首页

职称论文知识库

首页 职称论文知识库 问题

软体机器人期刊投稿推荐

发布时间:

软体机器人期刊投稿推荐

有这样一种神奇的机器人,它可以做到这样,

像藤蔓一样自生长,柔软的身体延伸运动到各种角落;

或者像章鱼一样,整个身体没有任何硬性的结构组织,就像《超能陆战队》里的大白;

当然也有模仿其他鱼类生物的水下机器人,柔软的“鱼鳍”如同真的鱼儿一样,在水中灵活运动。

而这些看似柔弱无骨的机器人,就是我们今天的主角——柔性机器人。

何为柔性机器人?

自然界的很多生物都有自己的柔性和灵活性,从上面的几张动图可以看出,柔性机器人其实就模仿了一些动物外形。

当然我们探讨的柔性机器人概念比较窄,指的是完全由柔性材料构成,没有多余硬性结构在其中,所以柔性机器人必然具备三种特性:高灵活性、可变形性和能量吸收特性。

新加坡国立大学机械工程系教授朱建也给出过一个简单的概念,柔性机器人的特性包括材料的柔软性、优良的环境适应性、超强的安全性、良好的人机互动性等。

斯坦福大学研究人员模仿葡萄藤生长,发明出一款新型的柔性机器人,它能像葡萄藤一样生长,在废墟瓦砾中穿梭,找到被困的幸存者,甚至向他们送水。

柔性机器人“Octobot”

哈佛大学的研究者们此前展示了他们的最新研究成果:一款章鱼形状的完全柔性机器人“Octobot”。这款机器人全身都由软软的柔性材料构成,不需要外接动力,自己就能运动起来。

浙江大学的李铁风教授及其他研究人员此前在《Science》发表了一篇名为《Fast-moving soft electronic fish(快速移动的电子鱼)》的文章,阐述了他们研发的一种柔性机器人,柔性的特征使得这条“电子鱼”得以在狭小的空间内航行,拓宽了它们能够行驶的空间。

基于折纸设计的柔性机器人

最近,来自凯斯西储大学的研究人员则开发了一种基于折纸设计的柔性机器人。

无论是国外的麻省理工、哈佛大学还是国内的清华、浙大,研究学者们都在寻求柔性机器人技术的突破口。毫不夸张的说,如果想要同时满足这些特性,技术难题很多,所以这也是为什么柔性机器人的技术一直处在实验样机阶段。

柔与刚不可兼得?如何让机器人的身体柔若无骨

为什么一直没有成熟的柔性机器人推向市场,这就不得不提到它的技术难点。

为了能够达到高灵活性和可变形性,柔性机器人的构成材料、驱动方式都很有讲究,传统的刚性连接器和外壳完全不适用。

首先是柔性机器人的构成材料上,既要极易变形弯曲的柔软度,也必须要考虑到它的驱动方式,目前比较常见的是通过3D打印材料来制作柔性机器人的“外壳”,例如用水凝胶制造出柔软的胶状机器人。

水凝胶材质的软体机器人

MIT的一个研究团队就做了尝试性的试验,他们用3D 打印和激光切割打造出水凝胶的外壳,实现“身体”的“柔韧性”,然后通过液压驱动的方式驱动机器人的运动。

再就是通过一些特殊的材料来打造类似于人造肌肉的材料,像电子动力聚合物(EAP)、形状记忆合金这样的物质都是人造肌肉的良好材料,以形状记忆合金为例,它可以根据温度自动改变形状,并且能够记住这些形状,实现弯曲、变短、抓取物体等动作。

哈佛大学在这方面有不少研究突破,他们开发出一种以碳纳米管为基础的人造肌肉,其中包含了“介电弹性体”,当电场作用于软性材料时,就会发生变形。不过,电场场强方面会比较难控制。

除此之外,还有一种新兴的功能材料室温液态金属,这种材料在电、磁、力、热的作用下,可以在不同的形态和运动模式上任意切换。中国科学院理化技术研究所研究员、清华大学教授刘静在其撰写的室温液态金属综述文章中也曾写道,“液态金属可变形机器效应的发现,有望促成柔性机器理论与技术取得重大突破。”

电力驱动or气动驱动,都还不是尽善尽美的解决方案

而在驱动方式上,从材料的组成可以看出其实大部分还是通过电动驱动,相比于其他驱动方式,电动驱动器拥有变形大、能量密度高、结构紧凑、重量轻、价格低和噪音小的特性。但是这种驱动方式也有很大的隐患,机器人的运动精度控制上有难度,另一方面,如果驱动机器人运动所需的电场强度过高,也会影响它在一定范围内的运动。

当然,还有一种气动驱动方式,之前我们提到的哈佛大学推出的柔性章鱼机器人Octobot ,就是通过简单的过氧化氢分解化学反应实现运动,作为“燃料”的过氧化氢遇到铂催化剂会产生水和氧气,而氧气增多会让章鱼体内的压强加大,经过反复的切换让其动起来。

但是和电动驱动相比,这种方式的运动速度会比较慢,而且柔性机器人的变形也会受到限制。

虽然应用前景广泛,但目前还在纸上谈兵阶段

尽管柔性机器人的研究难点很多,但它也是许多高校实验室研发的一大重点,因为从实用性来考量的话,这种柔性机器人非常适合一些“极端”的场景下,比如受灾现场的救援:它可以进入到一些危险、狭小的地方;还有海底探索上,柔性机器人可以潜入到像珊瑚礁这样的海底生物内,在不伤害它们的同时去探索更多的海底秘密。

哈佛大学发布的可植入软体机器人

医疗方面,柔性机器人也是一大利器,如果医生想要针对人体内的某个器官对症下药,就可以通过柔性机器人实现,科罗拉多大学博尔德分校实验室的机械工程师Franck Vernerey就研制出了专门用于医药治疗的软体机器人。另外,在他还看来,医药领域应用的机器人,只能以软体蠕动的形式构造。

结语:

简单梳理柔性机器人的概念之后,镁客君非常期待它落地应用后给我们生活带来的变革性变化,而文中列举的很多实验室案例也表明柔性机器人的研究一直在进行中,假以时日,等待相关技术的成熟,必然会在机器人行业大放异彩。

新杂文征稿启事 新杂文月刊是首都新近创刊的一本高品位杂文刊物。现特向各路杂文好手征稿。我的原则是:好的文章我会给你一个好的交代,当然是指经济上的回报。本刊拒绝一稿多投,全力打击抄袭之作,希望各路好手尊重人格,文格。 本人善待每一篇来稿,三天里会给你一个初步答复。 约稿编辑:周寒民 电子信箱: xinzawen@163.

:mjceo./magzine/9880/epaper. 这里有简单资讯,你可以分辨一下

《软体导刊》杂志简介 《软体导刊》杂志是由湖北省科技厅主管、湖北省资讯学会主办的关于软体开发与管理的学术期刊。自创刊以来,得到了广大读者、作者的广泛关注和大力支援,为进一步加强刊物与作者的互动,提高办刊质量,特向广大作者征稿。本刊国际标准刊号:ISSN1672-7800,国内统一刊号:CN42-1671/TP。本刊为中国学术期刊综合评价资料库来源期刊、中国学术期刊(光碟版)全文收录期刊、中文科技期刊资料库(全文版)收录期刊。 《软体导刊》主要栏目: 软体行业发展论坛、学术研讨、产品开发与应用、网路技术、资料库与资讯处理、图形学与辅助设计、资讯保安、演算法与语言、计算机与网路教学等。 《软体导刊》投稿咨询: 《软体导刊》投稿信箱:7kzg@163. (来稿请注明:“软体导刊”投稿) 工作QQ:1245731130 责任编辑:孙编辑 联络电话: / (周一至周六9:00——17:00) 《软体导刊》【来稿要求】 1、文章内容不得与现行国家政策和法律相牴触,不涉及政治、意识形态和宗教领域。 2、按出版规范写出论文的中英文标题、文章摘要及关键词,并附上作者简介(包括研究方向)、工作单位、通讯地址、电话。属各级、各类科研课题的论文请注明专案名称和专案编号。 3、来稿必须涉及IT、电子商务、电子政务、管理资讯系统、网路经济或自动化技术等领域,欢迎社科领域研究工作者从网路经济、电子商务、电子政务、IT应用等角度跨学科撰稿! 4、 所有稿件作者文责自负,请用电子版(word文件)投稿。 《软体导刊》【刊物收录情况】 中国核心期刊(遴选)资料库收录期刊、中国学术期刊综合评价资料库来源期刊、中国期刊全文资料库全文收录期刊、中国学术期刊(光碟版)收录期刊、万方资料-数字化期刊群入网期刊、龙源国际期刊网入网期刊、全球中文电子协会会员单位 刊名: 软体导刊 Sofare Guide 主办: 湖北省资讯学会 周期: 月刊 出版地:湖北省武汉市 语种: 中文; 开本: 16开 ISSN: 1672-7800 CN: 42-1671/TP 邮发代号: 38-431 历史沿革: 现用刊名:软体导刊 创刊时间:2002 优先出版 复合影响因子:0.344 综合影响因子:0.130

新人投稿需要一段时间才能入门,主要是得习惯写作技巧,能找到兴趣点,这样的文章既有趣读起来又不累,中稿是水到渠成的。我建议你去这么几个地方看看,1:网站。百度搜索投稿即可,前几个都可以看看,看人家需要什么样的文章,有例文的最好。2:微博,很多文学作者都有自己的微博,很多资讯会发布在里面,比如迟子建老师的微博。3:公众号,目前最有影响力的征稿平台,几乎所有有影响的征文机构都有公众号,你可以去参考参考,我知道几个不错的,一个是凯叔讲故事,一个是人间the living,这两个都主打故事,你看看里面的历史讯息就能知道什么风格,模仿是成功的第一步!如果平台比较大,投稿人多,也可以找些小平台,我平时经常去投稿征文前线公众号找各类征文资讯,再有目的地投,可选择性比较多。

流程已经有人回答了,我补充下投稿方式:xueshuqikan8@126.,我是在投稿第二天接到编辑电话的。3月份投的文章,说是安排5月发表,5月底收到的书。如果对你有帮助,请选为最佳答案……

:yscbook./lunwen/ShowArticle.asp?ArticleID=2308 这个网站上有全国各大报刊杂志投稿联络方式,挺全的

txtdowm. booksky.biz yifan. 起点或幻剑书盟 :mman.. :cmfu. :.baidu./book. :81zw. :book588. yixia. 在上面找找吧

网上有。

你好。 一般来说,报纸杂志社给作者汇款都是通过邮局汇款的,汇款地址就是你投稿时留给他们的,如果有变动的话要电话和编辑联络。不过如果你怕途中耽搁太久(有这种情况的)或者丢失的话,也可以直接和编辑联络,请他们把稿费直接打到银行卡上。 如果是邮局汇款的话,你会收到一张“中国邮政储蓄银行取款通知单”,你在单子背面填好客户签名、收款人姓名、证件名称、发证机关、证件号码后就可以携带身份证(一定要带上的)去“任一联网网点”(邮局或者邮政储蓄)取款了。 所以说,投稿时一定要留下你的联络方式,包括:姓名、详细地址、邮编、联络电话,电子信箱(有的话)。

柔性机器人主要表现在关节的柔性和连杆的柔性。软体机械臂由柔性材料制作,具有高柔顺来性、复杂环境适应性及安全人机交互性等特点,研究涉及材料自学、仿生、机械设计和制造、传感器技术等多学科交叉融合,其发展为柔性材料应用、仿生机器人研究等提供参考和技术支持,在工业生产、医疗手术、救灾探测、生活护理等方面应用。?

这张图显示的就是动物细胞有丝分裂的过程,整齐排列的染色体被微管组成的纺锤丝拉开,平均分配到两个子细胞当中。图中的细胞为猪肾上皮细胞(LLC-PK1 Line),用荧光蛋白分别标记了微管蛋白(绿色)和染色体中的组蛋白(红色)。 有人( 果壳用户 - 已注销)说 “有丝分裂那个每次看都觉得是在家里洗袜子……你看,揉起来搓搓搓搓,拉开来过水,再揉起来搓搓搓搓…… ” ,然后我感觉有点像奇异博士的法术蓄力 作为细胞骨架的一部分,微管除了拉开染色体以外还参与着许多重要的生理过程。在哈佛大学制作的动画“The Inner Life of the Cell”中就演示了驱动蛋白在微管上“行走”运输囊泡的过程 。这个是按照真实的比例做的模型动画,这个看来这种四两拨千斤的感觉无时无刻都在发生啊! 这是中性粒细胞(白细胞的一种)追击金黄色葡萄球菌的过程。中性粒细胞是白细胞当中数量最多的一种,它在非特异性免疫中起着重要的作用。当细菌入侵时会引发趋化因子的产生,而这些粒细胞可以“感知”趋化因子并在它们的引导下迁移到感染处吞噬细菌。 反过来,金葡菌也有对付白细胞的武器——杀白细胞素(leukocidin),这种毒素可以杀伤白细胞,抑制吞噬作用。 这一图片的原视频来自一篇论文 [1] 。图中的小点是嗜酸性粒细胞(嗯,它是另一种白细胞),它们在针对寄生虫的免疫反应中起到重要的作用。这张动图显示的是嗜酸性粒细胞在趋化作用的驱动下逐渐聚集到一只秀丽隐杆线虫( C. elegans )周围并对它进行攻击的过程。这是一个延时显微摄影视频,每帧之间的间隔为30秒,实际速度要比动图中慢得多。在网上,很多人都为这张图片冠以“白细胞攻击寄生虫保护主人”的感人标题。虽然人体内的嗜酸性粒细胞确实会攻击寄生虫,不过鉴于这一视频在体外条件下拍摄,而且秀丽隐杆线虫一般不会感染人类,所以它其实应该是“无辜实验生物惨遭白细胞围攻”才对…… 这是对一株好望角毛毡苔(南非茅膏菜, Drosera capensis )的延时摄影。像其他茅膏菜一样,它的叶片上伸出很多色彩鲜艳的“触手”,会分泌粘液捕捉昆虫。当昆虫落网时,叶片会逐渐卷起帮助消化。需要注意的是,实际叶片卷起的速度要慢得多,全过程需要数小时时间。2013年的一项研究 [2] 发现,茉莉酸类植物激素(Jasmonates)在茅膏菜的叶片卷曲过程中起了关键作用。 图中展示的是一种特殊形态的鳗鱼幼体——狭首型幼体。许多海鳗和淡水鳗在成长中都会经历这样奇特的阶段。这些狭首型幼体都有侧面扁平的身体,它们的身体很薄、内脏很简单、缺乏红细胞,而且体内含有透明的糖胺聚糖(GAG),这些特性共同造就了它们近乎完全透明的身体。根据澳洲博物馆网站的说法,这种像透明飘带般游动的可能是黑身管鼻鯙( Rhinomuraena quaesita ,属于鳗鲡目)的幼体 [3] 图中展示的是草履虫的进食过程。位于中间部位有水流通过的“管道”是草履虫的口沟,在这里通过摆动纤毛可以将食物随水流送入体内,形成食物泡。食物泡在经过消化之后会再度排出体外。除了帮助进食以外,纤毛也使得草履虫可以快速地在水中移动。它们游泳的速度可达到2毫米/秒 [4] 。 在水中游动的水熊,泛指缓步动物门( Tardigrata ),异缓步纲( Heterotardigrada )的一大类生物。这个图是来自FOX节目,《Cosmos, A Space Time Odyssey》的一段3D模拟图,图中描绘的这种水熊虫可能是 Hypsibius dujardini 。 据英国《每日邮报》8月9日报道,中国台湾业余摄影师吴林恩(Lynn Wu)近日在印度尼西亚巴厘岛潜水时拍摄到了一只罕见的海兔,背着绿色的枝叶样式的壳,睁着两只小黑豆眼,神情困惑,它的脸像极了动画片《神奇的旋转木马》中的奶牛“欧米特鲁德”(Ermintrude)。 海洋生物学家将这只海兔命名为“ìCostasiella”。它们身上能呈现如植物般的绿色,和海底颜色相近,从而抵御捕食者。此外,摄影师还拍摄到一些它的同伴,有的身体略圆,有的呈现简单的白色,形状颜色稍有差异,但都非常可爱。据悉,海兔是螺类的一种,又称海蛞蝓。海兔不是兔,其头上的两对触角突出如兔耳。 之前看过,这种艳丽的造型是因为海兔吞食藻类然后将里面的叶绿体保留在体内造成的这种情况。 这是一种Helicocranchia pfefferi笑猪鱿鱼,这个名字真不是瞎取的,因为英文称它们piglet squid或者smiling squid。它们有一个长鼻子,像极了猪鼻,其实这个鼻子是虹吸喷水器,可以让小猪们瞬间跑路。它们的眼睛是能发光的,可以抵消它们透明身体中眼球的黑色。最有意思的是它们能把自己吹成一个胖球自由上下 1962年,下村脩从一种水母中发现了荧光蛋白(GFP),正式开启了生物发光研究的大门。2008年,诺贝尔化学奖颁给了绿色荧光蛋白,由下村脩、Martin Chalfie以及美籍华裔科学家钱永健共同受奖 绿色荧光蛋白是来自海洋的馈赠,它来自一种发光水母。在上世纪60年代,日裔科学家下村修(Osamu Shimomura,下村脩)和美国科学家约翰森(Frank H. Johnson)首先揭开了水母发光的秘密。一开始,他们从这些水母中提取到了水母发光蛋白(aequorin),在钙离子的作用下,这种蛋白质会发出蓝光。然而,在水母身上,人们最终观察到的却是绿色的荧光,将蓝光转化为绿光的,就是水母体内的另外一种蛋白质——绿色荧光蛋白。 天然的绿色荧光蛋白还不够完美,它只有一种颜色,也无法进行复杂的标记。解决这一问题的,是华裔科学家钱永健(Roger Y Tsien)。通过对绿色荧光蛋白分子的种种改造,他得到了现在实验中广泛使用的增强型绿色荧光蛋白,以及蓝色、青色和黄色的新型荧光蛋白。在此之后,其他的实验室又从珊瑚虫中发现了红色的荧光蛋白。随着不断的探索和改造,生物学家“荧光调色盘”中的色彩也逐渐丰富了起来。 光遗传学(optogenetic)是一门2005年才诞生的技术,当年斯坦福大学Karl Deisseroth实验室撰文登上《自然神经科学》,通过在神经细胞中表达光敏蛋白,响应不同波长的光刺激实现对神经功能的调控,宣布人类正式拥有了精准操控大脑的工具。 这是一项令人激动的技术。长久以来,我们对神经元之间作用的相互理解仅仅停留在相关性上,有了光遗传学,我们现在终于有能力探究特定的神经回路和大脑功能之间的因果关系。而且这项技术微创、精准,作为神经科学研究工具来说,无疑是个跨越式的进步。 信号传导中的神经元,闪耀如同星辰大海 荧光蛋白带来的最典型、也最绚烂的研究莫过于脑虹(Braibow)。2007年,Joshua R. Sanes 和Jeff W. Lichtman主持的一项研究将红黄蓝三种颜色的荧光色素嵌入老鼠基因组,成功为老鼠的不同细胞涂上不同颜色。三种颜色相互组合,最终展现在显微镜下的老鼠脑干组织切片上有近百种颜色标记,如同一道绚烂的彩虹 使用钙指示剂,斑马鱼的大脑活动如超新星爆发 [5] 说到章鱼,相信大家都不陌生。不管住在沿海还是内陆城市,都或多或少吃过章鱼,当然,活章鱼在市场上也是可以被看到的。对于章鱼的外形,普通章鱼基本都是有一个囊状身体,头上有两颗大大的眼睛,8条触手,每条触手都有两排肉质的吸盘,这是我们对于常见章鱼的普遍印象,完全于“萌萌哒”靠不上边。所以既然章鱼能够用“萌萌哒”形容,那就肯定不是普通章鱼了,今天我要给大家介绍的是“小飞象章鱼”,它成功颠覆了大家对于章鱼的普遍认知,甚至让很多人想买一只养在家里当宠物。根据公布的视频,小飞象章鱼被发现时在海底里悠闲得煽动自己的“耳朵”呢,完全不知道人类正偷偷的拍他,圆圆的身体,黄色的皮肤,整个犹如一颗蛋黄。当他发现镜头在慢慢靠近他时,他察觉到了危险,用“耳朵”和8条连着的触手掩住自己的头,心里默念到:你看不到我,你看不到我。看到这里,我只想拨打110:喂,警察叔叔吗?这里有人卖萌。 墨西哥钝口螈(英文名称:Axolotl),又名美西螈,俗称六角恐龙,是水栖的两栖类,是墨西哥的特有物种。自然环境只能生活在有淤泥的水道和湖泊。因其独特的外貌及幼体性成熟而著名。也就是说,即使在性成熟后也不会经历适应陆地的变态,仍保持它的水栖糼体型态。 它们被饲养的历史已经超过百年,主要作为内 分泌等实验的活体使用,所以有关它们饲养及繁殖等方面的研究差不多已经完全确立了,如今要见到它们 的踪影可以到水族宠物店走一走。被大量饲养用于研究方面。它最吸引人的特性是它的复原能力,它受伤后不会以结疤的形式 自愈,而是会在几个月内长出新的肢体,某些个案证明,它们可以自愈(重生)出重要的器官,例如:脑部。它们接受外来器官的能力很强,眼睛及部分脑部移植后可以完全恢复正常。在某些个案里,当墨西哥钝口螈的肢体受伤后(并没有被截肢),会长出新的肢体(例如:五条腿),这一新奇特性吸引着动物爱好者。变态后,器官再生的能力会大大减弱。另一吸引人的特性:它们的卵大而强壮 。墨西哥钝口螈对比起其他种类的火蜥蜴非常容易大量繁殖。墨西哥钝口螈在国际市场上是一种很受欢迎的宠物,墨西哥钝口螈的再生能力非常高强,尤其是幼体,可以在一个月 内再生任何断离的四肢。随着成长,再生能力会逐渐减弱,无法再生四肢,但是仍然可以再生表皮或手指脚趾等组织。 眼镜猴( Tarsius syrichta )身为世界上最小的灵长类动物之一,却是同类中唯一能发出超声波的动物,它们能够发出并接收超出人类听觉范围的信号。 这种只有5英寸(约12.7厘米)高的生物有着一双尖耳朵和又大又圆的眼睛。目前眼镜猴被认为是一种濒危物种,它们仅被发现于东南亚的岛屿上,如菲律宾、苏拉威西岛、婆罗洲和苏门答腊岛。 眼镜猴是夜行动物,并且在野外很难被观察到。因此,在2月8日发布于《生物学快报》(Biology Letters)上的研究 报告 中,研究人员不得不依靠菲律宾本土的狩猎者/采集者来帮助他们捕获6只眼镜猴,之后他们使用音频设备来记录猴子们发出的超声波信号。 “某些灵长类动物发出的声音中会包含一小部分的超声波,但是眼镜猴所发出的声音则是完全的超声波,”论文作者之一、美国达特茅斯大学的人类学家纳撒尼尔·多米尼(Nathaniel J. Dominy)说道。 科学家们还发现当人类在近旁时,眼镜猴便会张开它们的嘴巴,并发出高频的声波,这也许是在发出警告。同样,当像蛇或猫头鹰这样的捕食者在附近时,眼镜猴也会采用相似的策略来警告同伴。 只有很少一部分的哺乳动物能发出超声波,其中包括家猫、某些蝙蝠和啮齿动物。眼镜猴同样也是唯一完全以像昆虫、壁虎、蜥蜴这样的小动物为食的灵长类动物。多米尼说,这些小动物同样也能发出超声波,也许眼镜猴能够听到它们所发出的声音,进而觅食。 纽西兰发光蕈蚊(学名:Arachnocampa Iuminosa),它们的幼虫所发出的光彷佛一片片小小星空,点亮了漆黑的洞穴,,也吸引了无数的游客。与很多动物用生物发光进行自卫不同,发光蕈蚊的幼虫通过体内化学反应产生的光将猎物吸引到一个网状结构中 2018年12月20日,国际著名学术期刊《科学•机器人学》在线发表了“软体爬壁机器人”(Soft wall-climbing robots) [6] 研究论文。这篇论文,上海交通大学为第一单位,并由上海交通大学与动力工程学院机器人研究所与麻省理工学院软体主动材料实验室合作完成,这是上海交大首次在《Science Robotics》上发表论文。 近几年来,软体机器人因为能适应各种非结构化环境,与人类的交互也更安全等多方面的优势,一直备受机器人领域科学家们的关注。 而且,凭借科学家们超前的想象力和快速学习大自然的能力,他们已经通过各种手段研发出了具有不同功能的软体机器人。 此次上海交通大学与麻省理工学院研发的软体机器人最突出的优势就是可以爬壁,其总重量只有2g,身长为85mm。主要由介电弹性体人工肌肉和静电吸附脚掌构成 虽然,上海交大的官网里并没有介绍这款机器人是有仿照自然界中的哪种生物,但我私下里觉得,它的运动模式像极了一种叫尺蠖(chǐ huò)的小虫子,爬行起来既搞笑又可爱。 根据上海交大的实验结果显示,这款软体机器人具有与生物体类似的垂直爬壁、水平爬行、原地转弯能力和敏捷的环境适应运动能力。 本文整理自网络,部分内容经过重新排布,部分加上了一些额外的说明。侵删。

机器人期刊投稿推荐

《机器人》,是核心级的,《机器人技术与应用》也是有正规刊号公开发行的。仿真方面也有一些期刊,例如《系统仿真技术》。当然还有一些科技类的。

你可以找“人工智能”、“机器人”或“自动化”关键词的全国性期刊多家投稿试试。但如果是自己的独创,最好先申请专利,免得被盗用。

sci机器人期刊投稿推荐

制造领域关于异形孔加工方面的纯理论文章(文章为大篇幅的公式推导)《machine tools》和《mechanical science》韩国的一个SCIE期刊《International Journal of Precision Engineering and Manufacturing》英国机械工程师学会的SCI期刊《Proceedings of the Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture》第一次审稿意见两月内能回来中国机械工程学报也是可以的!机械、仪表类核心期刊1中国机械工程 2.机械工程学报 3.摩擦学学报 4.机械科学与技术 5.机械设计 6.光学精密工程 7.机械设计与研究 8.润滑与密封 9.仪器仪表学报 10.机床与液压 11.机械传动 12.液压与气动 13.流体机械 14.自动化与仪表 15.现代制造工程 16.工程设计学报 17.振动、测试与诊断 18.光学技术 19.机械设计与制造 20.制造业自动化 21.水泵技术 22.制造技术与机床 23.轴承 24.组合机床与自动化加工技术 25.自动化仪表 26.压力容器 27.仪表技术与传感器可以考虑向这些期刊投稿

期刊: best (1) IEEE Transactions on Pattern Analysis and Machine Intelligence,IEEE模式分析与机器智能汇刊,简称PAMI,是IEEE最重要的学术性汇刊之一。 (2) ACM Transactions on Graphics,美国计算机协会图形汇刊,简称TOG,该刊侧重于计算机图形的处理,影响因子在该领域也比较高。 (3) International Journal of Computer Vision,该刊也是该领域的顶级期刊之一,相比于PAMI来讲,该刊侧重于理论的推导。 (4) IEEE Transactions on Image Processing,该刊也是图像处理领域的代表性期刊之一,相比于上面三个期刊来讲,该刊稍微低一点层次。 good (1)Computer Vision and Image Understanding Pattern Recognition:CVIU (2)Advances in Neural Information Processing Systems:NIPS elsevier系列 (1)image and vision computing (2)journal of vision communication and image processing (3)signal processing (4)signal processing:image communication (5)pattern recognition (6)pattren recognition letter (7)computer vision and image understanding (8)medical image analysis 会议: best (1)ICCV:Inter. Conf. on Computer Vision (2)CVPR:IEEE conf. on Computer Vision and Pattern Recognition (3) ECCV:Euro.Conf. on Computer Vision good (4) ICIP:Inter.Conf.on Image Processing (5) ICPR :Inter.Conf.on Pattern Recognition (6)ACCV:Asia Conf. on Computer Vison (7)IVCNZ:IEEE conf. on Image and Vision Computing New Zealand (5)BMVC:British Machine Vision Conference

软体机器人方向发表论文

软体机器人

在过去几十年中,数不清的科幻片将机器人刻画得一模一样,它们钢筋铁骨、强大有力、理性高效,能执行人类无法完成的任务。这为后来《超能陆战队》中“大白”的出现做了极具反差效果的铺垫。作为软体机器人的代表,“大白”具有“软萌Q弹”的特点,有英雄气概,又有惹人喜爱。而科学家们亦有同感,软体机器人也许能解决更多问题,比如,斯坦福大学的科学家们就已经在该领域做出了尝试。

它的动作就像一个快速生长的爬藤

据外媒“每日科学”官网日前报道,斯坦福大学的机械工程师们开发出一种全新的仿藤机器人,能够在不移动整个身体的情况下,长距离生长,并能蛇形蜿蜒。研究者已证明,它在灾难搜救和医疗中将是大有作为的。该项目由美国国家科学基金会资助,相应研究论文已发表于《科学机器人》杂志上。

设想一下,在杂乱无章的倒塌建筑中,救援人员在急切地搜寻遇难人群。但是,他们既没有徒手去挖碎片,也没有放出搜救犬去嗅生命迹象在哪儿,而是首先拿出一个小的密封气缸,将设备放在灾难现场的缝隙入口处,然后旋转开关,机器人的“生长”开始了!

只见,它从气缸的一端冒出头,接着像卷曲的蛇一样,软软地、缓缓地延伸,进入石头、草丛和泥土混杂的地下空间。它的动作就像快速生长的爬藤一样,卷须的顶端安装有微型摄像头,能够让救援人员看到瓦砾下面,无法抵达的地方是什么样的状况。

对新型软体机器人来说,这仅仅是一种可能的应用。研发人员在论文中表示,之所以研发它,是受到自然的启示。生物具有生长的特性,无论是藤蔓、真菌还是人脑内的神经细胞,都能通过软性延展来覆盖距离,那么仿生装置应该也可以。因此,他们提出了“会生长的软体机器人”这一概念,并设计了一些具有挑战性的实验进行了验证。

机械工程学教授埃里森·冈村是该论文的资深作者,他解释说,“我们试图从根本上弄清楚软体机械移动或生长的机制原理,它的方式与世界上所有的动物或人类都完全不同”。为了知道机器人能做什么,研究小组甚至制作出复杂的迷宫模型,让机器人穿越各种障碍,朝着预设目标前进,并成长为一个独立结构。

它不需要机械整体运动,而只需要尖端运动

这个新机器人背后的设计思想显而易见,并不复杂。首先是有一管的软材料折叠在气缸内部,就像一团有序蜷曲着的袜子一样。机器人在顶端摄像头的控制下,总朝着一个方向生长,比如软材料位于充气嘴的前端,软体机器人的管子始终朝着右侧延展生长。

实验室中的原始版机器人采用薄而廉价的塑料制成,当研究人员通过固定端压入空气时,机器人呈外翻生长的姿态,而在后来的新版本中,任何流体也许都能代替压缩空气,从而让软体机器人具有不同性能。这种设计非常有用的一个特点就是,它不需要机械整体运动,而只需要尖端运动,节省了时间和能量。

来自加利福尼亚大学的客座助理教授埃利奥特·霍克斯也是论文的主要作者之一,他指出,机器人的身体从末端开始延伸,在“生长”过程中,身体会附着在草丛中,或被岩石卡住,但这并不能阻止其行动,因为末端还在不断长出新“肢体”。

测试机器人性能的方法也很简单,即让机器人从一个地方穿越障碍到另一个地方。研究人员设计了混合捕蝇纸、粘胶水、钉子和冰冻墙面的通道,而机器人成功越过了所有阻碍,并在传感器帮助下,通过感知二氧化碳的方式寻找到了被困幸存者模型。整个过程中,虽然机器人的躯干被钉子刺破,但由于被刺破的区域没有继续移动,钉子堵住了气孔,机器人的气腔保持正常。

在另一些极端情况下,机器人“举起”了100公斤的木箱,从只有躯干截面面积10%的门隙中穿越而过,并且还进入了天花板顶上、墙内管道等地方,甚至为人们提供了一种在狭小空间布置路由线的新方法。

它们比纯机械机器人更安全

研究者指出,人们应该关注的是,软体机器人能够移动进入一个不可预知的困境中,它的行动不受障碍物的影响,人们不必担心它在探索时被破坏或卡死。原始版之后,新开发的机器人版本还囊括了一个控制系统,能够让机器人膨胀,使生长方向朝左或右,并将末端摄像机拍下的图像传到外界。

这种机器人的主要优点在于,它们比纯机械机器人更安全。这不仅是因为它们柔软,还因为它们往往极轻,便于延展靠近人体。而且,它行动灵活,可以在复杂路径中前行。当然,这得归功于科学家们制作出的精确运动模型。一般来说,纯机械机器人更易于建模和控制,但为了让软体机器人也达到同样的行动效果,就需要进行大量试验,获得足够精确的数据,编写新的控制算法,让机器人末端的摄像机能够以超高速率处理运动指令,引导机器人的“生长”方向,完成任务。

如前所述,科学家们手工制造的原型是通过气压驱动,未来希望制造出液体驱动的版本。一旦软体机器人内腔能够输入水或其它液体,那么就能向狭小空间或封闭空间内的人输送这些东西,甚至还能帮忙进行灭火。因此研究者也在试验用耐撕尼龙或芳纶等材料制作软体机器人的外壳。

研究者也想看到不同尺寸的软体机器人会如何工作,因此他们还造出了一个仅有1.8毫米直径的机器人版本。未来,他们希望小微型软体机器人能推进医疗进步,比如进入患者身体,在不影响其它器官组织的情况下“生长”,完成检查任务等等。

比陆地更辽阔的是海洋,海水覆盖了地球约 71% 的表面积。不过,海洋学者认为人类只 探索 了其中的 5% 而已。 人们经常对较浅的海洋进行勘探,但由于极端的静水压力,深海区域基本仍是一片神秘领域。

目前,设计精良的水下机器人在深海任务中具有出色的机动性和功能性,勘探深度能达到 3000-11000 米,比如我国自主研发的 “蛟龙号”“奋斗者号” 等载人潜水器,在深海探矿、海底高精度地形测量、可疑物探测与捕获、深海环境与生物考察等任务中都扮演着关键角色。

但是,这些深海潜水器通常需要特制的压力容器或压力补偿系统来保护内部机电系统,考虑到海底极端条件下结构破坏的风险,深海勘探仍然具有危险性和挑战性。 然而,大自然是神奇的,没有耐重压系统的深海生物却可以在极深的海域繁衍生息,灵活游走。

受深海生物特性的启发,来自浙江大学、之江实验室的科研团队及其合作者开发了一种能用于深海探测的无线自供能软体机器人 ,他们通过在马里亚纳海沟最深 10900 米处和南海最深 3224 米处进行实际测试,验证了这种机器人具有极好的耐压和游泳性能。

相关研究论文以 “ Self-powered soft robot in the Mariana Trench ”(马里亚纳海沟里的自供能软体机器人)为题,于 3 月 4 日发表在《自然》( Nature )杂志上。

论文里介绍的这种深海机器人,是一种典型的仿生装备与系统。 目前,生活在中等海洋深度(约 1000 米)的软体生物,如章鱼和水母等已被广泛研究,它们的适应能力启发了很多水下软体机器人的设计,为深海探险提供了很多有前途的方法。

这类软体机器人的性能很大程度上取决于软启动器,包括介电弹性体(dielectric elastomers,DEs)、水凝胶和射流装置等,近年来的许多研究表明,具有扑翼、波动、喷射等推进方式的柔性机器人具有良好的游泳性能。

尽管如此,这类机器人的动力和控制电子系统仍然需要笨重而坚硬的容器来抵御深海极端压力,一种没有刚性容器、能在极端深海游泳的、有压力弹性的软机器人还没有被开发出来。

浙江大学李铁风、李国瑞及其合作者设计开发的这款软体机器人,灵感则是来自钝口拟狮子鱼( Pseudoliparis swirei ) 。早在 2014 年,科学家就在马里亚纳海沟中约 7000 米处深度捕获到了这种鱼类,据了解,钝口拟狮子鱼还创下了一项人类拍到活体鱼类的最深纪录 ——8178 米。

马里亚纳海沟深处的压力有多大? Nature 文章中有一个形象的描述,类似于把一整座埃菲尔铁塔的重量全都压在人类大脚趾上。 在那种寒冷、黑暗和极压的环境下,高压能压碎人的骨头,压扁钢铁潜水设备,而这些鱼却表现出了奇好的生存性和移动性。

所谓“适者生存”,这种鱼在身体特征上包括一个分布的头骨和能拍打的胸鳍,由软骨和细胞膜组成的骨架等,这指导了李铁风、李国瑞团队及其合作者进行一种创新的深海软体机器人设计。

据论文描述,研究人员已对这种软体机器人进行了多方位测试报告。它被安装在深海着陆器上,在马里亚纳海沟 10900 米深度的现场测试中成功启动, 这个软机器人内部自带容量为 2500mAh 的锂离子电池和高压放大器用来自动供电 ,团队使用受保护的摄像机和深海着陆器上的 LED 灯记录了试验过程,在这次测试中,机器人没有从着陆器中释放出来, 在没有压力容器的情况下,扑鳍驱动保持了 45 分钟 。

在中国南海的现场试验中 ,软体机器人由遥控潜水器(ROV)携带到 3224 米的深度。在 8kV 交流电压和 1Hz 的驱动下, 该机器人以 5.19cm 每秒(即每秒 0.45 体长)的速度拍打双鳍运动,成功实现自由游动 。

据了解,这种机器人设计成功的关键之一是压力弹性电子元件。 传统的水下航行器需要金属材料制成的水密外壳,以承受深海高压,这些外壳的厚度和尺寸必须增加,以适应更大的深度。但在研究团队此次设计的机器人中,精密的电子元件被嵌入并分布在柔软的硅树脂基体中,这种设计消除了对耐压外壳的需求。

研究人员通过测试发现,如果电子元件密集地封装在一块印刷电路板(PCB)上,压力测试表明在它们的接口处容易发生故障,因此需要一种方法来保护机器人的电子元件免受高压影响, 启发则是来自钝口拟狮子鱼分布的头骨 。

为了提高压力恢复力,他们采用了分散式设计来降低剪切应力。 在这种设计中,元件与几块较小的 PCB 进行线连接或分离,这里的 “分离” 是指去除电子元件之间的直接刚性接触。

实验室试验和模拟表明,这种布置降低了受压部件之间接口处的应力,然后将分布式电子器件嵌入硅树脂中,以便并入机器人, 该方法比其他保护深海设备电子设备的方法更实用,也更便宜。

对于相同的外加压力(110MPa),分散电子设备界面处的平均剪应力低于集中电子设备(约 60MPa),研究人员进行了一系列的压力室实验(110MPa),以确认这种分散电子具有更高的压力弹性。此外,由于从 PCB 上拆下所有组件在技术上是困难的,因为它们的数量很大,为了减少这些元件之间的应力,研究人员在设计时还增加了相邻电子元件之间的距离, 当相邻部件之间的距离从 0.4 mm 增加到 2.4mm 时,测试分析显示,最大剪应力能减少 17% 。

设计好了电子部分,另一方面就是机械驱动部分 ,这里的一个关键应用是介电弹性体(DE),一种加上电压即可出现形变的电激活聚合物,这种材料能将电能转化为机械功 —— 当机器人电池的电流作用于肌肉时,肌肉就会收缩,微小的固体结构通过机械方式将收缩肌与鳍相连,使其拍打运动。

最终,他们把机器人设计成了鱼一样的身体形状,有两个拍打的侧鳍。 该机器人长 22 厘米(体长 11.5 厘米,尾长 10.5 厘米),翼展有 28 厘米,电力和控制电子设备包括锂离子电池、高压放大器、红外接收器、放电电阻器和 MCU。

它同时具有以下特点: (1)位于支撑架和拍打鳍接合处的 DE “肌肉”;(2)由较硬的前缘和弹性框架支撑的薄硅胶拍打鳍;(3)嵌入其软体内的分散电子。弹性框架粘在预拉伸的 DE 肌肉上,以提供支撑,并将 DE 膜的平面内驱动转换为鳍拍打运动,当施加交流电压时,周期性变形的 DE 肌肉产生两个鳍的拍打运动以推进游动。

此外,DE 材料也经过了精心设计,可在深海低温高压下保持其电压感应驱动。 研究人员在高压下测量了由典型 DE 材料(VHB)制成的圆形致动器的电压感应区域应变,结果发现,当实验条件从(0MPa,25 C)变为(110 MPa,5 C)时,电压引起的区域应变从 19.1% 下降到了 2.4%,不足以推动机器人。

因此,他们采用了一种新的三嵌段共聚物:SBAS。 在相同的实验条件下,SBAS 的电压感应面积应变从 12.5% 下降到 7.0%,由于拍动双鳍的设计已得到优化,这种材料的表现对于软机器人深海自由游泳来说已经是足够高的应变。

研究人员在额外的动态力学分析(DMA)中表明,VHB 和 SBA 的不同性能源自其不同的玻璃化转变温度(Tg),分别为 0.3 C 和 17.2 C,这一结果突出了由于微相分离,较低的 Tg 对提高三嵌段共聚物 DE 的机电性能的影响。

除了深海实地测试外,研究团队还进行了一系列的压力舱和深湖实验,进一步验证了该软体机器人的游泳性能。

他们在实验室中观察记录了该机器人在 110 MPa 的静水压力中,在不同电压(7 kV、8 kV、9 kV,2 Hz)下测试游泳性能。 当驱动电压为 7 kV,频率为 1Hz 时,在 0MPa 和 110MPa 的压力下,机器人能以 3.29 cm 每秒和 2.76cm 每秒向前游动。 此外,还在一个深湖中用遥控潜水器将其带到水深处,对软机器人的自由游动进行了现场测试, 该机器人在 8 米深处能以 3.89cm 每秒的速度游泳,在 70 米深处能以 3.16cm 每秒的速度游泳,证实了它对野外探险的鲁棒性。

研究人员表示,此次取得的实验成功有可能扩展到各种其他软设备上,未来如果集成额外的功能单元或重新排列电路则有望产生多种附加功能, 例如深海中的传感和通信 。

具有传感、驱动、电源和控制系统的软设备可以完全集成,以监测和调节机械滥用条件下的复杂任务(不仅是高压,还有其他困难的机械条件,如振动或冲击)。 研究团队的未来工作将集中在开发新的材料和结构,以增强软机器人和设备的智能性、多功能性、机动性和效率。

此前人们曾多次尝试开发应用于水下的各类软体机器人,但由于机器人传感器在深海环境下工作不良,因此机器人与物体的精细交互是一个具有挑战性的领域。另外,软机器人抓手要比刚性抓取装置具有很大的优势,且受生物启发的软体机器鱼可以在其他动物之间游动,而无需对它们造成干扰,因此可以进行近距离研究观察。

新加坡国立大学教授 Cecilia Laschi 在评论文章中表示 , 研究团队如今已经突破了可以达到的极限:用嵌入软材料中的分布式电子器件取代电子元件的刚性保护外壳,为新一代深海探险家铺平了道路。

然而,在海洋中布置这种设计的机器人之前,还有很多工作要做。 因为这项研究开发的机器人比之前报道的水下机器人移动要慢,而且不能承受太多环境的干扰,比如它很容易被水下暗流冲走,其运动能力也需要针对实际应用进行优化。

从长远展望来看,人们可以预测海洋生物学研究的发展方向 ,即软体机器人在珊瑚礁或水下洞穴中安全航行,在不损坏珊瑚礁或洞穴的情况下采集精致的标本,成群的水下软机器人能够在海床上爬行,将自己固定在特定的结构上或在特定的区域游走 探索 。

这将有助于各种其他应用技术的发展,进一步为推动海洋监测、清理和防治海洋污染、保护海洋生物多样性提供更多创新方案, 更重要的是,它们可以帮助科学家 探索 海洋深处的大片未知地带 。

谁能无压力 探索 两万里海底还能自在遨游? 答案是浙大的机器鱼!它成功潜入海底 10900 米,受住了海底高压 —— 这高压对于它就像人的指尖站了一头大象。 它小到不可思议 —— 身长 22 厘米,展翅 28 厘米! 如今在浅海畅游两万里轻而易举,但在两万里的深海畅游两万里比登天还难。马里亚纳海沟是迄今为止已经探明的整个地球的最深处,最深点超过 1 万 1 千米。 一万米海底的压力有多大? 浙江大学航空航天学院交叉力学中心教授李铁风表示:“在 10900 米的海底,静水压高约 110 兆帕,相当于 1100 个大气压。用一个不太恰当的比方,相当于一吨重的小 汽车 全压在指尖上。” 为了让人造机器执行水下探测与考察任务的潜水器能够深入海底,以往的设计策略一直是 “硬碰硬”—— 选用高强度的耐压金属外壳(如钛合金)或压力补偿系统作 “金盔铁甲”,来克服深海的极高静水压。 3 月 4 日,Nature 封面论文中的成果彻底颠覆了传统 —— 研究团队将整体研发策略与思路转换为 “以柔克刚”,即从深海生物身上汲取灵感,率先提出机电系统软 - 硬共融的压力适应原理,成功研制了无需耐压外壳的仿生软体智能机器人,首次实现了在万米深海自带能源软体人工肌肉驱控和软体机器人深海自主游动。 这种环境自适应的仿生软体机器人和智能系统,将为深海 探索 科考、环境监测与资源勘探提供解决方案,为复杂环境与任务下机器人及智能系统设计提供新思路。 这就是由85后教授李铁风团队联合之江实验室与合作单位开展的跨学科交叉研究,该论文标题为《马里亚纳海沟中的自动软体机器人》(Self-powered soft robot in the Mariana Trench),论文共同第一作者为之江实验室研究人员李国瑞,浙江大学博士研究生陈祥平、周方浩;通讯作者为李铁风。 在马里亚纳海沟 6000 米到 11000 米之间的深度区域,仍有数百种物种生存,狮子鱼就是其中的一种。 项目合作方中科院深海研究所在马里亚纳海沟捕获了深海狮子鱼样本,经过结构分析,他们发现这种鱼之所以能在高压力环境下自由生存与活动的关键,就在于其骨骼呈细碎状分布在凝胶状柔软的身体中。 李铁风告诉 DeepTech:“我们发现深海狮子鱼身上硬质的骨头是分散在它软凝胶状的身体当中,便猜想正是这一结构特征,帮助它抵御深海静水高压以及实现柔软灵活的海底遨游。因此有了‘机电系统软 - 硬共融的压力适应’原理或者说系统,这是我们第一个比较重要的创新。” 受此启发,该团队研制出仿生软体智能机器鱼,长 22cm,翼展宽度 28cm,并且巧妙地利用围绕在人工肌肉外的海水作为离子导电负极,由机器鱼自带能源在人工肌肉内外侧厚度方向产生电势差,让高分子薄膜发生舒张与收缩形变,这样一来 “翅膀” 就能上下拍动,推动机器鱼水中前行。 通过设计调节器件和软体的材料与结构,将控制电路、电池等硬质器件融入集成在凝胶状的软体机身中,来优化在高压环境下机器人体内的应力状态,从而使整个系统无需外壳保护即可适应高静水压力。 对 “机电系统软 - 硬共融的压力适应” 原理,李铁风向 DeepTech 做了更为详细的说明:“所谓‘机电系统软 - 硬共融的压力适应’原理,其实不难理解,我们仿照深海狮子鱼身体结构原理,把电池、电子器件电池这一类又硬又脆的电子元器件分散后,融在软凝胶状的合成材料里边。软凝胶材料和分散的结构设计,可以帮助调整这些小器件上受到的力(在力学上这种力被称为应力),将器件跟软凝胶材料的融合在一起,可以提高机器人对深海静水高压承受力。” 然而,对于在深海执行探测等复杂任务的人造机器而言,拥有能够承受住深海极高的静水压的结构仅是研发征途中成功迈出的第一步,还需要克服高分子材料在高压和低温时电驱动能力衰减的问题。 针对低温时电驱动能力衰减的问题,该团队与浙江大学化学工程与生物工程学院罗英武教授课题组合作研制了能适应深海低温、高压等极端环境的电驱动人工肌肉,这款电驱动人工肌肉也是团队研究工作的另一个重要突破,它在高压低温环境下依然能保持良好电驱动性能,即便是在马里亚纳海沟的低温(0~4 )、高压环境(110 MPa)下依旧能正常工作。 李铁风向 DeepTech 讲解了 “人工肌肉” 的驱动原理和优势,他说:“我们用海水来做人工肌肉的电极有一个非常大的好处,因为机器鱼周围都是海水,大家都知道海水具有有弱导电性,这个特点正好跟我们原本对‘人工肌肉’的设计原理。” 他补充称:“想要实现‘人工肌肉’驱动,需要两端的电极,一个正电极一个负电极。有弱导电性的海水正好可以做‘人工肌肉’的负电极,我们只需要在‘人工肌肉’内安装正电极材料即可。‘人工肌肉’对电子的非常苛刻 —— 电子必须十分柔软,不能影响这个‘肌肉’本身。有了海水做负电极,我们只需在‘人工肌肉’内加一块正电极即可。而且海水的柔软性、贴合性都非常好。这样既保证了‘人工肌肉’能够工作,同时保证了电极器件的柔软性。” 2019 年 12 月,仿生软体机器鱼首次成功在马里亚纳海沟坐底,机器鱼随深海着陆器下潜到约 10900 米的海底后,在 2500 毫安锂电池的驱动下,按照预定指令拍动翅膀,扑翼运动长达 45 分钟,成功实现了电驱动软体机器鱼的深海驱动。 李铁风表示:“这项发明能够大幅降低海洋 探索 的成本,同时也可以使常用的海洋 探索 装备更加智能化。依照‘机电系统软 - 硬共融的压力适应’原理,一些高性能的智能化的芯片、器件,在不需要坚硬外壳的保护下都能下到深海里。换句话说,这一技术提升了深海探测器或者作业装备的智能化水平。” 本次成果还能给智能系统设计提供新思路。李铁风举例称:“把机器鱼的研究思路和原理,应用到其他软机器人,甚至医疗康复中的人体器件以及生物医学方面。在康复医疗方面,比如说人体穿戴设备,它的材料和电子器件太硬,在人类活动或受到外界冲击时,设备容易损坏或失灵。这时就可以用贴合性比较好的人工肌肉原材料来作为设备原材料,把硬的器件放在凝胶状的材料中,通过这种融合的办法,让穿戴设备有更好的适应性。” 此外,他还补充称:“在生物或医学方面的应用,就是把较硬的电子元器件(比如芯片),或者金属、陶瓷的这种材料,哪怕我们把它们做的很小,它们生物亲和性还是比较差的。如果我们把这些器件溶在一个软胶质地的材料中,可极大地提升设备的亲和性,更好地实现器材跟人体的交互作用。这是我们对机器鱼制作原理未来的应用场景设想,这也是我们正在努力研发的方向。” 回顾这项交叉学科研究,李铁风感慨称:“机器鱼研发就一个非常典型的多学科交叉的代表,除了上面列出来的研发团队,我们团队还有研究鱼类的专家的参与。正是通过这次合作,我更深刻地认识到跨学科的交叉研究的重要性,它就好像科研创新的加速器,不同领域研究员在概念、原理和思想上的碰撞,科研激发学科交叉地前瞻性研究。” 概括来讲,仿生软体智能机器鱼由深海生物启发,把 “生命之秘” 化作 “机器之力”,研发能自适应复杂环境的智能机器,则既可助力深海 探索 ,又能发展新型机器人与智能装备。这种环境自适应的仿生软体机器人和智能系统,将为深海 探索 科考、环境监测与资源勘探提供解决方案,为复杂环境与任务下机器人及智能系统设计提供新思路。

弹性体期刊投稿软件推荐

国内的话力学杂志有《力学进展》、《力学与实践》等。给lz一些国际的期刊。国际知名的力学期刊 刊名 原文名 创刊年 附注《应用数学和力学》(中国) (AppliedMa hematics and Mechanics) 1980《应用数学和力学》编辑委员会 《热应力杂志》(美) Journal of Thermal Stresses 1978 美国 Hemispheres Publishing Co. 《国际非线性力学杂志》(英) International Journal of Non-Linear Mechanics 1966 英国 Pergamon Press Ltd.《国际固体与结构杂志》 International Journal of Solids and Structures 1965 英国Pergamon Press Ltd.《国际多相流杂志》(英) International Journal of Multiphase Flow 1973 英国Pergamon Press Ltd.《地震工程与结构动力学》 (英) Earthquake Engineering Structural Dynamics 1972 英国John Wiley Sons Ltd.《国际热与热流杂志》(英) International Journal of Heat and FluidFlow 1979 英国 Mechanical Engineering Publi-CationsLtd.《国际地震工程与土壤动力学杂志》(英) International Journal of Earthquake Engineering Soil Dynamics1981 英国 CML Publications《工程断裂力学》(英) Engineering Fracture Mechanics 1968 英国 Pergamon Press Ltd.《国际压力容器与管道杂 志》(英) The International Journal Of PressureVessels Piping 1973 英国Applied Science Publishers Ltd. 《国际工程数值方法杂志》 (英) International Journal for Numerical Methodsin Engineering 1969 英国John Wiley Sons Ltd.《工程材料与结构的疲劳》 (英) Fatigue of Engineering Materials and Structures 1978 英国Pergamon Press Ltd《国际疲劳杂志》(英) International Journal of Fatigue 1979 英国 IPC Science and Technology Press.《国际岩石力学与采矿学及地 质力学文摘》(英) International Journal of Rock Mechanics MiningScienc Geomechanics ABSTRACTS 1964 英国Pergamon Press Ltd.《水利》(法) La Houille Blanche 1902 法国《理论与应用力学杂志》(法) Journal de Mecanique Theorique et Appliquee(Le) 1962 法国Centrale des revues DunodGauthier-Villars《工程师文献》(联邦德国) Ingenieur-Archiv 1929 联邦德国 Springer-Verlag《岩石力学与岩石工程》 (奥地利) Rock Mechanics Rock Engineering1929 奥地利 Springer-Verlag 《固体力学文献》(荷兰) Solid Mechanics Archives 1976 荷兰 Martinus Nijhoff Publishers. 《应用力学和工程技术中的计算机方法》(荷兰) Computer Methods in Applied Mechanics and Engineering 1972 荷兰Elsevier Science Publishers. 《风工程和工业空气动力学杂志》(荷兰) Journal of Wind Engineering and Industrial Aerodynamics 1975 荷兰Elsevier Scientific Publishing Company(原名为Journal of Industrial Aerodynamics,1980年改为 现名)《国际断裂杂志》(荷兰) International Journal of Fracture 1965 荷兰Martinus Nijhoff Publishers 《水利学研究杂志》(荷兰) Journal of Hydraulic Research 1963 荷兰International Assiciation for Hydraulic Research《非牛顿流体力学杂志》 (荷兰) Journal of Non-Newtonian Flluid Mechanics 1975 荷兰Elsevier Scientific Publishing Company 《波动》(荷兰) Wave Motion 1979 荷兰North-Holland Publishing Co. 《土木工程学报》(中国) China Civil Engineering 1954 中国土木工程学会 China Civil Engineering Society《力学学报》(中国) Acta Me-chanica Subuca 1957 中国力学学会《力学学报》编辑委员会(The Editorial Board of ACTAMECHANIC A SINICA,the Chinese Society of Theoretical and Applied Mechanics)《力学译丛》(中国) 1964 中国科学技术情报研究所分所《力学进展》(中国) 1982 中国科学院力学研究所《应用力学》(中国) 1982 中国科学技术情报研究所分所《固体力学学报》(中国) Acta Mechanica Solida Sinica 1980 《固体力学》学报编辑委员会员《应用数学和力学》(中国) Applied Mathematics and Mechanics 1980 《应用数学和力学》编辑委员会《建筑结构学报》(中国) Jour-nal of Building Structures 1980 中国建筑学会《上海力学》(中国) 1980 《上海力学》编辑部 《爆炸与冲击》(中国) 1981 《爆炸与冲击》编辑部 《振动与冲击》(中国) 1982 《振动与冲击》编辑委员会《空气动力学学报》(中国) Acta Aerodynamica Sinica 1983 《空气动力学学报》编辑委员会《数学物理学报》(中国) 1981 《数学物理学报》编辑委员会《实验应力分析学会会报》 (美) Proceedings of the Society for Experimental StressAnalysis 1943 美国实验应力分析学会 (Society for Experimental Stress Analysis) 《实验力学》(美) Experimental Mechanics 1961 美国实验应力分析学会 (Society for Experimental Stress Analysis) 《结构力学杂志》(美) Journal of Structural Mechanics 1972 美国Marcel Dekker Ine.《流变学杂志》(美) Journal of Rheology 1957 美国John Wiley Sons Inc. Publishers. 《液压与气体力学》 (美) Hydraulics Pneumatics; Magazine of Fluid Powerand Control Systems 1948 美国Penton/IPC 《流体物理学》(美) Physics of Fluids 1958 美国物理学会(American Institute of Physics) 《流体力学年评》(美) Annual Review of Fluid Mechanics 1969 美国Annual Review Inc.《应用力学杂志》(美) Journal of AppliedMechanics 1935 美国机械工程师学会 (American Society ofMechanical Engineers)《实验应力分析学会年度春 季会议录》(美) Proceedingsof the SESA Annual Spring Meeting 美国实验应力分析学会(Society for Experimental Stress Analysis)《聚合物科学杂志》(美) Journal of Polymer Science 1946 美国John Wiley Sons Inc Publishers《生物工程学杂志》(美) Journal of BiomechanicalEngineering 1977 美国机械工程师学会 (American Society ofMechanical Engineers)《复合材料杂志》(美) Journal of Composite Materials 1967 美国 Technomic Publishing Company Inc.《流体工程学杂志》(美) Journal of FluidsEngineering 1973 美国机械工程师学会 (American Society ofMechanical Engineers)《美国土木工程师学会会报--工程力学组杂志》(美) Proceedings of the American Society of CivilEngineers- Journal of the Engineer Mechanics Division 1873 美国机械工程师学会(American Society of Civil Engineers)《自动车工程师学会汇刊》 (美) SAE Transactions 1906 自动车工程师学会 (Society of Automotive Engineers)《船舶研究杂志》(美) Journal of ShipResearch 1893 造船与轮机工程师协会 (Society of NavalArchitects Marine Engineers)《美国航空与航天学会志》 (美) AIAA Journal 1930 美国航空与航天学会 (American Institute of Aeronautics Astronautics)《苏联流体力学研究》(美) Fluid Mechanics-Soviet Research 1972 美国 Scripta Publishing Co. 《流体动力学》(美) Fluid Dynamics 1966 美国 Plenum Publishing Co.《伦敦皇家学会会报,A辑: 数学及物理科学》(英) Proceedings of the Royal Society of London,A:Mathematical Physical Sciences 1854 英国皇家学会(The Royal Society of London)《伦敦皇家学会哲学汇刊,A 辑数学与物理科学》(英) Philosophical Transactions of the RoyalSociety of London,SeriesA:Mathematical PhysicalSciences 1854 英国皇家学会(The Royal Society of London)1887年(第178卷)起分A,B两辑出版《力学研究通讯》(英) Mechanics Research Communications 1974 英国Pergamon Press Ltd《生物流变学》(英) Biorheology 1963 英国 Pergamon Press Ltd.《生物力学杂志》(英) Journal of Biomechanics 1968 英国 Pergamon Press Ltd.《材料科学杂志》(英) Journal of Materials Science 1966 英国 Chapman and Hall Ltd.《应变》(英) Strain 1964 英国应变测量学会 (British Society for Strain Measurement)《工程设计应变分析杂志》 (英) Journal of Strain Analysis for EngineeringDesign 1965 英国 Mechanical EngineeringPublications Ltd.《力学研究》(英) Research Mechanica 1980 英国Applied Science Publishers《计算机与结构》(英) Computers Structures 1971 英国 《计算机与流体》(英) Computers Fluid 1971 英国 Pergamon Press Ltd. 《水力气体机械动力》(英) Hydraulic Pneumatic Mechanical Power 1955 英国Trade Technical Press Ltd. Ltd. 《飞机工程》(英) Aircraft Engineering 1929 英国 Bunhill Publications Ltd.《航空季刊》(英) Aeronautical Quarterly 1949 英国皇家学会(Royal Aeronautical Society)《航空杂志》(英) Aeronautical Journal 1897 英国皇家学会(Royal Aeronautical Society)《星际航行学报》(英) ActaAstronautica 1955 英国1974年改为现名,1955~1973年刊名为Astronautica Acta,Pergamon Press Ltc.《应用数学与力学杂志》(英) Journal of Applied Mathematics Mechanics1958 英国1974年改为现名,1955~ 1973年刊名为Astronautica Acta,Pergamon Press Ltd《理性力学与分析文 献》(联邦德国) Archive for Rational Mechanics and Analysis 1957 联邦德国 springer-Verlag 《流变学学报》(联邦德国) Rheologica Acta 1958 联邦德国 Dr. Dietrich Steinkopff Verlag 《流体力学实验》(联邦德国) Experiments in Fluid 1983 联邦德国springer-Verlag 《油压力学与气体力学》 (联邦德国) Olhydraulik und Pneumatik 1957 联邦德国 Krausskopf Verlagsgruppe 《数学生物学杂志》(联邦德国) Journal of Mathematical Biology 1974 联邦德国 springer-Verlag《热力学与流体力学》 (联邦德国) Warme-und Stoffubertragung 1968 联邦德国 springer-Verlag 《法国流变学小组手册》 《通报》(法) Cahiers et Bulletin du Groupe Franais de rheologie 1965 法国《法国科学院会议周报,A-B辑:数理科学》(法) Comptes Rendus Hebdomadaires des Seances deL’Academie des Sciences, Series A et B:”Sciences Mathematiques,SciencesPhysiques” 1835 法国 Centrale des Revues Dunod Gauthier-Villars《应用力学纪事》(法) Journal de Mecanique Appliquee 1977 法国Centrale des Revues Dunod Gauthier-Villars 《力学》(意) Mechanica 1966 意大利 Pitagora Editrice《力学学报》(奥地利) Acta Mechanica 1965 奥地利 Springer-Verlag 《弹性体杂志》(荷) Journal of Elasticity 1971 荷兰artinus Nijhoff Publishers 《天体力学》(荷) Celestial Mechanics 1969 荷兰 D.Reidel Publishing Co.《工程数学杂志》(荷) Journal of Engineering Mathematics 1966 荷兰Martinus Nijhoff Publishers 《材料力学》(荷) Mechanics of Materials 1981 荷兰 North-Holland Publishing Co. 《澳大利亚地质力学杂志》 (澳) The Australian Geomechanics Journal 1971 澳大利亚《加拿大航空与空间杂志》 (加) Canadian Aeronautics SpaceJournal 1955 加拿大,1962年改为现名,1955~1961年刊名为:Canadian Aeronautics Journal.《核工程与设计》(瑞士) Nuclear Engineering and Design 1965 瑞士Elsevier Sequoia S.A. 《应用数学与力学杂志》 (民主德国) ZAMM-Zeitschrift fur Angewandt Mathematikund Mechanik 1921 民主德国 Akademic-Verlag 《理论与应用力学》(波兰) Mechanika Teoretyczna i Stosowana 1964 波兰 PWN 《工程汇刊》(波兰) Rozprawy Inzynierskie 1953 波兰 PWN 《力学文献集》(波兰) Archives of Mechanics 1849 波兰 PWN 《罗马尼亚技术科学杂志, 应用力学辑》(罗) Revue Roumaine des sciencesTechniques,Serie Mecanique Appliquee1956 罗马尼亚科学出版社《应用力学研究》(罗) Studii si Cerctari de Mecanica Applicata 1942 罗马尼亚科学出版社《日本应用力学全国会议 录》(日) Proceedings of the Japan National Congress of Applied Mechanics 1953 日本中央科学社 《材料》(日) Journal of the Society of Materials Science 1952 日本材料学会《日本机械学会论文集》(日) Transactions of the Japan Society of Mechanical Engineer 1935 日本机械学会 《土木协会论文报告集》(日) Proceedings of the Japan Society of Civil Engineers 1944 日本土木工学会《日本造船协会志》(日) Bulletin of the society of Naval Archiects of Japan 1915 日本造船协会《流体工程学》(日) 流体工学 1965 日本产业开发社(原名:学, 1965~1973.7)《日本材料强度学会志》 日本材料强度学会志 1967 日本材料强度学会《力学研究所报告》(日) 力学研究所报告 1967 日本力学研究所《日本流变学会志》(日) 日本一学会志 1973 日本流变学会《应用数学与力学》(苏联) 1936 苏联《苏联科学院通报:固体力 学》(苏) 1966 苏联,美国出版有英译本《磁流体力学》(苏) 1965 苏联,美国出版有英译本《燃烧与爆炸物理学》(苏) 1965 苏联《应用力学与物理学杂志》 (苏) 1960 苏联,美国出版有英译本《应用力学》(苏) 1955 苏联《复合材料力学》(苏) 1965 苏联《建筑力学与建筑物计算》 (苏) 1959 苏联《莫斯科大学力学通报》(美) Moscow University Mechanics Bulletin 1969 美国 Allerton Press Inc (译自俄文) 《得克萨斯大学巴尔科研究 中心年报》(美) Annual Repoet-Balcones Research Center,Univ.of Texas at Austin 美国《剑桥哲学会数学汇刊》(英) Re Mathematical Proceedings of the CambridgePhilosophical Society 1977 英国Cambridge Univ.Press,1977年改为现名,1843~1976 年名为Proceedings of Cambridge Philosophical Society;Mathematical Physical Sciences 《力学与应用数学季刊》(英) Quarterly Journal of Mechanics and Applied Mathematics 1948 英国 《流体力学杂志》(英) Journal of Fluid Mechanics 1956 英国 Cambridge Univ.Press《应用力学研究所报告》(日) Reports of Research Institute for Applied Mathematics 1952 日本九州大学应用力学研究所 《东京大学航天研究所报告》 ISAS (Institute of Space Aeronautical Science,Univ. Tokyo) 日本东京大学航天研究所 《布加勒斯特乔治乌德治工 学院通报:力学辑》(罗) Buletinul Institutului Politehnic“Gheorghe Gheorghiu-Dij” 1949 罗马尼亚《列宁格勒大学通报:数学, 力学和天文学类》(苏) 1946 苏联《莫斯科大学通报:数学力学类》(苏) 1946 苏联《国外科技资料馆藏目录━ 数学,力学》(中国) 中国科学技术情报研究所《力学文摘━流体力学部分》 (中国) 1958 中国科学技术情报研究所重庆 分所翻译,苏联科学院科学情报 研究所文摘编辑委员会编辑《力学文摘━一般力学部分》 (中国) 1958 中国科学技术情报研究所重庆 分所翻译,苏联科学院科学情 报研究所文摘编辑委员会编辑《力学文摘━弹性力学部分》 (中国) 1958 中国科学技术情报研究所重庆 分所翻译,苏联科学院科学情 报研究所文摘编辑委员会编辑《数学文摘》(美) Mathematical Reviewswith Index toMathematicalReviews 1940 美国数学会American Mathematical Society《冲击与振动研究辑要》(美) Shock and Vibration Digest 1969 美国冲击与振动情报中心《流变学通报》(美) Rheology Bulletin 1937 美国物理学会 American Institute ofPhysics《应用力学文摘》(美) Applied Mechanics Reviews 1948 美国机械工程师协会 American Society of Mechanical Engineers《地震工程文摘杂志》(美) Abstracts Journal in Earthquake Engineering 1968 美国加利福尼亚大学伯克利分 校地震工程研究中心 Univ. of California,Berkeley, Earthquake Engineering Research Center《工程索引》(美) Engineering Index (Annual) 1884 美国 Engineering Index Inc.《美国土木工程师学会汇 刊》(美) Transactions of the American Society of CivilEngineering 1852 美国土木工程师学会 American Society of Civil Engineering《科学引文索引》 (美) Science Citation Index 1961 美国科学情报研究所 Institute of Scientific Information《土木工程水利文摘》(英) Civil Engineering HydraulicsAbstracts 1968 英国流体力学研究协会 British Hydromechanics Research Association《流变学文摘》(英) Rheology Abstracts 1940 英国 Pergamon Press《固体-液体流文摘》(英) Solid-Liquid FlowAbstracts 1973 英国流体力学研究协会 British HydromechanicsResearch Association《工业空气动力学文摘》(英) Industrial Aerodynamics Abstracts 1970 英国流体力学研究协会 British Hydromechanics《流体动力学文摘》(英) Fluid Power Abstracts 1965 英国流体力学研究协会 Hydromechanics Research Association《英国土木工程师协会文 摘》(英) ICE Abstracts 1972 英国流体力学研究协会,1974 年改为现名(The Institution of Civil Engineers) 《法国全国科学研究中心 文摘通报,第130辑:数学, 物理,光学,声学,力学, 热学》(法) Bulletin Signaletique du C.N.R,S.,Section 130 hysique Mathematique, Optique, Acoustique, Mecanique, Chaleur 1961 法国全国科学研究中心 《科学技术文献速报:机 械工学编》(日) Currdnt Bibliography on Science Technology 1975 日本科学技术情报中心 (日本科学技术情报)《文摘杂志:力学(综合本) 》(苏) 1953 苏联全苏科学技术情报研究所《力学与实践》(中国) 1979 《力学与实践》编辑委员会 《美国物理学杂志》(美) American Journal of Physics 1933 美国物理学会 American Institute

是个非盈利组织,论坛经费都是由创始人自己掏腰包!为了版面的清洁,广告做其中外乡人创办的《橡塑之家》电子期刊也非不错的,番茄炒鸡蛋制作的很精美

是个非盈利组织,论坛经费都是由创始人自己掏腰包!为了版面的清洁,广告做的非常少。其他站长、管理也都是免费为论坛奉献自己的知识、经验、电子书籍。其中外乡人创办的《橡塑之家》电子期刊也非不错的,番茄炒鸡蛋制作的很精美。电子期刊都是原创作品,原创作品都付稿酬。

相关百科

热门百科

首页
发表服务