分点。其中,第一产业增加值为40534亿元,比初步核算数增加37亿元,增长速度为4.3%,与初步核算速度相同。第二产业增加值为187581亿元,比初步核算数增加1100亿元,增长速度为12.4%,比初步核算数提高0.2个百分点。第三产业增加值为173087亿元,比初步核算数增加2082亿元,增长速度为9.6%,比初步核算数提高0.1个百分点。按初步核实数计算的三次产业结构,第一产业占10.1%,第二产业占46.8%,第三产业占43.1%。
近年来,我国第一产业比重持续下降,其中第三产业比重进一步提高,可见服务业对中国经济的贡献率越来越高,第三产业需继续大力发展。总体上目前我国的三大产业结构较为合理,逐步改变了各个产业之间的相对比重和技术关联,提高了产业结构的整体效率,优化了产业结构。
2.2产业结构存在的问题
2.2.1农业存在的问题
改革开放以来,我国农业和农村经济取得了长足发展,农业产业结构经过不断调整形成了较好的格局。但是,目前的农业产业结构仍存在不少的问题。
(1)农业基础设施仍然薄弱。供水、供电、交通、通信等基础设施还很不完善,有些地区的矛盾还比较尖锐。例如华北、西北等地区缺水较为严重,影响农业生产和人民生活。
(2)农产品品种、品质结构尚不优化,农产品优质率较低。我国的牛、羊、猪等肉类产品、苹果、梨等水果产品、花卉产品,以及水产品等在国际市场上具有明显的价格优势,但面临着品种不优、质量不高的困扰。
(3)农产品加工业尚处在初级阶段,保鲜、包装、贮运、销售体系发展滞后,初级产品与加工品比例不协调。发达国家的农产品加工业产值与农业产值之比大都在2:1以上,而我国只有0.43∶1,与国外相比差距比较大。
(4)农产品区域布局不合理,各地没有充分发挥自身的地区比较优势,未能形成有鲜明特色的农产品区域布局结构。
2.2.2第二产业存在的问题
第二产业总量扩张明显,但生产结构不够合理,结构升级较慢,经济增长质量不高。主要表现在:。(1)处于全球价值链底端,产业升级面临困难。
改革开放后的三十年,中国经济高速增长,批量化生产的成本优势使我国获得了“世界工厂”的称号。但我国的比较优势在相当程度上是依靠廉价劳动力获得的,这导致行业的竞争优势主要集中在低附加价值的非核心部件制造和劳动密集的装配环节中,产品的附加值难以提高。
在总出口额中,加工贸易所占比重同样超过了50%。这表明,即使是本土企业,也严重依赖外国企业的订单,而不是依靠自主研发和自有产品来开拓国际市场。这种对订单的依赖是中国产业处于全球价值链底端的又一明证。而一旦国外市场出现疲软,这种模式就难以为继。此次金融危机就是一个很好的例证。
(2)产业研发投入不足,技术创新能力差。目前,我国制造业总量规模占全球的6%,而研发投入仅占0.3%,研发投入严重匮乏,产业共性技术研究队伍出现严重萎缩。产业的技术创新能力差,导致对国外核心技术和关键部件高度依赖,企业无法在品质、创新等差异化竞争中取得优势,只能靠低成本维持收益。这正是我国的企业在彩电、空调、手机等诸多领域都深陷价格战泥潭不能自拔的重要原因。
2.2.3第三产业存在的问题
第三产业发展滞后,内部结构需进一步调整完善。我国第三产业增长非常快,在就业中已经发挥了主 渠道 的作用,但存在总量偏小和行业结构不合理问题,发展水平滞后。从总量来看,第三产业增加值在GDP中所占比重明显偏低。目前,绝大部分发达国家的第三产业比重在70%左右,大部分发展中国家在50%左右,而我国的第三产业比重长期徘徊在30%~40%之间。从第三产业内部结构看,发达国家主要以信息、咨询、科技、金融等新兴产业为主,而我国的商业餐饮、交通运输等传统服务业比重较大,占40%以上;邮电通讯、金融 保险 等基础性服务业以及信息咨询、科研开发、旅游、新闻出版、广播电视等新兴服务业虽然发展较快,但比重仍然不高,发育仍然不足。
2.3产业结构存在问题原因
2.3.1由于中国是一个特殊的发展中人口大国,劳动力资源丰富,农业剩余劳动力自非农产业的转移是中国经济增长的最大动力;同对资本、技术,以及其他新兴资源相对短缺,对经济增长的作用与别的国家相比明显较小。在农村剩余劳动力的数量极其庞大,向城市转移又遇到各种障碍和限制的情况下,我国农村的剩余劳动力转移较多地采取了就地转移的 方法 ,走出了一条农村工业化的道路,但由于这种“农村工业化”并没有与农村的城市化相结合起来,加上农村居民的收入水平低,从而导致他们的消费水平低,服务业发展受到当地需求的限制,而工业生产能够从城市市场为依托,因此农业剩余劳动力大多数向农村第二产业尤其是工业转移,而第三产业没有得到相应的较快发展。
我国经济的高速增长主要是由工业的超高速增长推动的,而工业高速增长的原因主要在于乡镇工业的超高速增长,乡镇工业产值占工业总产值的比重1985年为17.7%,1990年上升为29.7%,1995年进一步上升到42.5%,但是乡镇企业的高速发展对第三产业增长的作用较小,这主要是由于乡镇企业的产业结构自第二产业的高度倾斜所导致的,这在很大程度上加深了我国产业结构中工业比重过高而第三产业比重偏低的偏差。
另一方面,农村中资本、技术,以及 管理知识 、人才、信息等资源的短缺更加突出,技术更新和技术进步远远跟不上农村工业扩张的速度,工业结构的升级相当缓慢。而第一、第三产业的发展相对滞后,其结构升级的进程相应受到影响。由于乡镇企业在全国经济中的比重迅速上升,其产业结构状况越来越突出 影响到整个产业结构升级的过程。
2.3.2我国的产业结构偏差,与改革前片面强调工业化所留下的滞后影响有很大关系,这种影响在改革以来的二十多年中虽然有了一些变化,但一直没有得到根本性的扭转。 首先中国是在人均收入水平很低的条件下推进工业化的。作为一个人口众多的特大发展中国家,经济发展水平低和人口数目巨大使我国的人均收入水平很低,1952年开始工业化时我国的人均GDP只有119元人民币,在改革前的二十多年中,我国的工业化一直是在人均收入水平很低的条件下大幅推进的,工业产值的比重上升几乎与人均收入水平的变动失去了联系,1978年时人均GDP只为379元人民币,明显低于钱纳里等人关于人均收入水平与工业化变动关系的“一般模式”中作为工业化起点的人均收入水平而这一年中我国工业在GDP中的比重为94.3%,与1952年的7.6%相比上升了26.7%个百分点。这种工业比重提高与人均收入水平上升相分离的特殊现象,所带来的影响一直持续到现在。
其次我国是在市场化落后的条件下推进工业化的。市场经济国家在工业化开始时,市场化已经得到了很大程度上的发展,第三产业的比重较高,随着工业化阶段的前进,市场化继续发展,第三产业的比重以低于工业化率的速度继续上升。而我国在工业化起点时市场化程度和第三产业比重相对较低,特别是在工业化迅速推进的过程中市场化没有得到相应发展,第三产业的比重没有逐步提高,市场化远远滞后于工业化进程的状况,导致了改革初期产业结构中第二产业,尤其是工业比重偏高,而第三产业比重偏低的结构性偏差。在改革后,八十年代城市第三产业有了较快的发展,但没有根本性地改变第三产业的状况,而九十年代以来,在农村工业化的进程的加快和经济增长结构倾斜的影响下,又趋于加深。 最后,工业化与城市化相脱离。由于我国的工业化是在在计划经济时期打下基础的,计划推动的工业化,与市场推动的工业化的不同特点,是产业结构的变动与需求结构的变动相分离。人为因素导致了片面性,并阻碍了工业化过程中市场机制的形成和作用,改革前的工业化主要是一种城市的工业化,但只有少数的农民被有计划地安排“农转非”而到城市就业,其余的大量农村人口被排除在计划之外而继续滞留在农村,结果在迅速工业化的过程中城市化的进展很慢,农村人口的比重依然很高,工业产值比重大幅度提高的,同时农业的就业比重仍居高不下,农业剩余劳动力不能转移出去,这种城市化远远滞后于工业化的状况,一直到现在也没有多大改变,城市化的滞后,给我国的产业结构问题产生了严重的影响,主要是阻碍了第三产业的发展,加大了产业结构的偏差,因为第三产业的发展是与城市化相联系的,只有城市数量和规模的扩张才能为第三产业的发展提供较为广阔空间。
第3章 当前国内外新形势的挑战及演进方向
3.1国际环境的挑战
尽管我国产业结构对比改革开放之前有着质的飞跃,我们的产业结构在内外环境的双重影响下,面临着转型升级的历史使命。从国际环境来看,美国次贷危机引发的金融危机已经演变为全球性的经济危机,当前欧盟、日本、美国等发达经济体均已经陷入衰退,有些国家仅有一些复苏的迹象,世界银行等机构仍然降低了对未来经济增长的预期,全球经济将进入一个缓慢增长期。
同时,中国对外出口有效需求下降,国外外商投资不旺,投资需求和消费需求的大幅下滑,导致企业业务持续萎缩,尽量减少新增投资。可见经济危机也是一次优胜劣汰的过程,一些旧产业、旧技术不得不退出战场,采用新产业、新技术是必然选择,部分企业利用这一国际形势的机遇,进行产业升级,而此时产业升级的难度与风险都大大增加。
中国对外贸易量的持续扩大、贸易摩擦增加以及货币快速升值等因素使得我国劳动密集型产品的出口变得越来越困难,欧美日等经济的衰退也给我国产品的出口蒙上了阴影,因此过度依赖外需暴露了我国产业结构的脆弱性,导致我国经济增长具有不稳定性。
3.2国内环境的挑战
除了外部世界不利经济环境的影响外,中国产业的发展困境也有内部因素的制约,中国经济在经过30 年的高速发展后,正逐步进入经济转型期。三十年来的经济增长虽然使得资本与劳动的比重有所改善,但中国经济增长仍主要依赖低水平生产能力的扩张,即在生产能力迅速增长的同时,软实力上升速度相对滞后,部分技术将必须继续依附于发达国家,技术水平不能得到提高,难以形成自己的自主创新产品,即便是企业加强研发投入,目前我们综合水平的设计开发能力和国际竞争力并还处于较低位置;同时中国企业高层跨国人才缺乏,海外拓展人员水平较弱,国际市场开拓能力没有相应扩大。
当前中国要素禀赋结构的特点仍然是普通劳动力相对丰富而高端人才紧缺,且信息技术等资本也相对稀缺,长期依赖低廉生产要素成本优势的中国产品逐步丧失其竞争力,随着要素禀赋结构的提升和比较优势的演化,中国产业发展必须开始从劳动密集型向技术、知识密集型进行转型,这种转型要求中国企业必须加快产业升级步伐,实现经济发展方式的转变。当前,中国经济转型与全球经济放缓双重作用,使得中国经济面临更加严峻的挑战,在此背景下,中国产业是否能够抓住历史机遇,选择正确的升级路径加快产业结构调整步伐,是现今中国经济健康可持续发展的关键。
3.3三大产业演进的方向
对三次产业结构变动趋势的总体判断是, 中国工业化进程中期阶段可能将持续到2020年之后。 一、 二、 三大产业中, 以第二产业为主的格局不大可能在 2020 年前发生变化。“ 十一五” 到 2020 年, 第一产业收入比重将持续下降; 第二产业比重在“ 十一五” 期间还有可能上升, 在 2010年前后达到顶点后, 有可能开始下降; 第三产业比重在“ 十一五” 期间基本稳定, 2010 年之后可能出现明显增加。
1.农业基础地位不变
农业在国民经济中的比重将持续下降,但其重要性和基础地位不会改变。传统农业中, 种植 业比重将下降,渔业、畜牧业的贡献将会增加。在种植业内部,粮食作物的比例会缓慢下降,经济作物、瓜菜作物和其他作物的比重将会上升。
2.工业内部结构调整
(1)重工业化阶段不可逾越,霍夫曼法则表明,工业化中后期产业结构出现重工业化趋势,是许多国家工业化过程中的一个普遍规律。根据国际 经验 ,人均国内生产总值从1000美元向3000美元攀升的时期,居民消费结构随之持续升级,即从吃饱穿暖、有耐用消费品可用、有屋可住,向吃好穿好、改善居住条件、提高耐用消费品质量、扩大服务消费转变。与之对应的是,汽车、住宅、建材、通信等行业将会有长足的发展,从而带动钢铁、机械、建材、化工等重化工业和电子及通讯设备制造业快速发展,重化工业发展是必然的趋势。
(2)信息产业将成为我国未来的主导产业。据统计,1985-2003年,世界高技术产业出口年增长14.3%,比中低技术和低技术产业出口年增长速度高5~6个百分点。高技术产业正在逐步替代传统产业变为主导制造业的部门。
我国是目前世界上最大的IT产品消费国家之一,同时也是当今世界参与信息产业制造业国际分工最多的国家。我国东部沿海地区已经集中了大量发展信息产业所必需的人力资本,同时,较低的劳动力成本是我国的IT产业制造业具有强大的国际竞争力。我国通过参与IT产业制造业的国际分工,既能实现充分就业,也能获得较高的比较利益,通过不间断的“干中学”和“用中学”,将逐渐积累起强大的IT产业技术开发能力 。信息产业应该而且也能够成为我国未来的主导产业。
国民经济学论文范文二:国民经济统计分析论文
摘 要
消费需求作为其中很重要的一部分,对总需求具有很重要的影响,进而对总需求政策的制定也有明显的影响,它影响着宏观经济的均衡发展。本文 首先建立模型,利用SPSS软件,研究了影响国民消费的因素,并对模型的分析结果进行了经济意义检验,以及统计推断检验。最后得出居民的收入水平对消费水平的影响是最显著的,其他因素则次之。通过对消费支出用途结构的分析,了解到居民的生活水平消费支出结构上的变化趋势,不管是城镇居民还是农村居民,恩格尔系数都随时间变化而下降,这表明了我国居民整体生活水平的提高。通过对比分析消费需求、投资需求、进出口需求这三大需求对国内生产总值增长的贡献率,得出消费和投资对经济增长的贡献率和拉动作用明显大于净出口, 经济增长过分依赖于投资,而消费需求还有很大的发展空间。
关键词:国民消费,消费结构,消费需求
一、研究国民消费的意义
按照经济学的分析,社会需求包括消费需求,投资需求和净出口。消费需求作为其中很重要的一部分,对总需求具有很重要的影响,进而对总需求政策的制定也有明显的影响,它影响着宏观经济的均衡发展。
现阶段,我国有条件也有必要依靠扩大国内需求尤其是居民消费需求促进经济发展。首先,我国处于居民消费结构优化升级的发展阶段,较高的国民储蓄率和巨大的国内市场潜力为拉动需求增长提供了物质条件。其次,我国居民生存型消费需求已基本得到满足并正向发展型消费需求升级过渡,但产业产品结构、收入分配结构、区域协调发展程度及消费政策和观念等严重滞后于消费结构升级变化的需求,既导致了消费需求的缩减,也给社会生产造成了不良影响,因此,我们必须扩大内需,推动经济增长。
关于如何扩大国内需求方面,中央经济会议曾指出增加居民消费是重点。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的 热点 和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。
二、影响消费水平的因素分析
(一) 模型建立与求解
居民消费水平受诸多因素的影响,例如收入水平,消费价格指数以及恩格尔系数。下表给出了从1991年到2010 年消费水平的相关数据。基于表1和表2的数据,分别建立城镇、农村居民消费水平关于其三个影响因素的多元线性回归模型,进行逐步回归分析。
(二)模型检验
1、经济意义检验 根据回归结果:城镇:y?4672.999?0.736x1?5.937x2?52.900x3 农村:y?470.486?0.721x1?1.793x2?8.827x3,得知,其中x1前面的系数0.736与0.721分别表示在城镇(农村)居民消费价格指数和城镇(农村)居民恩格尔系数不变的条件下,城镇居民人均可支配收入(农村居民人均纯收入)每增加1元,城镇(农村)居民消费水平绝对数平均增加0.736元(0.721元),与理论中描述的居民收入水平增加对居民消费水平变化有明显的影响,居民收入水平是影响消费水平增长的重要原因这个结论是一致的。
2.统计推断检验
(1)拟合优度检验:
由上面分析数据知两个模型的决定系数R分别为0.994、0.998,调整的决定系数为0.992、0.998,可见解释变量与被解释变量间的关系极为密切,说明模型对样本的拟合效果非常好,解释变量能对被解释变量99.4% 99.8%的离差做出解释。
(2)方程显著性检验—F检验
给定显著性水平?=0.05,由表中可以看出F=823.034(3195.1),查F分布表中自由度分别为k=3,n?k?1?4的临界值2F?3,4??6.59 ,由于0.05
F>F0.05?3,4?,所以认为在5%的显著性水平下,Y对x1, x2, x3有显著的线性关系,回归方程式是显著的,即城镇居民家庭人均可支配收入(农村居民家庭人均纯收入)、城镇居民消费价格指数(农村居民消费价格指数)、城镇居民恩格尔系数(农村居民恩格尔系数)联合起来对被解释变量有显著影响。
(3)变量显著性检验—t检验给定的显著性水平?=0.05,查t分布表得出自由度为4的临界值t?4?=2.776,由于回归分析表中: 0.025
城镇: t1?25.622,t2??0.371,t3??1.956
农村: t1?37.832,t2?0.812,t3??1.838 由检验可知,城镇t1?2.776是显著的,而t2?2.776,t3?2.776都是不显著国民经济统计分析论文的,农村t1?2.776,t2?2.776,t3?2.776也是不显著的,即可以认为居民消费价格指数与居民恩格尔系数对居民消费水平没有显著的影响,在建立模型时,可以不作为解释变量引进模型。而居民的收入水平对居民的消费水平的影响是显著的。
结论
通过对影响消费水平的因素分析,得出居民的收入水平对消费水平的影响是最显著的,其他因素则次之。通过对消费支出用途结构的分析,了解到居民的生活水平消费支出结构上,生存型消费所占的比重会出现下降的趋势,而享受型消费和发展型消费所占的比重会呈现上升的趋势。对恩格尔系数分析得出不管是城镇居民还是农村居民,恩格尔系数都随时间变化而下降,这表明了我国居民整体生活水平的提高。对比分析消费需求、投资需求、进出口需求这三大需求对国内生产总值增长的贡献率,得出消费和投资对经济增长的贡献率和拉动作用明显大于净出口,经济增长过分依赖于投资,而消费需求还有很大的发展空间。必须从思想上彻底摒弃“投资至上”的观念,牢固树立“消费第一”的思想。把扩大消费作为经济增长的根本目标和动力,才能不断改善和提高人们的生活水平和生活质量。
参考文献
[1]李宝瑜.《国民经济统计分析》[M].中国统计出版社,2002.
[2]徐小飞、龚德恩、吴成业.《关于生产函数的新思考-理论研究与实证分析》 [3]潘文卿、李子奈、张伟.《21 世纪前20 时年中国经济增长前景展望》
统计学是一门抽象难懂的学科,非统计学专业毕业人员一般很难做到精通。下文是我为大家整理的关于统计类论文投稿的范文,欢迎大家阅读参考!
医学统计学方法应用的错误解析
一、引 言
医学由于其研究的复杂性和系统性,常需要应用严谨的统计学方法,由于有些作者对医学科研的统计学理论和方法的应用缺乏深刻了解,在医学论文中错误应用统计学方法的现象时有发生。统计学方法应用的错误直接导致统计结果的错误。例如统计学图表、统计学指标、统计学的显著性检验等。因此,正确应用统计学方法,并将所获得的结果进行正确的描述有助于单篇论著的质量提高,现将医学论文中统计学方法应用及其常见结果的错误解析如下。
二、医学论文统计学方法应用概况
医学论文的摘要是全文的高度浓缩[1],主要由目的、方法、结果、结论组成。一般要求要写明主要的统计学方法、统计学研究结果和P值。一篇医学论文的质量往往通过摘要的统计学结果部分就能判断。统计学方法的选择和结果的表达直接影响单篇论著的科研水平。
(一)材料与方法部分
正文中,材料与方法部分必须对统计学方法的选择、应用、统计学显著性的设定进行明确说明。通过对统计学方法的描述,读者应该清楚论著的统计学设计思路。材料部分要清楚说明样本或病例的来源、入组和排除标准、样本量大小、研究组和对照组的设定条件、回顾性或者前瞻性研究、调查或者实验性研究、其他与研究有关的一般资料情况,其目的是表明统计学方法应用的合理性和可靠性,他人作相关研究时具备可重复性。方法部分应详细叙述研究组和对照组的不同处理过程、观察的具体指标、采用的测量技术,要具备可比较性和科学性,
方法部分还要专门介绍统计分析方法及其采用的统计软件。不同的数据处理要采用不同的方法,必须清楚的说明计数或者计量资料、两组或者多组比较、不同处理因素的关联性研究。常用的有两组间计量资料的t检验,多组间计量资料的F检验,计数资料的卡方检验,不同因素之间的相关分析和回归分析。有些遗传学研究方法还有专门的统计学方法,要在这里简要说明并给出参考文献,还要简单叙述统计方法的原理。统计学软件要清楚的说明软件的名称和版本号,如基于家系资料研究的FBAT1.7.3版本。
(二)论文结果部分
论文结果部分要显示应用统计学方法得到的统计量[2],所采用的统计学指标较多时,往往分开叙述。分组比较多时还要借助统计图表来准确表达统计结果。对于数据的精确度,除了与测量仪器的精密程度有关外,还与样本本身的均数有关,所得值的单位一般采用紧邻均数除以三为原则。均数和标准差的有效位数要和原始数据一致。标准差或标准误差有时需要增加一个位数,百分比一般保留一个小数。在统计软件中,分析结果往往精确度比较高,一般要采用四舍五入的方法使其靠近实验的实际情况,否则还会降低论文的可信度和可读性。
结果部分的统计表采用统一的“三线”表,表题中要注明均数、标准差等数据类型。表格中的数值要按照行和列进行顺序放置,要求整齐美观,不能出现错行现象。要明确标注观察的例数,得到的检验统计量。统计图可以直观的表达研究结果,如回归和相关分析的散点图可以显示个体值的散布情况。曲线图表达个体均值在不同组别随时间变化的情况或者不同条件下重复测量的结果。误差条图由均数加减标准误绘出,描述的是67%的置信区间,不是95%,提倡在误差条图采用95%的置信区间。
关于统计量,一般采用均数与标准差两个指标,均数不宜单独使用。使用均数的时候要明确变异指标标准差或者精确性指标标准误。关于百分比,分母的确定必须要符合逻辑,过小的样本会导致分母过小而出现百分比过大的情况。百分率的比较要写清两者中不同的变化,可以采用卡方检验。
1.假设检验的结果中,常见只写P值的情况,有时候会误导读者,也会隐藏计算失误的情况,因此写出具体的统计值,如F值、t值,可以增强可信度。对于率、相关系数、均数这类描述统计量,要清楚写明进行过统计学检验并将结果列出。P值一般取0.05与0.01作为检验显著性,对于结果的计算要求具体的P值,如P=0.23或P=0.02。
2.在对论文进行讨论时,作为统计学方法产生的结果往往要作为作者的主要观点支持其科学假设,对统计结果的正确解释至关重要。P值很大表明两组间没有差别属于大概率事件,P值很小表明两组间没有差别的概率很小。当P<0.05,表明差异具有统计学意义。P值与观察的样本量的大小有关联,当样本量小的时候,数据之间的差别即使很大,P值也可能很大;当样本量大时,数据之间的差别即使很小,P值也可能显示有显著性差异。相关系数统计学意义的显著性也与相关系数的大小没有绝对的关联,有统计学意义的样本相关系数可能很小。因此,有统计学差异的描述并不一定意味着两组间差别很大,错判的危险性很大,显著性的检验为定性的结果,结合统计量大小方可判断是否具有专业意义。
变量间虚假的相关关系与变量随时间变化而变化相关,统计学意义的关联并不表示变量间一定存在因果关系。因果关系的确定要根据专业知识和采用的研究方法的不同来考量。使用回归方程进行分析,当两变量间具有显著性关系,但是从自变量推测因变量仍然不会很精确。相关或回归系数不能预测推测结果的精确程度,而只是预测一个可信区间。诊断性检验应用于人群发病率很低的疾病,灵敏度、特异度的高低对于明确疾病诊断并不能很肯定。“假阳性率”与“假阴性率”根据实际的需要不同要求并不一致,在疾病患病率很低时,出现假阳性也是正常的,要确诊疾病必须要与临床症状体征相结合。因此,这两个率的计算方法必须交待清楚。
三、医学论文统计学方法应用的常见错误分析
(一)“材料与方法”中的统计学方法应用的常见错误
“材料与方法”中统计学方法常见的问题主要为:对样本的选择或者研究对象的来源和分组描述很少或者过于简单。例如,临床入组病例分组只采用简单的随机分组,未描述随机分组的方法,未描述是否双盲双模拟,未设置空白对照组,分组后对性别、年龄、文化程度的描述未进行统计学检验,对于特殊的统计学方法没有详细交代;动物实验分组的随机化原则描述过于简单,没有具体说清完全随机、配对或分层随机分组等;统计分析方法没有任何说明采用的分析软件,有的只说明采用的分析软件而不交代在软件中采用的统计方法;没有说明原因的情况下出现样本量过于小等情况。
(二)“结果”统计学方法应用的常见错误
1.应用正确的统计学方法出现的结果表达并不一定正确。例如前文所述数据的精确度要求。医学论文常见错误中包括均数、标准差、标准误等统计学指标与原始数据应保留的小数位数不同;对于率、例数、比值、比值比、相对危险度等统计学指标保留的小数点位数过多;罕见疾病的发病率、患病率、现患率等指标没有选择好基数,导致结果没有整数位;相关系数、回归系数等指标保留的小数位数过多或者过少;常用的一些检验统计量,如F值、t值保留的位数不符合要求。
2.对统计学指标进行分析和计算时,一般采用计数资料和计量资料进行区分。计量资料常用三线表,在近似服从正态分布的前提下采用均数、标准差进行说明,如果不符合正态分布时,可以采用加对数或其他的处理方式使其近似正态分布,否则只能采用中位数和四分位数间距等指标进行描述。医学论文中常见未对数据进行正态分布检验的计算,影响统计结果的真实性和可信度。对于率、构成比等常用的计数资料指标,常见样本量过小的问题,采用率进行描述会影响统计结果的可靠性,采用绝对数进行说明会显得客观一些。还有一些文献将构成比误用为率,也是不可取的。
3.在判断临床疗效之一指标时,两组平均疗效有差别并不意味着两组的每一个个体都有效或无效,必须通过计算有效率进行计算。如比较某药物治疗糖尿病的疗效,服药一周后,研究组和对照组的对血糖降低值分别为6.7 ±2.4 和1.2 ±0.6 ( P = 0.000 1) 。按空腹血糖值低于7.7mmol/L的疗效判定有效率,研究组和对照组的有效率分别为75.6%和12.4% ,尽管平均疗效相差较多,但也要注意到该药物对部分患者无效(24.4%)。对假设检验结果的统计学分析结果,P 值的表达提倡报告精确P值,如P = 0.015或P = 0.321等。目前的统计学分析软件均可自动计算精确的P 值。例如常用的SAS,SPSS等,只要提供原始数据,就可以计算出t值、F值和相应的自由度,并可获得精确的P值。
四、小 结
提高医学论文中统计学方法的使用质量是编辑部值得重视的一项长期而又艰巨的工作[3],医学论文中统计方法应用和统计结果的表达正确与否,不仅体现了论文的科学性和严谨性,而且对于提高期刊整体的学术质量,促进医学科学的发展和传播也有着重要作用[4]。
参考文献:
[1] 李敬文,吕相征,薛爱华.医学期刊评论性文章摘要的添加对期刊被引频次的影响[J].编辑学报,2011(23).
[2] 陈长生.生物医学论文中统计结果的表达及解释[J].细胞与分子免疫学杂志,2008(24).
[3] 潘明志.新时期复合型医学科技期刊编辑应具备的素质和能力[J].中国科技期刊研究,2011 (22).
统计学专业毕业现状分析与对策研究
本科毕业论文是高等学校人才培养计划的重要组成部分,是本科教学过程中最后一个重要的教学实践环节,是学士学位授予的一个重要依据。[1,2]然而,相较于其他教学环节,毕业论文没有受到足够的重视,从而导致该环节存在着一些问题。[3]本文将以中央民族大学统计学专业毕业论文为例,在分析其现状的基础上,找到问题并提出相应的建议。
中央民族大学统计学本科专业设置于2003年,目前已有六届毕业生。经过学院和学校层面的努力,统计学专业作为新办专业取得了较快发展,所培养的学生具有较好的专业能力和综合素质,近四成学生继续读研深造,就业的学生大都在专业对口的工作岗位上,就业率一直在85%左右。
本科毕业论文环节在培养方案中是6个学分。学生在第七学期开始选择指导教师以确定毕业论文题目。经过前6个学期的系统理论学习,统计学专业学生已基本掌握了统计学的基础理论和基本方法,具备了正确的统计思想和较强的统计软件应用能力,以及运用所学的理论和方法解决实际问题、文献检索和资料查询等综合能力。本科毕业论文的写作就是统计学专业学生将上述基础和能力进一步深化与升华的重要过程,从而培养学生的创新能力和实践能力,使学生的知识、技能和素质得到进一步的充实和提高,同时也是衡量学校教学质量和办学水平的重要指标。因此对如何提高毕业论文质量进行研究是必要和有意义的。[4]
一、统计学专业毕业论文质量的现状分析
从论文完成情况来看,每届的毕业论文基本都能达到论文教学环节的要求,通过对中央民族大学统计学专业2007~2011年四届毕业生的毕业论文进行分析,发现毕业论文及格率为99.18%。
从毕业论文研究的类型来看,主要分为两大类:理论研究型论文和实证型论文,理论研究型论文表现为总结和论述现有统计理论问题,表述理论研究的成果,或应用理论对现实问题进行分析、说明,并提出自己的思考;实证型论文主要表现为针对某一特定的实际目的或目标,运用所学统计的理论和方法,对经济、管理、金融、医学、生物、工程、环境等领域进行统计调查、统计信息管理、数量分析等。
从论文知识点范围的分析来看,学生论文绝大多数是统计专业问题,极少数是其他数学分支的问题。从中央民族大学历届统计学专业学生的毕业论文情况分析,发现毕业论文中研究其他数学分支的问题占总数的6.50%,主要包括:一是其他科目的应用研究(数学分析、常微分方程、运筹学及空间解析几何等),占总数的1.63%。二是数学专业教育和数学思维的研究,占总数的4.87%。研究统计学专业问题的毕业论文占绝大部分,比例为93.50%,选题内容广泛且多为社会热点问题,涉及经济、社会、医疗卫生、教育发展、旅游、基础设施建设等多领域,由于受学校人文环境影响,很大比例的学生对少数民族地区的经济、社会、民生等问题进行了统计分析,约占总学生人数的30.08%。所使用的分析方法主要集中于抽样调查、回归分析、多元统计方法、聚类分析、判别分析等常用统计方法。
此外,统计分析显示学生成绩普遍偏高,统计学专业学生的毕业论文,尤其是实证类论文,存在着可以大量使用背景介绍和统计软件分析结果的特点,因此,一些论文没有创新性和学术含量,但具有较大的篇幅,与理学院其他专业的毕业论文成绩比较,其平均成绩相对较高,约80.42分。
二、统计学专业毕业论文存在的问题
毕业论文的质量问题关系到本科人才的培养规格和目标,直接体现了学生本科阶段的学习成果,是衡量教学水平、学生毕业与学位资格认证的重要依据。通过对论文和考评结果的具体分析,发现学生的毕业论文在创新性、理论深度及论文写作常识多方面存在问题。具体表现为:
1.创新性不够
学生的毕业论文表现为理论性研究非常少,大都是实证型论文,并且多是简单的统计方法应用,缺少创新性研究和思考。从中央民族大学历届统计学专业学生的毕业论文来看,理论研究型论文只占4.89%,与实证型论文的比例为1︰19.45,比例悬殊,体现了学生在毕业论文大的选题过程中,避重就轻,缺乏创新的特点。如每年都有一定数量的学生选择“我国人均GDP的预测”这类针对某经济指标进行预测的题目,论文的主要内容就是利用ARMA、灰色预测或者趋势外推方法等一种或多种方法对时间序列数据做简单建模和分析,论文没有对指标本身的意义以及国内国际的社会经济形势进行综合分析。这种方法简单套用性质的论文占有很大的比重。
2.选题过大、内容空泛,缺乏深入研究,存在抄袭、拼凑现象
有些学生在选择研究课题时,往往不能根据自身的专业知识结构特点和社会实践情况进行准确定位,只是一味的盲目的选择一些过大过空的社会热点问题,因此难以看到所要研究的问题的本质。如有的学生针对CPI做研究,没有深入了解问题的实质,只是收集了一些文献,很难提出自己的观点或研究角度,造成了材料堆积且过于散乱,论文变成了一些材料的简单拼凑。有些论文针对某一社会经济问题进行研究,论文的主题只是针对现有数据利用简单的统计方法进行分析,对数据的质量和可靠性以及方法的适用性不做针对性讨论,对所得的结论也不结合社会经济现实情况进行分析,导致论文质量不高。
3.相对前沿的分析方法利用较少
前沿的分析方法利用较少,通过毕业 论文的 写作, 统计分析能力没有实质性提升。学生论文使用的统计方法主要集中于回归分析、聚类分析、判别分析、相关性分析等,其中回归分析方法占有非常大的比例,约41.46%,其他各统计方法使用的比例分别为:聚类分析为5.69%,判别分析为7.32%,相关性分析为14.63%,多元统计方法为2.44%,时间序列分析为3.25%,极少有学生使用教科书外的相对前沿的分析方法。
4.论文写作上存在结构不合理、没有相关研究介绍、创新点表述不清、参考文献不会正确标注等问题
从学生的毕业论文来看,论文写作不规范,专业性差。主要存在论文形式不规范、结构不合理、题目含糊、有些论文杂乱无章、口语化严重、可读性差等问题。
三、存在问题的原因分析
针对上述问题,统计学系通过对论文进行详细审查以及 组织指导教师和学生座谈,发现毕业论文出现以上问题的主要原因包括以下几方面:
1.学生对论文不够重视
部分学生由于忙于考研学习而无暇顾及毕业论文的研究,还有部分学生由于忙于外出找 工作、 实习而无心认真撰写论文。论文撰写所需的必要时间难以得到保障,因此学生应付了事,从而无法保证论文的深度。此外,还有部分学生认为毕业论文只是一个教学环节,与考研的好坏无关,存在只要写了论文,教师都会让自己通过的侥幸 心理,在思想上没有引起足够的重视。
2.缺乏指导教师的针对性指导
指导教师所带毕业生人数过多,使得导师的工作量呈现超负荷状态,无法保证每个学生毕业论文的质量,从而致使部分学生的论文规范性较差,没有对存在的问题反复修改,使得学生论文存在诸多问题。
3.学生的专业训练还不够
大部分本科生没有经历过论文的写作训练,写作水平较低,不了解学术论文的规范性及其格式,不知如何从科研的角度构思文章、组织材料、安排结构,使得相当一部分学生的毕业论文表达的观点不够准确清楚,论据亦不能很好地支持论点。另外,一些同学为了完成任务,直接将在 网络中搜索到的资料不假思索的拼凑在一起,使得内容不成体系,观点混乱。
四、提高毕业论文质量的建议和 实践
1.加强毕业论文重要性的宣传,提高学生的重视度
加强对毕业论文重要性的认识有助于提高本科生毕业论文的质量。通过讲座、课堂传授等形式,让学生意识到毕业论文的实践性和综合性是任何教学环节都不能替代的,是提高发现问题、分析问题、解决问题能力的有效途径,更是进行个人综合素质提高的必不可少的重要环节,[4]从而使学生在思想上认识到毕业论文的重要性,投入更多精力进行毕业论文设计。
2.选题和教师的科研项目相结合,提高论文的创新性
在选择课题时,为了能充分发挥学生的主观能动性,可以让学生根据自身的特点,与指导教师协商,结合导师的研究方向制定课题方案。统计学专业的教师一般除了 申请国家自然科学基金和国家 社会科学基金这类对理论性和创新性要求较高的项目以外,很多教师还主持或参加有相应的 应用研究类项目。应用类项目大都需要实地调研(以及问卷涉及和数据分析)或者大量的数据分析和建模。引导学生参加这类项目来设计和完成自己的本科毕业论文,能够激发学生的科研热情和创新潜力。此外,鼓励和引导一些成绩较好,如让具备保研资格的学生参加教师的科研讨论班或者课题组,选择一些具有一定难度的理论问题进行研究,可以使学生了解本学科的 发展方向和最新动态。最近两年,越来越多的学生,特别是具备了保研资格的学生,在大四上学期就能投入到项目和毕业论文的写作中。
3.重视平时实践教学环节,培养学生的实践能力、发现问题以及解决问题的能力
为了提高学生的学习兴趣以及对问题的分析、解决能力,广泛开展了丰富多彩的社会实践活动,使学生尽可能早地接触与本专业有关的实际工作,切身 体会到如何将理论与实际相结合,了解本学科的实际业务,从而提高自主学习能力,加强专业知识的把握。结合学校的实际情况,积极鼓励学生在大二和大三阶段参加校级和国家级的全国大学生数学建模竞赛,申请“中央民族大学本科生研究训练 计划项目”、“北京市大学生科学研究计划项目”和“国家大学生创新性试验计划项目”。项目的申请和实施以及研究 报告的写作,对学生来说都是一个很好的锻炼。目前,统计学专业本科生的参与率在70%以上。此外,建立专业实习基地可以提高学生利用专业知识分析和解决实际问题的能力。这些环节的设计和实施都有力地保障了学生本科毕业论文的水平和质量。
4.加强学生科技论文写作训练
加强平时课堂上大作业的规范化,潜移默化培养学生科技论文的写作能力。通过平时的实践活动,如学生数学建模以及大学生创新实践等各类实践性项目来提高学生的 论文 写作能力。
5.实施激励措施,激发学生的兴趣和主动性
针对那些参与实际课题的学生,学院鼓励指导教师根据学生的完成情况以劳务费的形式给予其奖励,另外积极鼓励毕业论文质量优秀的学生进行投稿 发表。此外,还需对答辩程序和评分标准进行规范化,建立优秀毕业论文指导教师和优秀毕业论文奖励制度,以形成积极的导向作用,充分调动指导教师和学生的积极性。
6.加强教师责任心,建立完善的机制
加强学生毕业论文的过程 管理,从开题到中期检查严格执行,指导教师严格把关。为了保证学生与教师之间的沟通,学校可以通过建立师生信息反馈机制改善师生分离状态,为师生提供便利的沟通渠道,同时设置适当的教师激励制度,中央民族大学目前对教师指导本科毕业论文有额外的课时补贴。
一、论文发表等级-第一级-T类-特种刊物论文。在《SCIENCE》和《NATURE》两本期刊上发表的论文为特种刊物论文。论文发表等级第二级-A类:权威核心刊物论文,被国际通用的SCIE、EI、ISTP、SSCI以及A&HCI检索系统所收录的论文(以中国科技信息研究所检索为准),或同一学科在国内具有权威影响的中文核心刊物上发表的论文,论文不含报道性综述、摘要、消息等。论文发表等级第三级-B类重要核心刊物论文,在国外核心期刊上刊登的论文(见《国外科技核心期刊手册》)或在国内同一学科的中文核心期刊中具有重要影响的刊物上发表的论文。论文发表等级第四级-C类:一般核心刊物论文,在《全国中文核心期刊要目总览》刊物上发表的论文。由中国知网、中国学术期刊网和北京大学图书馆期刊工作研究会联合发布中文核心期刊目录。1992年推出《中文核心期刊目录总览》,1996年推出(第二版),2000年推出(第三版),2004年推出(第四版),2008年推出(第五版),2011年推出(第六版),第七版(2014版)论文发表等级第五级-D类:一般公开刊物论文,在国内公开发行的刊物上双刊号期刊(有期刊号“CN”“ISSN”,有邮发代号)发表的论文。论文发表等级第六级-E类:受限公开刊物论文,指在国内公开发行的但受发行限制的刊物上(仅有期刊号、无邮发代号)发表的论文。内部刊物发表的论文分为三个级别(类):内部刊物必须为教育部门主办,以主办单位级别分为:第七级-国家级内刊(中国教育学会及其专委会、教育部等自办刊物),第八级-省级内刊,第九级-区级内刊。
jcr期刊引证报告的评价指标:影响因子(Impact Factor,IF)。
IF影响因子:
对于期刊评价指标,大家耳熟能详的、参考最多的应该是是汤森路透每年出品的《期刊引证报告(JCR)》中的影响因子(Impact Factor,IF)。
一个期刊的影响因子IF,指的是该期刊前两年发表的论文在该报告年份中被引用总次数除以该期刊在这两年内发表的论文总数,基于Webof Science数据库。
一种刊物的影响因子越高,也即其刊载的文献被引用率越高,一方面说明这些文献报道的研究成果影响力大,另一方面也反映该刊物的学术水平高。因此,JCR以其大量的期刊统计数据及计算的影响因子等指数,而成为一种期刊评价工具。影响因子现已成为国际上通用的期刊评价指标。
JCR还提供多项期刊条件选择浏览功能,你可以通过选择不同的学科、JCR年份、数据库、是否为OA期刊、汤森路透JCR分区、出版商、国家和地区等多种条件来筛选查看期刊的指标列表。
期刊影响因子查询及期刊投稿分析系统,登录LetPub网站可以查询某个SCI期刊的影响因子、中科院分区、是否为OA期刊、期刊自引率、期刊官方网站以及期刊投稿网址等数据。
有影响因子,国外期刊根据影响因子划分为一区、二区、三区和四区,影响因子越高,则发表论文要求越高,难度越大,建议作者根据评审单位评职等级,选择符合的影响因子期刊级别,发表论文,避免论文与期刊影响因子不符,影响论文发表。
有的。影响因子(Impact Factor)是一个国际上通行的期刊评价指标,即某期刊前两年发表的论文在统计当年的被引用总次数除以该期刊在前两年内发表的论文总数。该指标是相对统计值,一般来说,影响因子越大,其学术影响力也越大。最新SCI影响因子查询及期刊投稿分析系统:1.用360浏览器打开LetPub最新SCI影响因子查询及期刊投稿分析系统2.向下翻动,找到【科研工具】,点击【SCI查询]。3.输入期刊名,以nature为例,点击【查询】,就可以看到nature及其子刊的影响因子。
统计分析是运用统计 方法 与分析对象有关的知识,从定量与定性的结合上进行的研究活动。下文是我为大家整理的关于统计分析论文的 范文 ,欢迎大家阅读参考!
浅谈统计分析与决策
[摘要] 统计分析与决策二者有联系又有区别。统计要参与决策,必须搞好统计分析。搞好统计分析,需要解决选题、分析、撰写 报告 三个问题。
[关键词] 统计分析 分析方法 决策
统计工作的全过程分为四个阶段,即统计设计,统计调查,统计整理,统计分析。其中,统计分析是统计工作的最后一个阶段,是出统计成果的阶段。现在倡导统计要参与决策,这是不是说统计工作还要增加一个决策阶段呢?如果不是,那么,统计分析与决策是什么关系呢?
狭义的说,统计分析与决策是有区别的。统计分析是以统计数字为基础,以统计方法为手段,对社会经济情况进行科学的分析和综合研究,以认识其本质和规律的过程。而决策则是为了达到某一预定目标,运用逻辑方法和统计方法,对两种或两种以上可能采取的方案进行比较、分析、研究,以做出合理的、科学的抉择的行为过程。假若把统计分析与决策比作医生看病,统计分析就是对病情的诊断,决策就是开处方,“诊断”和“处方”是有区别的。
广义的讲,统计分析与决策是密不可分的。一方面,统计分析贯穿于决策过程之中。一个决策过程大体上可分为下列三个大步骤:第一,诊断问题所在,确定决策目标;第二,探索和拟定各种可能的备选方案;第三,从各种备选方案中选出最合适的方案。从这三大步骤看,尽管要用到多种方法和手段,但哪一步也离不开统计分析,第一步就是通过统计分析,诊断问题所在,并在分析的基础上确定决策目标;第二步拟定备选方案,要经过“轮廊设想”和“细部设计”这个阶段对轮廊设想的方案要做初步筛选,对每一方案要充实具体内容,“筛选”和“充实”都要经过统计分析;第三步选择最佳方案,首先要对各个备选方案进行评价、论证,这又需要统计分析。因此可以说,没有统计分析,也就没有科学决策。另一方面,从某种意义上讲,决策是统计分析的结果。一般来说,统计分析报告是提出问题、分析问题、指出解决问题的办法,其实,决策方案也就是解决问题实现决策目标的办法,只不过比“今后意见”“几条 措施 ”之类的办法更全面、更详细、更科学罢了。医生诊断是为了正确处方,治病救人,不能只诊断不处方。统计分析是为了发现问题,解决问题,推动社会经济的顺利发展;也不能只提出问题,而不寻找解决问题的办法。从这个意义上讲,统计分析也就包括预测和决策。我们不能为统计而统计,也不能为分析而分析。统计应该参与决策,为了决策科学化,必须搞好统计分析。
搞好统计分析,需要解决选题、分析、撰写报告三个问题。
一、统计分析选题
所谓选题,就是在复杂的社会经济现象中,确定统计分析的内容和范围。进行统计分析,选题很重要。成功的选题是成功的分析的前提。
怎样选好题呢?选好题标准有两条:―是分析对象有意义,二是适合决策层和群众需要。关键是抓住党和国家的方针政策和企业的经济效益。
统计分析课题是很广泛的。工业统计分析课题如:计划执行情况分析、工业净产值统计分析、工业产品销售统计分析、工业原材料供应和消耗统计分析、工业能源消耗统计分析、工业生产设备统计分析、工业劳动与工资统计分析、成本利润统计分析、综合经济效益统计分析等。商品流通企业统计分析课题如:市场供求状况分析、市场占有率分析、主要商品经济寿命周期分析、市场商品价格分析、计划执行情况分析、购销合同执行情况分析、商品购进质量分析、商品销售动态分析、商品销售构成分析、商品库存分析、企业经济效益分析等。对于以上内容,可根据不同的时间、地点、条件,按两条选题标准适当选择。
统计分析有专题分析与综合分析之分。在一定的总体范围内,研究总体的各个方面及其相互关系,或研究总体的主要方面的统计分析,属于综合分析;只研究其中某一方面,或某一部分的统计分析,属于专题分析。两者各有不同的特点,都是必要的,但专题分析宜多,综合分析宜少。
二、统计分析方法
统计分析的关键是分析,怎样进行统计分析呢?统计分析有两个特点:一是以统计数字为基础,二是以统计方法为手段。因此,统计分析在选题之后,就要根据分析的需要,搜集整理有关数字资料及具体情况,在充分占有材料的基础上,灵活运用统计方法进行分析。
统计分析方法很多。统计学原理中除了有关统计调查、统计整理的内容外,综合指标、统计指数、时间数列、抽样推断等内容全部是统计分析方法。从方法角度上讲,统计分析就是统计学原理的运用。
统计方法与人们的认识过程是相适应的。人们的认识分感性认识和理性认识两个阶段。感性认识阶段所认识的是事物的现象,可采用统计调查和统计整理。理性认识阶段所认识的是事物的本质和规律,这个阶段要经过形成概念、进行判断和推理等思维活动。与此相适应,要分别采用不同的统计分析方法。
形成概念一般用描述性的综合指标法,即总量指标、相对指标和平均指标,以说明现象的规模大小、水平高低、速度快慢、内部结构以及比例关系等。判断推理就是要判断事物的性质,分析事物变化的原因,找出事物发展的规律。这一般要用分组分析法、动态分析法、因素分析法、相关回归分析法、平衡分析法等。
对统计学原理中的各种统计分析方法要熟练地掌握,灵活地运用。怎样灵活运用呢?这里有个技巧问题。技巧就是定性分析与定量分析巧妙结合。
所谓定性分析是指对事物的性质和影响事物发展变化的因素进行分析。定量分析就是分析事物的规模、水平、速度、结构、比例,以及各个因素对事物总体变化的影响方向和影响程度。定性分析与定量分析巧妙结合有两层含义,一是二者不可偏废,二是二者密不可分,
没有定性分析,定量分析就没有方向。没有定量分析,定性分析就不准确。结合的目的是在质与量的辩证统一中探寻事物的内在联系。
从根本上讲,统计分析就是完成从感性认识到理性认识,从现象到本质的飞跃。完成了这―飞跃,才是高质量的统计分析。有些统计分析质量不高,往往就是没有完成这一飞跃,仍然停留在表面现象上。
三、统计分析报告的撰写
统计分析报告是统计的最终产品。如果说统计数字的准确性是统计的生命,那么,统计分析报告的质量则关系到统计作用的发挥。对高质量的统计分析报告的要求,可以概括为五个字,就是“准、快、新、深、活”。
准:就是实事求是地反映客观实际。做到数字准确,情况准确,论点准确。
快:就是在决策层决策之前,不失时机地及时提供分析报告。
新:就是不断创新。要求不断开拓新领域,钻研新课题,反映新情况和新问题。
深:就是要在充分占有材料的基础上,提高分析的深度,使认识不只停留在反映现象上,而要揭示事物的本质和规律,并且用观点统帅材料,用材料说明观点,做到材料和观点的统一。
活:就是文字生动活泼,形式灵活多样。资料要多样化和生动具体,要有群众语言,要通俗易懂,文字要精精炼。
统计分析报告是在统计分析的基础上撰写出来的。没有好的分析,不可能写出好的报告。经过分析阶段,弄清了事实,判明了性质,探索出规律,得出了结论,在此基础上就可以撰写统计分析报告。但分析得好,并不等于报告写得好,这里还有个撰写的技巧问题,那就是准确地表述事实,透彻地阐明本质,深刻地揭示规律,恰当地提出建议。
1.准确地表述事实
每一篇统计分析报告,都需要表述所分析的现象,即说明“是什么”。准确地表述事实,才能给读者一个明确的概念。为此,须注意如下几点:(1)数字要真实;(2)运用数字要适当,不要堆砌数字,搞数字文字化;(3)语言要素准确。
2.透彻地阐明本质
现象只说明事物的各个片面,本质才说明事物的整体。撰写统计分析报告,必须深刻地揭示事物的本质,它是统计认识事物的正确程度和深度的反映。如果不能深刻地阐明事物的本质,那只能是现象罗列,没有多大价值。
阐明事物的本质,也就是阐明事物的基本性质。事物的性质是由事物内部矛盾的主要方面决定的。例如,某企业利润增加,是靠涨价,还是靠降低成本?经过分析,认识到利润增加主要是靠降低成本,这是矛盾的主要方面,这就反映出事物的性质。因此,在报告中就应阐明降低成本在提高经济效益中的重要作用。再如某企业,本质问题是钢材浪费严重,在报告中就应揭示浪费的若干方面和严重程度。
3.深刻地揭示规律
规律是事物内部固有的、本质的、必然联系。成本高低与产量多少有联系,经过推理,这种联系是事物内部固有的、本质的必然联系,反映了事物发展变化的规律性,而且存在一定的回归关系。而回归方程反映这种关系,所以在统计分析报告中,要利用回归方程揭示这种必然联系及其回归关系。
4.恰当地提出建议
认识世界的目的是为了改造世界。经过统计分析,透过现象认识到事物的本质和规律,还必须提出解决问题的建议,如“今后意见”、“几点建议”、“决策方案”等等。怎样才算恰当地建议呢?恰当的建议要符合三个条件:(1)符合分析目的;(2)合乎客观规律;(3)切实可行。
以上四点,一般可以作为分析报告的结构和顺序,但不能千篇一律。
统计分析报告是统计分析结果的反映。既要注意提高写作水平,更要努力锻炼分析问题和解决问题的能力。
试谈统计分析方法应用
【摘要】统计分析方法应用于各个领域,解决了很多工业、农业、经济、医学等领域的实际问题,本文分析多元统计分析方法的主要应用和构建多元统计方法检验体系的必要性,针对性的提出了需要引起注意的共性问题,具有很强的现实意义。
【关键词】统计分析方法;应用;检验体系;共性问题;现实意义前言
随着信息技术的普及和广泛应用,它推动了社会、经济和科学技术的发展,多元统计分析方法的难题得到了攻破,各个领域广泛采用,推动了各行各业经济的快速发展。
二、多元统计分析方法的主要应用
统计方法是科学研究的一种重要工具,其应用颇为广泛。在工业,农业,经济,生物和医学等领域的实际问题中,常常需要处理多个变量的观测数据,因此对多个变量进行综合处理的多元统计分析方法显得尤为重要。随着电子计算机技术的普及,以及社会,经济和科学技术的发展,过去被认为具有数学难度的多元统计分析方法,已越来越广泛地应用于实际。
聚类分析
它是研究分类问题的一种多元统计方法,聚类分析的基本思想是首先将每个样本当作一类,然后根据样本之间的相似程度并类计算新类与 其它 类之间距离,再选择近似者并类每合并一次减少一类,继续这一过程直到所有样本都合并成为一类为止。所以聚类分析依赖于对观测间的接近程度或相似程度的理解,定义不同的距离量度和相似性量度就可以产生不同的聚类结果。企业制定 市场营销 战略时要弄清在同一市场中哪些企业是直接竞争者,哪些是间接竞争者是非常关键的一个环节。要解决这个问题,企业首先可以通过 市场调查 ,获取自己和所有主要竟争者,从而寻找企业在市场中的机会。
判别分析
判别分析是已知研究对象分成若干类型,并取得各种类型的一批已知样品的观测数据、在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析,企业在市场预测中往往根据以往所调查的种种指标,用判别分析方法判断下季度产品是畅销平销或滞销。一般情况下判别分析经常与聚类分析联合起来使用。
主成分分析
主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标,来代替原来指标,同时根据实际需要从中可取几个较少的综台指标,尽可能多反映原来指标的信息,在市场研究中常常利用主成分析方法分析顾客的偏好和当前市场的产品与顾客之间的差别,从而提供给生产企业新产品开发方向的信息。
因子分析
因子分析是主成分分析的推广和应用。它是将错综复杂的随机变量综合为数量较少的随机变量去描述,多个变量之间的相关关系以再现原始指标与因子之间的相互关系。也可以认为因子分析是将指标按原始数据的内在结构分类。例如:对Y个调查区的商业网点数、人口数、金融机构服务数、收入情况等N个指标进行因子分析,如果按照一般的分析方法,我们就需要处理N个指标,并给它们以不同的权重。这样不仅工作量变大而且由干指标之间存在比较高的相关性,会给分析结果带来偏差另外给具有较高相关性的众多指标,从而计算出各个调查区平均综合实力得分以便决定在某个调查区拟建何种类型的销售点。
三、构建多元统计分析方法检验体系的必要性
(一)构建多元统计分析方法检验体系,提高多元统计分析应用质量
多元统计分析方法已经越来越为人们广泛应用,但应用中盲目套用分析方法的情况很多,只关心模型方法的应用。许多教科书也只侧重介绍多元统计分析方法的思想、原理和分析步骤,对多元统计分析方法应用结果的统计检验叙述不多。这就直接影响了多元统计分析方法的应用效果和可信性。因此,本文拟对多元统计分析方法的统计检验问题进行探讨。构建多元统计分析方法检验体系的目的在于进一步丰富和完善多元统计分析方法的内容体系;实践上,使多元统计分析方法的应用更加合理、规范。推动多元统计分析方法应用质量的提高,推动多元统计分析方法获得更广泛的应用。
(二)多元统计分析统计检验体系的基础理论
多元正态分布总体的样本分布,即维希特分布,霍特林分布,威尔克斯分布,多元正态总体均值向量假设检验,包括一个正态总体均值向量假设检验,两个正态总体均值向量假设检验,多个正态总体均值向量假设检验;多元正态总体协方差阵假设检验,包括一个正态总体协方差阵假设检验,多个协差阵相等假设检验。
(三)关于统计检验体系
将上述统计检验体系有机结合在一起,就构成了多元统计分析方法检验体系的基本框架。多元统计分析方法检验体系的构建,用多元统计分析方法,充分发挥多元统计分析方法的应用价值,提高应用质量,我们建议,在应用时,应该按照上述框架进行相应的统计检验。当然。上述统计检验体系还是一个初步的框架,随着多元统计分析方法理论的逐步完善,上述检验体系也需要不断完善,也需要更多的同行关注此类问题并不断加以研究。另一方面,在实际应用中,即便是某种方法根据上述内容都进行了统计检验,由于各种方法自身存在的缺陷或局限性,也还会存在许多应用中考虑不周之处。应该引起注意。但是,因子分析结果还是具有较大主观性。特别是对公共主因子在专业方面实际意义的解释上,仍然保留着一种艺术气息,并没有统一做法,因此很多情况下也是不能令人满意的。总之,我们在应用时,对因子分析的适用性、公因子的估计方法、公因子选取的数目。公因子的实际意义的解释等一系列问题都要引起足够注意。检验体系有如下几个分类:
a.主成分分析统计检验体系
b.因子分析统计检验体裂引
c.系统聚类分析统计检验体系
d.判别分析统计检验体裂
e.对应分析统计检验体系
f.典型相关分析统计检验体系
四、多元统计分析方法应用中需要注意的几个共性问题
1.关于原始数据变量的总体分布问题。
对原始变量的总体分布各种方法各有不同的要求。有的方法对原始数据变量总体分布没有特殊的要求,如主成分分析、聚类分析、对应分析。有的方法在不同情况下,对原始变量分布有不同的要求,如因子分析中,公共因子的估计方法不同,对原始变量分布要求不同,采用极大似然估计方法估计主因子时,是假定原始变量是服从多元正态分布的,因此,应用时要引起重视,如典型相关分析要求原始变量服从正态分布,但在严格意义上,如果变量的分布形式比如高度偏态不会降低其他变量的相关关系,典型相关分析是可以包含这种非正态变量的。
样本容量问题。
进行多元统计分析时,样本容量n达到多少为宜,目前尚没有统一的结论。有的认为样本容量应是变量个数的10~20倍,有的认为样本容量要在100以上比较合适,有的认为进行巴特莱特检验时的样本容量应该大于150方可,也有的认为不必苛求太多的样本容量,如在进行主成分分析和因子分析时当原始变量之间的相关性很小时,即使再扩大样本容量,也难以得到满意效果。
原始变量之间的相关性以及非线性关系问题。
多元统计分析方法中,有的是的要求原始变量中要具有相关性。有的则不要求原始变量具有相关性。如聚类分析中,进行Q型系统聚类分析时对原始数据变量之间的相关性也是有要求的,如选择欧式距离、明氏距离、兰氏距离时,则要求原始变量之间是不相关的。只有对原始数据的相关性进行了处理后,才可以选择使用上述距离。若原始变量存在相关性,则选择马氏距离比较合适。另外原始变量之间的非线性关系也是需要注意的问题。如主成分分析、因子分析以及典型相关分析当基于相关矩阵来进行计算时,这里的相关矩阵实际上是Pearson的积差相关。但是,如果变量之间的关系不是线性的,而是非性相关关系,于是,所进行的分析以及结论也就失去应有的意义了。
数据处理问题。
多元统计分析中涉及多个变量,不同变量往往具有不同的量纲及不同的数量级别。在分析时,具有不同量纲的变量进行线性组合是没有意义的,不同的数量级别的变量之间进行分析时。会导致“以大吃小”,即数量级的变量的影响会被忽略,从而影响了分析结果的合理性。因此。为了消除量纲和数量级别的影响,进行多元统计分析时,必须对原始数据进行处里,最常用的是先作标准化变换处理,然后再作相应的分析。
五、结束语
在统计分析方法的应用中,会涉及到多个变量,因此,必须根据原来有的数量进行处理,然后才能得出相应的分析结论。本文结合多元统计分析方法的理论基础,对相关检验体系和分析体系进行了分析,具有现实的理论指导意义。
【参考文献】
[1]于秀林.多元统计分析[M].北京,中国统计出版社,1999:223—224.
[2]高惠璇.应用多元统计分析[M].北京,北京大学出版社 ,2005:343—366.
[3]郭志刚.社会科学分析方法一SPSS软件应用[M].,中国人民大学出版社,1999.
[4]傅德印.主成分分析中的统计检验问题 [J].统计 教育 ,2007(9):4—7.
统计学是一门抽象难懂的学科,非统计学专业毕业人员一般很难做到精通。下文是我为大家整理的关于统计类论文投稿的范文,欢迎大家阅读参考!
医学统计学方法应用的错误解析
一、引 言
医学由于其研究的复杂性和系统性,常需要应用严谨的统计学方法,由于有些作者对医学科研的统计学理论和方法的应用缺乏深刻了解,在医学论文中错误应用统计学方法的现象时有发生。统计学方法应用的错误直接导致统计结果的错误。例如统计学图表、统计学指标、统计学的显著性检验等。因此,正确应用统计学方法,并将所获得的结果进行正确的描述有助于单篇论著的质量提高,现将医学论文中统计学方法应用及其常见结果的错误解析如下。
二、医学论文统计学方法应用概况
医学论文的摘要是全文的高度浓缩[1],主要由目的、方法、结果、结论组成。一般要求要写明主要的统计学方法、统计学研究结果和P值。一篇医学论文的质量往往通过摘要的统计学结果部分就能判断。统计学方法的选择和结果的表达直接影响单篇论著的科研水平。
(一)材料与方法部分
正文中,材料与方法部分必须对统计学方法的选择、应用、统计学显著性的设定进行明确说明。通过对统计学方法的描述,读者应该清楚论著的统计学设计思路。材料部分要清楚说明样本或病例的来源、入组和排除标准、样本量大小、研究组和对照组的设定条件、回顾性或者前瞻性研究、调查或者实验性研究、其他与研究有关的一般资料情况,其目的是表明统计学方法应用的合理性和可靠性,他人作相关研究时具备可重复性。方法部分应详细叙述研究组和对照组的不同处理过程、观察的具体指标、采用的测量技术,要具备可比较性和科学性,
方法部分还要专门介绍统计分析方法及其采用的统计软件。不同的数据处理要采用不同的方法,必须清楚的说明计数或者计量资料、两组或者多组比较、不同处理因素的关联性研究。常用的有两组间计量资料的t检验,多组间计量资料的F检验,计数资料的卡方检验,不同因素之间的相关分析和回归分析。有些遗传学研究方法还有专门的统计学方法,要在这里简要说明并给出参考文献,还要简单叙述统计方法的原理。统计学软件要清楚的说明软件的名称和版本号,如基于家系资料研究的FBAT1.7.3版本。
(二)论文结果部分
论文结果部分要显示应用统计学方法得到的统计量[2],所采用的统计学指标较多时,往往分开叙述。分组比较多时还要借助统计图表来准确表达统计结果。对于数据的精确度,除了与测量仪器的精密程度有关外,还与样本本身的均数有关,所得值的单位一般采用紧邻均数除以三为原则。均数和标准差的有效位数要和原始数据一致。标准差或标准误差有时需要增加一个位数,百分比一般保留一个小数。在统计软件中,分析结果往往精确度比较高,一般要采用四舍五入的方法使其靠近实验的实际情况,否则还会降低论文的可信度和可读性。
结果部分的统计表采用统一的“三线”表,表题中要注明均数、标准差等数据类型。表格中的数值要按照行和列进行顺序放置,要求整齐美观,不能出现错行现象。要明确标注观察的例数,得到的检验统计量。统计图可以直观的表达研究结果,如回归和相关分析的散点图可以显示个体值的散布情况。曲线图表达个体均值在不同组别随时间变化的情况或者不同条件下重复测量的结果。误差条图由均数加减标准误绘出,描述的是67%的置信区间,不是95%,提倡在误差条图采用95%的置信区间。
关于统计量,一般采用均数与标准差两个指标,均数不宜单独使用。使用均数的时候要明确变异指标标准差或者精确性指标标准误。关于百分比,分母的确定必须要符合逻辑,过小的样本会导致分母过小而出现百分比过大的情况。百分率的比较要写清两者中不同的变化,可以采用卡方检验。
1.假设检验的结果中,常见只写P值的情况,有时候会误导读者,也会隐藏计算失误的情况,因此写出具体的统计值,如F值、t值,可以增强可信度。对于率、相关系数、均数这类描述统计量,要清楚写明进行过统计学检验并将结果列出。P值一般取0.05与0.01作为检验显著性,对于结果的计算要求具体的P值,如P=0.23或P=0.02。
2.在对论文进行讨论时,作为统计学方法产生的结果往往要作为作者的主要观点支持其科学假设,对统计结果的正确解释至关重要。P值很大表明两组间没有差别属于大概率事件,P值很小表明两组间没有差别的概率很小。当P<0.05,表明差异具有统计学意义。P值与观察的样本量的大小有关联,当样本量小的时候,数据之间的差别即使很大,P值也可能很大;当样本量大时,数据之间的差别即使很小,P值也可能显示有显著性差异。相关系数统计学意义的显著性也与相关系数的大小没有绝对的关联,有统计学意义的样本相关系数可能很小。因此,有统计学差异的描述并不一定意味着两组间差别很大,错判的危险性很大,显著性的检验为定性的结果,结合统计量大小方可判断是否具有专业意义。
变量间虚假的相关关系与变量随时间变化而变化相关,统计学意义的关联并不表示变量间一定存在因果关系。因果关系的确定要根据专业知识和采用的研究方法的不同来考量。使用回归方程进行分析,当两变量间具有显著性关系,但是从自变量推测因变量仍然不会很精确。相关或回归系数不能预测推测结果的精确程度,而只是预测一个可信区间。诊断性检验应用于人群发病率很低的疾病,灵敏度、特异度的高低对于明确疾病诊断并不能很肯定。“假阳性率”与“假阴性率”根据实际的需要不同要求并不一致,在疾病患病率很低时,出现假阳性也是正常的,要确诊疾病必须要与临床症状体征相结合。因此,这两个率的计算方法必须交待清楚。
三、医学论文统计学方法应用的常见错误分析
(一)“材料与方法”中的统计学方法应用的常见错误
“材料与方法”中统计学方法常见的问题主要为:对样本的选择或者研究对象的来源和分组描述很少或者过于简单。例如,临床入组病例分组只采用简单的随机分组,未描述随机分组的方法,未描述是否双盲双模拟,未设置空白对照组,分组后对性别、年龄、文化程度的描述未进行统计学检验,对于特殊的统计学方法没有详细交代;动物实验分组的随机化原则描述过于简单,没有具体说清完全随机、配对或分层随机分组等;统计分析方法没有任何说明采用的分析软件,有的只说明采用的分析软件而不交代在软件中采用的统计方法;没有说明原因的情况下出现样本量过于小等情况。
(二)“结果”统计学方法应用的常见错误
1.应用正确的统计学方法出现的结果表达并不一定正确。例如前文所述数据的精确度要求。医学论文常见错误中包括均数、标准差、标准误等统计学指标与原始数据应保留的小数位数不同;对于率、例数、比值、比值比、相对危险度等统计学指标保留的小数点位数过多;罕见疾病的发病率、患病率、现患率等指标没有选择好基数,导致结果没有整数位;相关系数、回归系数等指标保留的小数位数过多或者过少;常用的一些检验统计量,如F值、t值保留的位数不符合要求。
2.对统计学指标进行分析和计算时,一般采用计数资料和计量资料进行区分。计量资料常用三线表,在近似服从正态分布的前提下采用均数、标准差进行说明,如果不符合正态分布时,可以采用加对数或其他的处理方式使其近似正态分布,否则只能采用中位数和四分位数间距等指标进行描述。医学论文中常见未对数据进行正态分布检验的计算,影响统计结果的真实性和可信度。对于率、构成比等常用的计数资料指标,常见样本量过小的问题,采用率进行描述会影响统计结果的可靠性,采用绝对数进行说明会显得客观一些。还有一些文献将构成比误用为率,也是不可取的。
3.在判断临床疗效之一指标时,两组平均疗效有差别并不意味着两组的每一个个体都有效或无效,必须通过计算有效率进行计算。如比较某药物治疗糖尿病的疗效,服药一周后,研究组和对照组的对血糖降低值分别为6.7 ±2.4 和1.2 ±0.6 ( P = 0.000 1) 。按空腹血糖值低于7.7mmol/L的疗效判定有效率,研究组和对照组的有效率分别为75.6%和12.4% ,尽管平均疗效相差较多,但也要注意到该药物对部分患者无效(24.4%)。对假设检验结果的统计学分析结果,P 值的表达提倡报告精确P值,如P = 0.015或P = 0.321等。目前的统计学分析软件均可自动计算精确的P 值。例如常用的SAS,SPSS等,只要提供原始数据,就可以计算出t值、F值和相应的自由度,并可获得精确的P值。
四、小 结
提高医学论文中统计学方法的使用质量是编辑部值得重视的一项长期而又艰巨的工作[3],医学论文中统计方法应用和统计结果的表达正确与否,不仅体现了论文的科学性和严谨性,而且对于提高期刊整体的学术质量,促进医学科学的发展和传播也有着重要作用[4]。
参考文献:
[1] 李敬文,吕相征,薛爱华.医学期刊评论性文章摘要的添加对期刊被引频次的影响[J].编辑学报,2011(23).
[2] 陈长生.生物医学论文中统计结果的表达及解释[J].细胞与分子免疫学杂志,2008(24).
[3] 潘明志.新时期复合型医学科技期刊编辑应具备的素质和能力[J].中国科技期刊研究,2011 (22).
统计学专业毕业现状分析与对策研究
本科毕业论文是高等学校人才培养计划的重要组成部分,是本科教学过程中最后一个重要的教学实践环节,是学士学位授予的一个重要依据。[1,2]然而,相较于其他教学环节,毕业论文没有受到足够的重视,从而导致该环节存在着一些问题。[3]本文将以中央民族大学统计学专业毕业论文为例,在分析其现状的基础上,找到问题并提出相应的建议。
中央民族大学统计学本科专业设置于2003年,目前已有六届毕业生。经过学院和学校层面的努力,统计学专业作为新办专业取得了较快发展,所培养的学生具有较好的专业能力和综合素质,近四成学生继续读研深造,就业的学生大都在专业对口的工作岗位上,就业率一直在85%左右。
本科毕业论文环节在培养方案中是6个学分。学生在第七学期开始选择指导教师以确定毕业论文题目。经过前6个学期的系统理论学习,统计学专业学生已基本掌握了统计学的基础理论和基本方法,具备了正确的统计思想和较强的统计软件应用能力,以及运用所学的理论和方法解决实际问题、文献检索和资料查询等综合能力。本科毕业论文的写作就是统计学专业学生将上述基础和能力进一步深化与升华的重要过程,从而培养学生的创新能力和实践能力,使学生的知识、技能和素质得到进一步的充实和提高,同时也是衡量学校教学质量和办学水平的重要指标。因此对如何提高毕业论文质量进行研究是必要和有意义的。[4]
一、统计学专业毕业论文质量的现状分析
从论文完成情况来看,每届的毕业论文基本都能达到论文教学环节的要求,通过对中央民族大学统计学专业2007~2011年四届毕业生的毕业论文进行分析,发现毕业论文及格率为99.18%。
从毕业论文研究的类型来看,主要分为两大类:理论研究型论文和实证型论文,理论研究型论文表现为总结和论述现有统计理论问题,表述理论研究的成果,或应用理论对现实问题进行分析、说明,并提出自己的思考;实证型论文主要表现为针对某一特定的实际目的或目标,运用所学统计的理论和方法,对经济、管理、金融、医学、生物、工程、环境等领域进行统计调查、统计信息管理、数量分析等。
从论文知识点范围的分析来看,学生论文绝大多数是统计专业问题,极少数是其他数学分支的问题。从中央民族大学历届统计学专业学生的毕业论文情况分析,发现毕业论文中研究其他数学分支的问题占总数的6.50%,主要包括:一是其他科目的应用研究(数学分析、常微分方程、运筹学及空间解析几何等),占总数的1.63%。二是数学专业教育和数学思维的研究,占总数的4.87%。研究统计学专业问题的毕业论文占绝大部分,比例为93.50%,选题内容广泛且多为社会热点问题,涉及经济、社会、医疗卫生、教育发展、旅游、基础设施建设等多领域,由于受学校人文环境影响,很大比例的学生对少数民族地区的经济、社会、民生等问题进行了统计分析,约占总学生人数的30.08%。所使用的分析方法主要集中于抽样调查、回归分析、多元统计方法、聚类分析、判别分析等常用统计方法。
此外,统计分析显示学生成绩普遍偏高,统计学专业学生的毕业论文,尤其是实证类论文,存在着可以大量使用背景介绍和统计软件分析结果的特点,因此,一些论文没有创新性和学术含量,但具有较大的篇幅,与理学院其他专业的毕业论文成绩比较,其平均成绩相对较高,约80.42分。
二、统计学专业毕业论文存在的问题
毕业论文的质量问题关系到本科人才的培养规格和目标,直接体现了学生本科阶段的学习成果,是衡量教学水平、学生毕业与学位资格认证的重要依据。通过对论文和考评结果的具体分析,发现学生的毕业论文在创新性、理论深度及论文写作常识多方面存在问题。具体表现为:
1.创新性不够
学生的毕业论文表现为理论性研究非常少,大都是实证型论文,并且多是简单的统计方法应用,缺少创新性研究和思考。从中央民族大学历届统计学专业学生的毕业论文来看,理论研究型论文只占4.89%,与实证型论文的比例为1︰19.45,比例悬殊,体现了学生在毕业论文大的选题过程中,避重就轻,缺乏创新的特点。如每年都有一定数量的学生选择“我国人均GDP的预测”这类针对某经济指标进行预测的题目,论文的主要内容就是利用ARMA、灰色预测或者趋势外推方法等一种或多种方法对时间序列数据做简单建模和分析,论文没有对指标本身的意义以及国内国际的社会经济形势进行综合分析。这种方法简单套用性质的论文占有很大的比重。
2.选题过大、内容空泛,缺乏深入研究,存在抄袭、拼凑现象
有些学生在选择研究课题时,往往不能根据自身的专业知识结构特点和社会实践情况进行准确定位,只是一味的盲目的选择一些过大过空的社会热点问题,因此难以看到所要研究的问题的本质。如有的学生针对CPI做研究,没有深入了解问题的实质,只是收集了一些文献,很难提出自己的观点或研究角度,造成了材料堆积且过于散乱,论文变成了一些材料的简单拼凑。有些论文针对某一社会经济问题进行研究,论文的主题只是针对现有数据利用简单的统计方法进行分析,对数据的质量和可靠性以及方法的适用性不做针对性讨论,对所得的结论也不结合社会经济现实情况进行分析,导致论文质量不高。
3.相对前沿的分析方法利用较少
前沿的分析方法利用较少,通过毕业 论文的 写作, 统计分析能力没有实质性提升。学生论文使用的统计方法主要集中于回归分析、聚类分析、判别分析、相关性分析等,其中回归分析方法占有非常大的比例,约41.46%,其他各统计方法使用的比例分别为:聚类分析为5.69%,判别分析为7.32%,相关性分析为14.63%,多元统计方法为2.44%,时间序列分析为3.25%,极少有学生使用教科书外的相对前沿的分析方法。
4.论文写作上存在结构不合理、没有相关研究介绍、创新点表述不清、参考文献不会正确标注等问题
从学生的毕业论文来看,论文写作不规范,专业性差。主要存在论文形式不规范、结构不合理、题目含糊、有些论文杂乱无章、口语化严重、可读性差等问题。
三、存在问题的原因分析
针对上述问题,统计学系通过对论文进行详细审查以及 组织指导教师和学生座谈,发现毕业论文出现以上问题的主要原因包括以下几方面:
1.学生对论文不够重视
部分学生由于忙于考研学习而无暇顾及毕业论文的研究,还有部分学生由于忙于外出找 工作、 实习而无心认真撰写论文。论文撰写所需的必要时间难以得到保障,因此学生应付了事,从而无法保证论文的深度。此外,还有部分学生认为毕业论文只是一个教学环节,与考研的好坏无关,存在只要写了论文,教师都会让自己通过的侥幸 心理,在思想上没有引起足够的重视。
2.缺乏指导教师的针对性指导
指导教师所带毕业生人数过多,使得导师的工作量呈现超负荷状态,无法保证每个学生毕业论文的质量,从而致使部分学生的论文规范性较差,没有对存在的问题反复修改,使得学生论文存在诸多问题。
3.学生的专业训练还不够
大部分本科生没有经历过论文的写作训练,写作水平较低,不了解学术论文的规范性及其格式,不知如何从科研的角度构思文章、组织材料、安排结构,使得相当一部分学生的毕业论文表达的观点不够准确清楚,论据亦不能很好地支持论点。另外,一些同学为了完成任务,直接将在 网络中搜索到的资料不假思索的拼凑在一起,使得内容不成体系,观点混乱。
四、提高毕业论文质量的建议和 实践
1.加强毕业论文重要性的宣传,提高学生的重视度
加强对毕业论文重要性的认识有助于提高本科生毕业论文的质量。通过讲座、课堂传授等形式,让学生意识到毕业论文的实践性和综合性是任何教学环节都不能替代的,是提高发现问题、分析问题、解决问题能力的有效途径,更是进行个人综合素质提高的必不可少的重要环节,[4]从而使学生在思想上认识到毕业论文的重要性,投入更多精力进行毕业论文设计。
2.选题和教师的科研项目相结合,提高论文的创新性
在选择课题时,为了能充分发挥学生的主观能动性,可以让学生根据自身的特点,与指导教师协商,结合导师的研究方向制定课题方案。统计学专业的教师一般除了 申请国家自然科学基金和国家 社会科学基金这类对理论性和创新性要求较高的项目以外,很多教师还主持或参加有相应的 应用研究类项目。应用类项目大都需要实地调研(以及问卷涉及和数据分析)或者大量的数据分析和建模。引导学生参加这类项目来设计和完成自己的本科毕业论文,能够激发学生的科研热情和创新潜力。此外,鼓励和引导一些成绩较好,如让具备保研资格的学生参加教师的科研讨论班或者课题组,选择一些具有一定难度的理论问题进行研究,可以使学生了解本学科的 发展方向和最新动态。最近两年,越来越多的学生,特别是具备了保研资格的学生,在大四上学期就能投入到项目和毕业论文的写作中。
3.重视平时实践教学环节,培养学生的实践能力、发现问题以及解决问题的能力
为了提高学生的学习兴趣以及对问题的分析、解决能力,广泛开展了丰富多彩的社会实践活动,使学生尽可能早地接触与本专业有关的实际工作,切身 体会到如何将理论与实际相结合,了解本学科的实际业务,从而提高自主学习能力,加强专业知识的把握。结合学校的实际情况,积极鼓励学生在大二和大三阶段参加校级和国家级的全国大学生数学建模竞赛,申请“中央民族大学本科生研究训练 计划项目”、“北京市大学生科学研究计划项目”和“国家大学生创新性试验计划项目”。项目的申请和实施以及研究 报告的写作,对学生来说都是一个很好的锻炼。目前,统计学专业本科生的参与率在70%以上。此外,建立专业实习基地可以提高学生利用专业知识分析和解决实际问题的能力。这些环节的设计和实施都有力地保障了学生本科毕业论文的水平和质量。
4.加强学生科技论文写作训练
加强平时课堂上大作业的规范化,潜移默化培养学生科技论文的写作能力。通过平时的实践活动,如学生数学建模以及大学生创新实践等各类实践性项目来提高学生的 论文 写作能力。
5.实施激励措施,激发学生的兴趣和主动性
针对那些参与实际课题的学生,学院鼓励指导教师根据学生的完成情况以劳务费的形式给予其奖励,另外积极鼓励毕业论文质量优秀的学生进行投稿 发表。此外,还需对答辩程序和评分标准进行规范化,建立优秀毕业论文指导教师和优秀毕业论文奖励制度,以形成积极的导向作用,充分调动指导教师和学生的积极性。
6.加强教师责任心,建立完善的机制
加强学生毕业论文的过程 管理,从开题到中期检查严格执行,指导教师严格把关。为了保证学生与教师之间的沟通,学校可以通过建立师生信息反馈机制改善师生分离状态,为师生提供便利的沟通渠道,同时设置适当的教师激励制度,中央民族大学目前对教师指导本科毕业论文有额外的课时补贴。
多元统计分析是统计学的一个重要分支,它在自然科学、社会科学、教育卫生以及经济金融等领域具有广泛的应用。下文是我为大家整理的关于的范文,欢迎大家阅读参考! 篇1 多元统计分析课程教学探讨 摘要:多元统计分析是统计学的一个重要分支,它在自然科学、社会科学、教育卫生以及经济金融等领域具有广泛的应用。利用多元统计分析方法分析和处理实际资料、解决实际问题是统计学专业学生必备的基本能力,因此,如何进行多元统计分析课程的教学具有相当重要的意义。本文从教学实践出发,对多元统计分析课程的教学进行了探索和实践,提出了一些教学方法。 关键词:以人为本;案例教学;软体程式设计;考试改革;创新教学 多元统计分析是统计学中内容极其丰富、应用极其广泛的一个重要分支。随着计算机和统计学的发展,它在自然科学、社会科学、教育卫生以及经济金融等领域中的应用越来越广泛,它已成为进行多元资料分析与处理的非常重要的工具之一。随着社会的发展,我们常需要处理较为复杂的多维资料以及高维或超高维资料,特别地,对于统计学专业的学生,利用多元统计分析方法分析和处理日常生活中的多维资料是他们应该具备的基本能力。因此,如何让学生很好地掌握一些基本的多元分析方法并能在实践中加以应用是我们统计学专业的教师应该思考的重要问题。通过多年的实践教学,我们对多元统计分析课程的教学进行了探索和实践,主要在以下几个方面进行了探索和尝试。 一、转变教育观念,树立“以人为本”的教学理念 教育的物件是大学生,教育的目的是以学生的终身发展为基础的。在教学过程中,我们教师首先应转变教育观念,处处体现以学生为本的人文关怀与教育。关注学生的思想、学生的需要以及在当今时代下学生所面临的挑战与机遇,争取成为学生的良师益友,建立良好的师生关系;通过案例教学、启发式教学等等多种教学方法,鼓励和促使学生积极参与课堂教学,变被动学习为主动学习,使学生成为课堂的主体;正视学生之间的个体差异,不歧视差生也不偏爱优等生,实施因材施教,使每个学生都得到不同程度的提高与进步。 二、注重案例教学,培养“学以致用”的学习意识 多元统计分析是实用性极强的一门课程,学生通过学习后,应具备处理多维资料分析实际问题的能力。在自然科学、社会科学、教育卫生以及经济金融领域,我们遇到的资料大多是多维资料。比如大型商场、超市等需要分析商品销售情况,以确定商品结构以及进货时间、数量等;利用网际网路资料进行商业投资和商业资讯挖掘等。这些问题中,我们遇到的资料都是多维甚至是高维资料,如何处理这类资料以获得一些重要资讯以便进行正确的决策,这就需要一些多元分析方法。因此,在教学中,我们特别注重案例教学,对每一种分析方法,我都尽量选取一些与时代联络紧密的例项,结合这些例子讲解方法以及在实践中的应用。通过案例教学,一方面让学生更好地掌握资料分析方法,另一方面也培养了学生“学以致用”的意识。通过案例教学,让学生体会到判别分析、聚类分析、因子分析、主成分分析、对应分析、典型相关分析、多元回归分析方法等分析方法是统计分析中相当重要的方法,它几乎应用在每个领域,学会这些方法可以解决日常生活中的许多实际问题,具备这些能力是统计学专业本科生的必备能力,无论是毕业设计、公司上班还是继续深造等,都离不开这些分析方法,从而激发学生学习的兴趣。 三、结合软体教学,提高学生程式设计和资料处理能力 多元分析方法分析和处理的资料是多维资料,通常维数较多,而且观测资料也较多,计算量都比较大,通常需要计算机才能实现。因此,在教学中,我们特别注重软体教学,对每一种分析方法,在学生掌握了这种方法的理论知识和适用范围后,向学生介绍SPSS、Excel等软体如何给出分析结果,以及介绍SAS,R和Matlab的程式程式码。在学生的作业中,要求学生至少用一种语言编写分析处理资料的程式程式码。对于统计学专业的学生,不仅要求学生掌握一些重要的统计分析方法,同时还要熟练掌握1~2门软体进行资料分析与处理。实践证明,方法学习与软体结合的教学,将大大提高学生程式设计和资料处理能力。 四、尝试创新教学,注重培养学生自主学习和实践能力 为了培养学生的自主学习能力,我们大胆进行教改尝试,一改教师“一言堂”的教学模式,采用多种教学方式,坚持“学生为主体,教师为主导”的教学模式。1对于每一种方法的教学,我们首先由一个实际问题入手,引发学生思考和讨论,在学生讨论和发言的基础上引出新的分析方法。2学生自学,分组讨论并准备教学PPT,选取准备充分的小组派一名代表上台讲授,教师只是做一些必要的补充和完善。3学生和老师评价教学效果,对于特别优秀的小组给予奖励加分。通过这些创新教学,培养了学生的自主学习能力、协作能力与口头表达能力,这些能力的培养,将为学生终生发展打下良好的基础。关于作业布置,传统的方法就是布置一些对基本概念的理解和知识的实际应用的习题。为了让学生学会用所学知识去思考社会、教育、医药卫生和经济金融等领域的实际问题,我们除了布置一些基本概念的理解和知识的实际应用的习题外,每一种方法学习结束后,对每一种多元分析方法,要求学生撰写1篇小论文至少使用一种分析方法。而对于论文的撰写,由学生自己选题、资料获取,并利用所学的分析方法和统计软体进行分析,最后撰写一篇一定字数以上的小论文。我们从这些论文中挑选1~2篇优秀论文进行讲解,从论文题目的选取、论文的书写格式、方法和软体的应用以及文章的撰写等各方面进行评价。对于特别优秀的论文,我们推荐到正式刊物进行发表,并在总评成绩中进行加分,以激励学生学习的热情。 五、改革考核方式,培养符合社会需要的专业人才 多元统计分析是统计学专业的专业必修课程,因此通常这门课的考核方式是闭卷笔试,这种传统的考核方式很难掌握学生实际应用能力的情况。而学习多元统计分析的重要目的是:利用多元统计分析方法分析和解决实际问题,这才是我们教学的核心所在。为了兼顾理论学习能力和实践能力的考察,我们尝试采用一种新的考试方法,那就是平时成绩20%+期末笔试成绩40%+小论文40%,其中平时成绩包括出勤情况5%,课堂表现5%,平时作业10%;这样既考查了学生的理论学习能力,同时也考查了学生写作能力、软体程式设计能力等多方面的能力。同时,我们还注重软体使用以及程式设计能力的考查,对于那些在论文中附上了SAS、R、Matlab等正确程式程式码的论文,我们将给予更高的成绩和评价,以锻炼学生的程式设计能力和资料处理能力。考试不是目的,只是一种手段,考试的方式在一定程度上将是学生学习的风向标,就如同高考的指挥棒。这样的考核方式,将迫使学生既要学习这些方法的来龙去脉,这些方法的理论基础,同时又要学习软体程式设计知识,更重要的是能将知识与实际联络起来,以便培养解决实际问题的能力,最后还要能将研究成果以论文形式呈现出来。学生只有具备了这几个方面的能力,才会成为社会需要的统计专业人才。 多元统计分析课程是进行科学研究的重要工具之一,它在自然科学、社会科学等领域有着相当广泛的应用。该课程教学的目的在于让学生熟练掌握多种多元统计分析的基本思想、基本原理的基础上,能够将大量的资料进行简化,利用所学的方法进行判别和分类,能够结合统计软体进行计算,并对计算结果进行合理的解释。实践教学表明,学生通过该门课的学习都能很好地利用所学方法对实际问题进行分析和解释。 篇2 多元统计分析在学生管理中的应用 【摘要】运用因子分析方法将学生课程进行聚类,进而将学生分为5类进行分类管理。并且运用单因素方差分析可知,作业完成情况、出勤情况、课堂响应情况对学生成绩均有显著影响,且课堂响应情况的影响最大。 【关键词】因子分析 单因素方差分析 学生管理 一、相关理论研究综述 自20世纪80年代起,多元分析方法在我国多个领域均有成功应用的案例,针对教育、教学方面的研究也在逐渐丰富。1995年,吴群英曾研究过多元分析在教学质量评估中的应用,发现多元分析的结果对提高教学质量具有明显的导向性。田开、郑宗培、虞小海利用SPSS软体,深入探讨了有关主成分分析在学生成绩中的应用,为教学研究和管理提供了科学的依据。应敏、景平等人多次将多元分析方法引入到学生成绩的分析,并取得相关成果。从以上研究可以看出,多元分析在学生管理中的应用,多停留在教学工作及学生成绩分析方面,没有涉及到学生的综合管理方面。而本文准备以学生的分类管理和学风建设为例,利用因子分析方法,探讨多元分析在学生管理中的应用。 二、多元统计方法介绍 多元分析是单变数统计方法的继承与推广,几种典型的多元分析方法有因子分析、单因素方差分析等。多元分析方法开始于18,F.高尔顿首先提出相关系数和线性回归理论。C.E.斯皮尔曼等人在后来的数十年中不断丰富了多元分析方法的内容。 一因子分析 因子分析法是指从研究指标相关矩阵内部的依赖关系出发,把一些资讯重叠、具有错综复杂关系的变数归结为少数几个不相关的综合因子的一种多元统计分析方法。基本思想是:根据相关性大小把变数分组,使得同组内的变数之间相关性较高,但不同组的变数不相关或相关性较低,每组变数代表一个基本结构一即公共因子。 二单因素方差分析 单因素方差分析是通过计算F统计量和相应的概率P值,判断不同水平的控制变数对观测变数的影响程度。对于给定显著水平,α若与检验统计量对应的P值小于显著性水平α,则应拒绝原假设,认为控制变数对观测变数存在显著影响;反之,则应接受原假设,认为控制变数对观测变数没有显著影响。 三、实证分析 一因子分析在学生成绩分类管理中的应用 本节使用的学生成绩资料从某大学辅导员处收集整理得来。原始资料记录了82名同学在校期间13门课程的成绩。x1-x13分别表示为高等代数,外出实践,解析几何,常微分方程,体育,统计软体及应用,传统文化,西方经济学,多元统计分析,统计学原理,回归分析,大学英语Ⅰ,大学英语Ⅱ。 首先进行相关性检验分析。由SPSS的相关性检验结果分析可知,这些变数对应的Sig值较小。说明这些变数相关性较为显著。证明此时进行因子分析是非常有效的。其次由因子分析KMO检验结果表明,用因子分析的效果较好。 由因子贡献率可知前7个公因子的累积贡献率为85.43%,大于85%,因此选取前7个公因子为公因子,就可以比较好的解释原有变数所包含的资讯了。通过累积贡献率我们已经确定,选取7个公因子是合理的。 我们可以由旋转后的因子载荷确定与7个因子分别对应的变数,也就是说,可以用该因子代表这些变数。分别解释为:第一公因子代表x4、x3、x1、x10四个变数,表示基本课程水平;第二公因子代表x11、x9两个变数,表示专业课程水平;第三公因子代表x12、x13两个变数,表示其英语水平;第四公因子x5表示身体素质;第五公因子x8为经管学习能力;第六公因子x7为记忆能力;第七公因子x6为专业操作水平,公因子x2表示工作能力。 由于7个旋转后的公因子的方差贡献率依次是22.838%、14.530%、13.050%、9.411%、9.069%、8.471%、8.062%,则综合因子得分为: F=22.838%F1+14.53%F2+13.05%F3+9.411%F4+9.069%F5+8.471%F6+8.062%F7 利用SPSS16.0计算出因子的综合得分,并接下来将根据综合得分进行资料分组,拟将82名同学分为五个等级,记为:A、B、C、D、E。选取-0.20、0.00、0.20、0.40为界点,这样就实现了学生分类管理,分别针对这五个等级的学生制定不同的管理方法实现学生科学化管理。 二单因素方差分析在学风建设中的应用 将学生的作业完成情况、出勤情况、课堂响应程度按照一定的界点分为三类,分别应用单因素方差分析,通过比较分析结果中Sig值与显著性水平α=0.05的大小,判断该因素是否对学生成绩产生显著行影响。 以学生成绩为观测变数,作业完成情况为控制变数,通过单因素方差分析,对作业完成情况对学生成绩的影响进行分析。原假设为:作业完成情况对学生成绩没有产生显著影响。 首先检验均值μ是否相等。原假设H0:μ0=μ1=μ2;H1:μ0,μ1,μ2不全相等。在均值检验中,Sig值为0.288,大于显著性水平α=0.05,因此应该接受原假设,也即均值相等,因此可以继续进行单因素方差分析。 由作业完成情况对学生成绩单因素方差分析的结果可以得出统计量的观测值为21.358,对应的概率值P为0.000,如果显著性水平α为0.05,由于概率值小于显著性水平α,因此应该拒绝原假设,认为学生的作业完成情况对考试成绩产生了显著影响。 同样可以得到出勤情况和课堂响应程度对学生成绩的单因素方差分析。可知,学生的出勤情况和课堂响应程度对学生成绩产生了显著影响。 四、结论 一由综合因子得分的大小将学生样本分为五类,记作:A、B、C、D、E。下面针对这五类学生,分别提出一些管理方面的建议 A类“完全粗放式”管理:这类学生成绩优秀、目标明确。应该给予其足够的自由空间。B类“不完全粗放式”管理:这类学生成绩较好,属于班级里比较优秀的学生。可以进行适当指导。C类“不完全集约式”管理:C类生学习表现一般,几乎不会做违反学校规定的事。对于这类学生比较好的方法是定时为其制定一些任务目标,要求他们按时完成。D类“完全集约式”管理:该类生成绩较差、日常表现较差。对于这类学生,应该重点关注,安排跟班老师尽可能帮助他们学习。E类“牢笼式”管理:E类生已成绩太差,如果不好好管理很可能走上歧路,既要在学习中严加管理,又要在生活中集中关注。 二通过单因素方差分析可以看出,作业完成情况、出勤情况、课堂响应情况对学生成绩均有显著性影响,但三者之中,课堂响应情况的影响更大 在学风建设的三个方面中,要更加重视课堂响应程度。因此,将单因素方差分析应用到学风建设工作中,能够使学风建设的目标更加明确、工作重心更加清楚、工作成效更高。再一次验证了多元分析在学生管理工作中的必要性和可实现性。
经常有人问到在论文或标书中应该如何写作统计分析部分。标准的答案是:你怎么做的就怎么写,每篇文章都是唯一的存在。好装,汗……。如果我们尝试去归纳和小结,这部分内容的写作其实是有一定规律的。我曾经听过Thomas Allen Long教授关于论文写作的课,人很和蔼,他主编的书也不错,操作性很强。在他的书稿《How to Write, Publish & Present in the Health Sciences》第154页中他小结到,统计分析部分应该包括如下内容:统计描述部分、所有的基本统计方法以及分析方案(如ITT或PP等)、样本量的说明、分组方法、检验水准的设定和所使用的统计分析软件。同样在本书的第155页中也写得:统计分析人员可以帮助作者对数据进行合理的分析、对分析结果进行正确解读,同时可以负责统计分析部分的撰写。他建议将统计分析人员作为作者之一,也许这样统计分析人员就不会粗枝大叶、不负责任了。关于医学统计分析的写作,其实他还有一本书《How to Report Statistics in Medicine》,在统计分析的报告上写得更专业。言归正传,本文既然是要小结“统计分析”部分,那就小结吧。个人觉得“统计分析”部分写作时应该包括以下几个内容:(1)样本量估算及随访/数据收集情况;(2)数据录入和管理的软件和方法;(3)本研究所使用的统计分析软件和分析方案;(4)统计描述的方法,分计量和计数资料两种;(5)统计推断的方法,分单因素和多因素两种;(6)检验水准的选取。由于某些“你懂的”原因,很多普通的论文没有进行样本量估算和区分不同的分析方案(ITT/PP)。所以简单举例如下:本研究采用……数据库进行数据录入和管理,数据录入采用双录入核查方式进行。采用……软件对研究数据进行统计分析。计量资料采用……对其进行正态性检验,符合正态分布的计量资料采用均值±标准差的形式进行描述,不符合正态分布的计量资料采用中位数(25%位数,75%位数)进行描述,计数资料采用例数(百分比)进行描述。符合正态分布的计量资料组间比较采用独立样本t检验或单因素ANOVA进行,不符合正态分布的计量资料组间比较采用非参数检验进行,计数资料组间比较采用卡方检验进行。在多因素分析上,采用多重线性/逻辑回归分析……的影响因素。所有检验以双侧p<0.05为差异有统计学意义。有人说我要写英文的“统计分析”部分,该怎么办?同样,你需要多阅读别人的优秀文章,然后用它们的句式来构建属于你自己统计分析内容。可供参考的句式有:(1)数据采集:Study data were collected on standard forms, checked for completeness, and double keyed into an …… database.(2)统计软件:All statistical analyses were performed using SAS version 9.2 (SAS Institute Inc, Cary, North Carolina).(3)统计描述:…… were described using mean, median, standard deviation, and 25thand 75th percentiles for continuous variables; frequencies and proportions were used for categorical variables.(4)单因素分析:A two sample independent t test/ one-way analysis of variance (ANOVA)/ Nonparametric tests(Kruskal-Wallis test)/ Pearson’s x2 tests or Fisher exact tests was used to compare the differences between …….(5)多因素分析:Multivariable linear regression/ Multivariable binary logistic regression/ Cox proportional hazards were used to estimate …….(6)检验水准:A p value of less than 0.05 (2-sided significance testing) was considered statistically significant in all analyses.
经常有人问到在论文或标书中应该如何写作统计分析部分。标准的答案是:你怎么做的就怎么写,每篇文章都是唯一的存在。好装,汗……。如果我们尝试去归纳和小结,这部分内容的写作其实是有一定规律的。我曾经听过Thomas Allen Long教授关于论文写作的课,人很和蔼,他主编的书也不错,操作性很强。在他的书稿《How to Write, Publish & Present in the Health Sciences》第154页中他小结到,统计分析部分应该包括如下内容:统计描述部分、所有的基本统计方法以及分析方案(如ITT或PP等)、样本量的说明、分组方法、检验水准的设定和所使用的统计分析软件。同样在本书的第155页中也写得:统计分析人员可以帮助作者对数据进行合理的分析、对分析结果进行正确解读,同时可以负责统计分析部分的撰写。他建议将统计分析人员作为作者之一,也许这样统计分析人员就不会粗枝大叶、不负责任了。关于医学统计分析的写作,其实他还有一本书《How to Report Statistics in Medicine》,在统计分析的报告上写得更专业。言归正传,本文既然是要小结“统计分析”部分,那就小结吧。个人觉得“统计分析”部分写作时应该包括以下几个内容:(1)样本量估算及随访/数据收集情况;(2)数据录入和管理的软件和方法;(3)本研究所使用的统计分析软件和分析方案;(4)统计描述的方法,分计量和计数资料两种;(5)统计推断的方法,分单因素和多因素两种;(6)检验水准的选取。由于某些“你懂的”原因,很多普通的论文没有进行样本量估算和区分不同的分析方案(ITT/PP)。所以简单举例如下:本研究采用……数据库进行数据录入和管理,数据录入采用双录入核查方式进行。采用……软件对研究数据进行统计分析。计量资料采用……对其进行正态性检验,符合正态分布的计量资料采用均值±标准差的形式进行描述,不符合正态分布的计量资料采用中位数(25%位数,75%位数)进行描述,计数资料采用例数(百分比)进行描述。符合正态分布的计量资料组间比较采用独立样本t检验或单因素ANOVA进行,不符合正态分布的计量资料组间比较采用非参数检验进行,计数资料组间比较采用卡方检验进行。在多因素分析上,采用多重线性/逻辑回归分析……的影响因素。所有检验以双侧p<0.05为差异有统计学意义。有人说我要写英文的“统计分析”部分,该怎么办?同样,你需要多阅读别人的优秀文章,然后用它们的句式来构建属于你自己统计分析内容。可供参考的句式有:(1)数据采集:Study data were collected on standard forms, checked for completeness, and double keyed into an …… database.(2)统计软件:All statistical analyses were performed using SAS version 9.2 (SAS Institute Inc, Cary, North Carolina).(3)统计描述:…… were described using mean, median, standard deviation, and 25thand 75th percentiles for continuous variables; frequencies and proportions were used for categorical variables.(4)单因素分析:A two sample independent t test/ one-way analysis of variance (ANOVA)/ Nonparametric tests(Kruskal-Wallis test)/ Pearson’s x2 tests or Fisher exact tests was used to compare the differences between …….(5)多因素分析:Multivariable linear regression/ Multivariable binary logistic regression/ Cox proportional hazards were used to estimate …….(6)检验水准:A p value of less than 0.05 (2-sided significance testing) was considered statistically significant in all analyses.
统计图在医学论文中常见的格式统计表是用表格的形式,通过分析指标来表达研究对象的特征、内部构成及各项目分组之间的相互关系。在科技报告或论文中除一些简单的数据必需用文字说明外,其余大部分的统计数据都要用统计表的形式表示。因此,统计表制作的合理与否,直接关系到统计分析的质量与效果。1、统计表的基本格式一张完整的统计表由4部分组成,即标题、标目、线条、数字,必要时可加备注。其制表的原则是重点突出、简单明了、层次清楚。重点突出是指突出所要表示研究事物的主要特征及相互关系;简单明了是指统计表的结构要简单,使人一目了然,不能包罗万象;层次清楚是指内容及标目要安排合理、数据准确。若表格编排不合理将不能充分揭示事物之间的内在规律及联系,也不便于理解和阅读。2、标题应简明扼要地说明表的主要内容,一般放在表的正上方。当某一统计表在同一研究报告中出现时,标题可不包括时间和地点;如果引用在其他文章中,则应包括时间和地点。如论文中只有一张表时,可写成附表,否则要注明表序。3、标目用以说明表内数字含义部分称为标目,分为横标目和纵标目。横标目位于表的左侧,代表被研究事物的主要标志,即主语部分,用以说明同一横行数字的意义;纵标目位于表的右上方,用来说明事物的统计指标,即谓语部分,说明同一列数字的意义。标目的正确安排可使读者自左向右顺利阅读,即从表的左侧横标目开始阅读到纵标目结束,可以读出一个完整的句子。