施莱登在1838年发表的《植物发生论》中指出,植物是由细胞构成的,细胞核在细胞生长、发育过程中起着重要作用,即提出了植物的细胞学说。施旺在施莱登的启发下,进一步研究,于1839年发表了《关于动植物的结构和生长一致性的显微研究》的论文,提出了他的细胞理论。这篇论文共有三部分内容:第一部分,描述蛙的幼体蝌蚪内有脊索和各种不同来源的软骨的结构和生长;第二部分,提出证据,论证了一切动物组织,无论特化到什么程度,其结构的基础还是细胞;第三部分,详细阐明了细胞学说。
1665年英国物理学家R.胡克发现的细胞. 在18世纪的德国 ,自然哲学非常盛行。这个体系的内容之一是描述他们认为是组成有机世界多样性的典型单位。歌德认为叶子是各种不同植物的典型单位结构,而奥肯则主张脊椎节是一般动物原型结构的基本单位。奥肯还进一步认为有机体由粘液囊泡或活的单位所组成,并在它们暂时所属的有机体死亡后继续生存着,形成另一个生物的一部分。在19世纪早期,这样一种观点相当流行,并且同对动植物结构的显微镜观察结合在一起,导致了细胞学说的发展。 在17世纪初胡克、马尔比基和列文霍克,都曾用显微镜看到了植物细胞,但是并没有被认为是植物世界的独立的、活的结构单位。 在19世纪初期,植物解剖的研究复活了,德国植物学家特雷维拉努斯和冯·莫尔认识到细胞是植物的结构单位。19世纪20年代, 意大利 的亚米齐和其他人制成了改进的消色差显微镜,使人们得以观察到有机细胞的详细情况。一个 伦敦 医生罗伯特·布朗于 1831年 观察到植物细胞一般具有一个核,不过他对自己的发现并不怎样重视。 捷克 人普金叶在 1835年 用显微镜观察了一个母 鸡 卵中的胚核,并指出动物的组织,在胚胎中是由紧密裹在一起的细胞质块所组成,这些细胞质块与植物的组织很类似。 这些观察导致耶拿大学的植物学教授马提阿斯·施莱登于1838年宣布,细胞是一切植物结构的基本的活的单位和一切植物借以发展的根本实体的学说。卢万大学的解剖学教授泰奥多尔·施旺于1839年把细胞说扩大到动物界。 19世纪40年代许多研究者纠正了他们其中的一些错误观点,特别是植物学家冯·莫尔,耐格里和霍夫迈斯特以及动物学家克里克尔、莱迪希和雷马克,他们证明新细胞是靠分裂形成的, 细胞核 先在母细胞内分裂为二,然后是母细胞分裂为两个子细胞。 意义 细胞学说论证了整个生物界在结构上的统一性,以及在进化上的共同起源。这一学说的建立地推动了生物学的发展,并为辩证唯物论提供了重要的自然科学依据。恩格斯曾把细胞学说誉为19世纪最重大的发现之一。 从1665年英国物理学家R.胡克发现细胞起,到1839年细胞学说建立,经过了近二百年。其间,科学家们虽然观察了若干不同类型的细胞,然而并没有认识到所有动植物体都是由细胞组成。 1838年,德国生物学家M.J.施莱登概括出细胞学说的主要论点,提出植物是由细胞组成的,并且指出植物胚胎来自单个细胞。次年,T.施旺进一步加以充实,提出动物和植物的细胞从整体而言,结构上是相似的,细胞是生物体的功能单位。这两位德国学者对细胞及其功能较为明确的定义,宣告了细胞学说基本原则的创立,有力地推动了生物学的发展,并为辩证唯物论提供了重要的自然科学依据。恩格斯誉之为19世纪自然科学三大发现之一。 施莱登和施旺的细胞学说为19世纪细胞的研究指出了方向。然而,他们虽然正确地指出新的细胞可以由老的细胞产生,却提出了一个错误的概念即新细胞在老细胞的核中产生,由非细胞物质产生新细胞,并通过老细胞崩解而完成。由于这两位科学家的权威,使得这种错误观点统治了许多年。 许多研究者的观察表明,细胞的产生只能通过由原先存在的细胞经过分裂的方式来完成,1858年德国病理学魏尔肖概括为“一切细胞来自细胞”的著名论断,这不仅在更深的层次上揭示细胞作为生命活动的基本单位的本质,而且通常被认为是对细胞学说的重要补充,甚至有人认为直至于此细胞学说才全部完成。 尽管细胞学说的某些部分已成为历史的陈迹,然而其中心思想仍广泛而深刻地影响了后来生物学的发展,任何生物学的重要问题都必须从细胞中寻求最后的解答。
18世纪末、19世纪初,德国诗人、自然科学家 J.W.von歌德认为有机界的多样性是从物质的神圣统一性与第一原理衍生出来的,即由共同的原型所组成。德国自然哲学家、生物学家L.奥肯根据自然哲学思想与不确切的观察,提出由球状小泡发展成的纤毛虫是构成生命的共同单位。学者们寻找动植物原型的思想对细胞学说的提出有一定影响。19世纪20、30年代,有些学者提出“小球”可能是植物或动植物的基本结构。其中法国生理学家H.J.迪特罗谢曾明确指出所有动植物的组织和器官都由小球构成。但是他所指的小球比较含糊,有时是细胞,有时是细胞核,也有时甚至是早期显微镜缺陷所造成的衍射圈。与此同时,有些学者开始采用消色差显微镜。1831年,英国植物学家R.布朗在兰科植物叶片表皮细胞中发现了细胞核。1835~1837年,捷克生物学家J.E.浦肯野及其学生G.G.瓦伦廷对构成动物某些组织的“小球”进行描述,并提到与植物细胞有相似性。1838年德国植物学家M.J.施莱登发表《植物发生论》,提出只有最低等的植物,如某些藻类和真菌是由一个单细胞组成的。高等植物则是各具特色的、独立的单体即细胞的集合体;因而认为细胞是组成植物的基本生命单位。他还认为细胞的生命现象有两重性:一方面细胞是独立的,只与自身生长有关;另一方面又是附属的,是构成植物整体的一个组成部分。他研究植物的个体发育、发展了R.布朗关于细胞核的看法,认为核与细胞的产生有密切关系,并把它称为细胞形成核(cytoblast)。他描述了先由粘液颗粒长成细胞形成核,再在其表面出现小囊,逐步形成细胞的过程。他认为所有显花植物都具有共同的细胞形成规律。德国动物学家 T.A.H.施万于 1837年10月,获悉M.J.施莱登的研究成果而受到启发,认识到从细胞核入手对论证植物细胞与动物细胞的一致性有重要意义。他于1839年出版《动植物的结构和生长一致性的显微研究》,提出了细胞学说。他通过对蝌蚪脊索细胞和不同动物软骨细胞的研究,阐述了动物细胞与植物细胞的相似性。他把动物的永久性组织分为5类,分别研究了血细胞,指甲、腱、骨、齿、肌肉、神经等,证明它们都是有核的细胞或是细胞分化的产物。他接受M.J.施莱登的观点,并发展为细胞可由细胞内或细胞间的一种无结构物质即细胞形成质(cytoblastema)产生。他根据研究结果提出一切动物和植物都是由细胞组成的,有机体的各种基本组成都有一个共同的发育原则,即细胞形成的原则,并认为细胞是生命的基本单位。一切有机体都从单个细胞开始生命活动,并随着其他细胞的形成,不断发育成长。他还明确指出细胞有两类现象,一类是塑造现象,与细胞由分子组成有关;另一类是代谢现象,与细胞本身组成成分或周围的细胞形成质中发生的化学变化有关。细胞学说建立后的主要进展是原生质理论的建立和动植物细胞有丝分裂、减数分裂一致性的证实。继1835年法国原生动物学家F.迪雅尔丹将根足虫的内含物称为肉浆,1839年浦肯野把动物胚胎细胞内的物质,称为原生质。1844年 C.W.von内格利发现植物细胞壁内有一颗粒状的无色粘液层,同年H.von莫尔称它为原囊,1846年又称它为原生质。1850年F.J.科恩证明肉浆和植物原生质为同一物质。以后M.舒尔策于1861年证实植物和动物的原生质和最低等生物的肉浆是同一物质。1844~1846年 C.W.von内格利和 H.von莫尔提出植物细胞通过分裂形成,但并不排除细胞游离形成。1852年,德国动物学家R.雷马克与德国病理学家R.C.菲尔肖分别明确指出动物细胞分裂的普遍性,并由R.C.菲尔肖于1855年总结提出“一切细胞来自细胞”的名言。但他们并未正确认识细胞分裂过程,而且也未完全排除细胞游离形成。直到19世纪70年代和80年代中期,通过德国植物细胞学家E.A.施特拉斯布格、德国细胞学家W.弗勒明等许多学者的努力,才正确阐明了动、植物细胞有丝分裂的过程,并证明它遵循着共同的规律。比利时胚胎学家E.van贝内登于 1883年发现马蛔虫性细胞染色体数目的减少是对于细胞减数分裂的认识的开始。后来德国动物学家H.亨金于1891年指出减数过程是染色体配对及染色体对之间的分离,并指出了脊椎动物、植物和昆虫细胞减数分裂的一致性。但是H.亨金的研究成果在当时并未得到承认。1905年英国植物学家J.B.法默和生物学家J.E.S.穆尔在总结前人工作的基础上,进一步证实了动、植物细胞减数分裂的统一性,以及两者之间的某些差异。 本文主要论点是1&2.
许莱登(Schleiden,德)和许旺(Schwann,德)先后发表两篇论文 《论植物发生》(1838) 《动植物结构和生长相似性的显微研究》(1839) 明确提出细胞是植物体和动物体结构的基本单位。此后,经过多位研究者的丰富和发展,细胞学说渐趋成熟.
北科生物有着非常强的研发团队,北科生物还曾与近百家科研及医疗机构开展了细胞治疗技术临床研究合作
作者 刘如楠
如果我们能“定制”细胞,会发生什么?
当人体需要某类细胞时,比如心脏出现问题,就取些成纤维细胞,“定制”打造成心肌细胞来帮助心脏恢复;当人体不需要某类细胞时,比如发生癌变,就引导癌变细胞快速凋亡。
几位华人博士为这一设想的实现提供了新的工具。他们开发了一个细胞命运预测模型,能够预测细胞发育所要经历的过程和最终命运。还能给出相应的发育方程,定量描述细胞命运的转变路径。
也就是说,如果想定制某一类细胞,需要哪些细胞作为原材料、需要什么条件、如何选择分化路径,这个模型都能告诉你。
北京时间2月1日,美国麻省理工学院教授Jonathan Weissman组博士后邱肖杰、匹兹堡大学博士生张衍为共同一作的研究在Cell(《细胞》)在线发表。
寻找生物学中的“万有引力”定律
作为17世纪自然科学最伟大的成果之一,万有引力定律揭示了天体运动的规律。在天文观测中,只要有一定的观测资料,根据万有引力定律,就能计算出天体运动的轨道。这为航天 探索 提供了坚实的理论基础。
而在微观层面,当动物体内的胚胎干细胞分化成心肌细胞、造血细胞、骨髓细胞、脂肪细胞等时,或许也遵循着某个定律。如果能找到这个定律,就像计算天体运动轨道一样,也能计算出单个细胞的分化路径。
2011年,在导师的“放养”式管理下,邱肖杰拥有大把的时间去广泛阅读文献,这个过程中他萌生了上述想法。那时的他很兴奋,立即选取了两个基因的相互作用进行数学建模,对体系分化进行了初步的函数表征。
“虽然当时的研究很不成熟,也没有发表在特别好的期刊上,但这颗种子已经深深扎进我心里了。”邱肖杰说。
后来,随着单细胞测序技术的出现和发展,他意识到,这给细胞分化命运的研究带来了契机。
决定每个细胞独特功能的是细胞内活跃的一大批特定基因,它们相互作用构成了决定细胞分化命运的大型调控网络。当有了所有细胞的基因组数据、有了大数据技术,全面分析基因调控网络也就成为了可能。
2018年,单细胞数据分析领域有一个重要突破,有研究者提出利用RNA速率从固定细胞数据中预测细胞基因表达状态变化方向的方法。
这也给了邱肖杰很大的启发:我们能否再进一步,不仅实现细胞命运的预测,也给出相应的“方程式”和生物学解释呢?
用物理学方法解决生物学问题
一次偶然的面试时,邱肖杰遇到了邢建华,即本篇研究的通讯作者之一、匹兹堡大学教授。
“肖杰很热情地向我解释他的想法,事实证明,他找对人了。”邢建华告诉《中国科学报》,“我们课题组一直致力于用数学和物理的思维及手段解决生物学问题,尤其是认识并调控细胞形态分化或重组。用数学方程描述基因网络是系统生物学的基本工具,其中一个挑战是缺乏大规模的定量数据,而这正是肖杰擅长的。我们一拍即合。”
落实到具体的研究中,想要把细胞、基因、相互作用等生物学中的概念,抽象成数学表达,再放到动力学系统理论的框架下,找到能够拟合的函数,最终得出“细胞命运”方程,并不容易。
后来,邱肖杰、张衍采用机器学习的方法,对十几个数据集进行了分析,每个数据集中包含数千至数万个细胞不等,经过优化迭代,最终开发出了名为dynamo(发动机)的算法模型。
“优化迭代中的每一步都不好走,由于没有成型的工具包,我们需要不断调试参数、代码,保证拟合效果。同时,为了使这个工具好用,我们还要尽可能地减小内存、加快运行速度。”张衍说。
对于大多数的机器学习方法来说,其中的过程都是“黑箱”,即使能给出准确的预测结果,但结果是怎么得来的,很难明确解释。
而在本项研究中,他们结合重构的向量场与系统生物学/动力学系统理论中的一些概念,使“黑箱”变成了“白箱”。也就是说,dynamo不仅能预测细胞分化的最终命运,还能给出相应的生物学解释,即由于在哪些关键基因的在哪些分化阶段的相互作用才导致了细胞的最终分化。
随后的2000多个人造血干细胞分化的验证实验表明,将单细胞测序数据作为dynamo输入量,即可预测出其分化成神经细胞、红细胞、血液细胞等的动态图谱及分化时间。这与以往研究者利用动物实验进行细胞分化的结果完全吻合。
学科交叉产生的奇妙反应
谈及研究成功的“秘笈”,几位合作者不约而同地提到了学科交叉。
这种学科交叉不仅体现在合作者有着不同的学术背景,还可以追溯到他们多年前的“不务正业”。
“研究生阶段,我花了很多时间阅读文献,从中发现了自己真正感兴趣的方向,和我当时的方向并不一致,顶住了重重压力才得以继续研究。”邱肖杰告诉《中国科学报》。
而对于药学专业背景的张衍来说,把时间花在数学、计算机的专业学习上,才是他最喜欢的事情。
邢建华更是如此。“作为物理化学背景出身的人,我希望为生物学研究注入新的视角。我想,本项研究的最大贡献是能启发大家利用单细胞数据和物理思维,结合数据和理论去寻找细胞动力学方程。”
视角不同,当然会有争执,有很多次,这几位研究者争论得面红耳赤,谁也不服谁。
可这恰恰也是碰撞的乐趣,化学反应中,不同的物质相遇,升温、变色甚至爆炸都是常事,可只要弄清楚性质、掌握好剂量,不同物质间产生的相互作用远比一种物质更加奇妙。
论文信息:
dynamo:
全国最为健全的临床应用研究技术支持服务网络:70多家临床应用研究技术支持服务网络,提供干细胞临床应用研究技术支持。亚洲最大的干细胞储存服务网络:可为客户提供就近、便捷、可靠的储存服务江苏、深圳、安徽和印度干细胞库已经运行河南、辽宁、贵州干细胞库启动建设覆盖全国的客服网络:快捷、温馨、精确、放心 7*24小时不间断的五星级服务具有全程配合孕妇生产过程的服务团队,提供一对一的专人服务 北科专利:申请了15项发明专利(2项国际专利),6项实用新型专利,列表如下:承担各级政府项目27项承担各级政府项目27项,其中3项国家级项目。承担863项目:干细胞医疗技术临床转化与应用开发-临床级干细胞库和干细胞储运技术;参与863项目“间充质干细胞治疗心肌梗塞的多中心临床试验”发表干细胞相关论文近100篇:在Nature Review、Stem cell 、Arthritis & Rheumatism等杂志发表干细胞相关研究论文近100篇科研合作联盟:与美国斯坦福大学、清华大学、香港中文大学、中山大学、南京大学、中科院、军科院等合作研究的课题达30多个。同时,江苏北科是江苏省干细胞产业技术创新战略联盟成员单位和理事长单位。
细胞工程论文
细胞工程是生物工程的一个重要方面。总的来说,它是应用细胞生物学和分子生物学的理论和方法,按照人们的设计蓝图,进行在细胞水平上的遗传操作及进行大规模的细胞和组织培养。下面是我为大家整理的细胞工程论文,欢迎阅读。
【摘要】 目的制作去细胞肌肉组织工程支架,并检测其与人羊膜上皮细胞的生物相容性。方法 采用TNT和十二烷基磺酸钠结合的化学萃取方法制作去细胞肌肉组织工程支架,冰冻切片观察其结构。将人羊膜上皮细胞种入支架培养7 d后,用免疫组化检测羊膜上皮细胞的增殖活性、NT3及BDNF的表达,扫描电子显微镜观察其超微结构。结果 支架中细胞去除完全,其主要结构为平行排列的管状结构。细胞外基质的主要成分弹性纤维和胶原纤维保持完好。羊膜上皮细胞在支架里有增殖活性,并呈现NT3、BDNF免疫反应阳性。扫描电镜显示,羊膜上皮细胞在支架中分布均匀,生长良好。结论 成功的制作了去细胞肌肉组织工程支架,其与人羊膜上皮细胞有良好的相容性。
【关键词】 去细胞肌肉;人羊膜上皮细胞;生物相容性
近年来组织工程研究的重要进展之一就是采用自体或异体移植物制作天然生物降解材料的组织工程支架。其中去细胞移植物与机体有良好的生物相容性。去细胞肌肉支架可作为生物工程支架支持神经细胞轴突再生。Mligiliche等〔1〕把去细胞肌肉移植入大鼠坐骨神经缺损处,4 w后发现有大量神经轴突长入去细胞肌肉支架中。由于单独应用去细胞肌肉支架治疗神经系统疾病的效果有限,去细胞肌肉支架要发挥更大的作用往往需要向支架中植入种子细胞〔2,3〕。研究表明羊膜上皮细胞可分泌多种神经因子〔4,5〕,促进神经元轴突的生长,是一种良好的治疗神经系统疾病的种子细胞。本研究利用化学去细胞的方法制成去细胞肌肉支架,并把羊膜上皮细胞种入去细胞肌肉支架内,探究两者的相容性,为开展组织工程治疗神经系统方面的疾病提供新的途径。
1 材料与方法
1.1 材料
1.1.1 实验动物 Wistar 大鼠由吉林大学白求恩医学院实验动物中心提供。
1.1.2 试剂 IMDM培养基及小牛血清由Hyclone 公司提供。5′溴尿嘧啶核苷(BrdU) 及BrdU 单克隆抗体购自Neomarker公司;神经营养素(NT)3,脑源性神经营养因子(BDNF)兔抗人多克隆抗体购自武汉博士德公司,SABC免疫组化试剂盒购自福州迈新生物公司。人羊膜上皮细胞株为本实验室保存。
1.2 方法
1.2.1 去细胞肌肉支架的制备 参考 Brown等〔6〕去细胞膀胱的制作方法制备去细胞肌肉支架,简述如下:取Wistar大鼠腹锯肌,放入蒸馏水中,在摇床中以37℃、50 r/min摇48 h后,转入3%的TritonX100溶液,摇床中37℃、50 r/min摇48 h。然后放入蒸馏水中,摇床37℃、50 r/min摇48 h。换成1% SDS溶液,摇床37℃,50 r/min摇48 h。PBS洗24 h。PBS中4℃保存备用。
1.2.2 支架形态结构的观察及成分鉴定 肉眼观察去细胞肌肉的形态。去细胞肌肉用4%多聚甲醛PBS固定1 h,5%蔗糖90 min,15%蔗糖90 min,30%蔗糖过夜以梯度脱水,OCT包埋,冷丙酮速冻,之后放入-70℃冰箱保存。恒冷箱切片机切片,HE 染色,观察其内部结构。此外对切片进行Van Gienson(VG)染色和 Weigert染色(VG+ET染色)检测支架的细胞外基质成分。
1.2.3 人羊膜上皮细胞的培养 人羊膜上皮细胞在DMEM培养液中(含10%胎牛血清,100 U/ml青霉素,100 mg/ml链霉素,200 μg/ml的谷氨酰胺),37℃、5 % CO2及饱和湿度条件下的细胞培养箱中培养,隔天换液,待单层培养细胞生长至80%汇合后,传代培养。
1.2.4 人羊膜上皮细胞与去细胞肌肉支架相容性的鉴定
1.2.4.1 取生长良好的人羊膜上皮细胞,80%细胞接近融合,弃去培养液,0.25%胰蛋白酶消化,当胞体回缩,细胞间隙变宽时,用血清终止消化,反复轻吹瓶壁细胞,制成单细胞悬液于离心管中,1 000 r/min,离心3 min。用DMEM重悬细胞。用1 ml注射器吸入细胞悬液,以2×106/ml 密度注入去细胞肌肉支架中分装至24孔板中,在37℃、5 % CO2及饱和湿度条件下的细胞培养箱中培养,隔天换液,培养1 w。掺入Brdu(终浓度为10 mg/L),继续培养1 d后,恒冷箱切片机切片(方法同前)。切片经PBS 洗后,3% H2O2灭活内源性过氧化物酶10 min,血清封闭20 min;一抗用BrdU(1∶1 000稀释)单克隆抗体,BDNF和NT3多克隆抗体(1∶100稀释)4℃孵育过夜,PBS 洗后,二抗37℃孵育30 min,PBS 洗后,SABC37℃孵育30 min,DAB显色。光镜下观察。
1.2.4.2 扫描电子显微镜鉴定羊膜上皮细胞在去细胞肌肉支架上的生长情况 取生长良好的人羊膜上皮细胞,80%细胞接近融合时,用上述方法消化下来后,把羊膜上皮细胞种植到去细胞肌肉支架中,放在24孔板中,在37℃、5 % CO2及饱和湿度条件下的细胞培养箱中培养7 d后,用2%戊二醛固定后,梯度乙醇脱水,CO2临界点干燥,镀膜,采用扫描电子显微镜观察并拍照。
2 结 果
2.1 支架的组织结构与成分 去细胞肌肉外观呈乳白色,半透明,质地柔软。从大体上看,肌肉去细胞前后整体大小与形状无显著变化。支架纵切面的HE染色观察可见骨骼肌细胞成分消失,而纤维网架结构保持完整,支架内主要为平行管道。VG+ET染色证明支架成分主要为胶原纤维和弹力纤维等细胞外基质成分,胶原纤维为红色波浪状结构,弹性纤维为蓝色丝状结构,见图1。
2.2 羊膜上皮细胞与去细胞肌肉支架的兼容性 见图2,HE染色显示人羊膜上皮细胞在支架中生长良好,分布均匀(图
图1 去细胞肌肉支架大体与组织切片染色
图2 去细胞肌肉支架的病理图片2A)。免疫组化染色显示,BrdU阳性细胞数目多,提示支架中的人羊膜上皮细胞有增殖能力(图2B)。抗NT3和BDNF染色显示,支架中的人羊膜上皮细胞含有NT3、BDNF阳性颗粒,呈棕褐色分布在细胞质中(图2C,2D)。JSM5600LV扫描电子显微镜显示,在支架内部分布有大量细胞,细胞在支架中分布比较均匀,生长状态良好(图2E)。
3 讨 论
理想的支架材料应与细胞外基质类似,与活体细胞有良好的生物相容性〔7,8〕。去细胞肌肉作为治疗神经损伤的生物工程支架材料有如下优势:(1)去细胞肌肉的细胞外基质成分对组织细胞的'迁移、黏附、生长代谢都有重要作用,研究表明再生的轴突可以很好的黏附在去细胞肌肉支架上〔9〕。(2)去细胞肌肉的排列结构与神经膜管类似,仅在直径上略大于神经膜管〔10〕,它们提供了轴突可生长穿过的足够空间〔9〕,该结构对于诱导神经轴突再生是十分重要的。 Fansa等比较了接种施万细胞的不同去细胞生物材料(肌肉,静脉,神经外膜)桥接缺损的外周神经的结果,发现缺乏神经膜管样结构的去细胞肌肉支架(静脉和神经外膜支架)中的再生轴突是无序和排列混乱的,而有神经膜管样结构的去细胞肌肉支架中的再生轴突是有序排列的〔11〕。这种轴突再生的有序性对神经损伤的轴突再生同样也是十分重要的。(3)去细胞肌肉引起的免疫排斥反应较小〔9,12〕。这些优势都说明去细胞肌肉可作为治疗神经损伤的理想的材料。本研究采用的制作去细胞肌肉的方法主要用来减少异种移植材料的免疫排斥反应。该方法能有效的去除脂膜和膜相关抗原以及可溶性蛋白,并能有效的保留细胞外基质成分的原始空间结构。肌细胞正常呈平行分布,其细胞外基质成分也是平行分布的,从支架纵切面的结果看支架的纤维成分也是平行排布的,VG+ET染色结果显示细胞外基质的主要成分胶原纤维和弹性纤维保持完好。这些结果进一步证实此方法可成功制备去细胞肌肉支架。
由于单独应用去细胞肌肉支架治疗神经系统疾病的效果有限〔13〕,去细胞肌肉的生物相容性也有待验证。本研究用人羊膜上皮细胞作为种子细胞种入去细胞肌肉支架以探讨其相容性。研究表明,羊膜上皮细胞中含有多种生物活性因子,包括黏蛋白、转移生长因子、前列腺素E、表皮生长因子样物质,IL1,IL8 等因子,另外,还可分泌BDNF和NT3等重要的神经营养因子〔4〕。其中层黏蛋白、BDNF和NT3等生物活性因子对神经损伤的治疗具有十分重要的作用。羊膜上皮细胞可作为一种较理想的种子细胞,与去细胞肌肉支架结合可能成为治疗神经系统疾病的一个理想的组织工程材料。本实验观察到人羊膜上皮细胞在去细胞肌肉支架中分布均匀,抗BrdU、BDNF及NT3免疫组化显示去细胞肌肉支架中羊膜上皮细胞有良好的增殖能力,并能表达BDNF和NT3,说明羊膜上皮细胞在去细胞肌肉支架中保持了良好的生物学活性。以上结果一方面证明了本研究制作的去细胞肌肉支架有良好的生物相容性,另一方面为应用羊膜上皮细胞和去细胞肌肉支架结合治疗神经系统疾病提供了理论和实验基础。
总之 ,本研究成功制备了去细胞肌肉支架,并证实人羊膜上皮细胞在去细胞肌肉支架中能分泌重要的神经营养因子,人羊膜上皮细胞与去细胞肌肉支架桥接体为神经缺损再生提供了基底膜、神经营养因子等种种有利因素,构成了良好的神经再生微环境,有利于使神经缺损得到较好地修复,为进一步研究羊膜上皮细胞与去细胞肌肉支架桥接体治疗神经损伤奠定了一定的实验基础。
【参考文献】
1 Mligiliche N,Kitada M,Ide C.Grafting of detergentdenatured skeletal muscles provides effective conduits for extension of regenerating axons in the rat sciatic nerve〔J〕.Arch Histol Cytol,2001;64 (1):2936.
2 Fansa H,Keilhoff G,Forster G,et al.Acellular muscle with Schwanncell implantation:an alternative biologic nerve conduit〔J〕.J Reconstr Microsurg,1999;15(7):5317.
3 Gulati AK,Rai DR,Ali AM.The influence of cultured Schwann cells on regeneration through acellular basal lamina grafts〔J〕.Brain Res,1995;705(12):11824.
4 朱 梅,陈 东,盂晓婷,等.羊膜上皮细胞移植治疗帕金森病大鼠的实验研究〔J〕.中国老年学杂志,2006;26(2):2279.
5 Meng XT,Chen D,Dong ZY,et al.Enhanced neural differentiation of neural stem cells and neurite growth by amniotic epithelial cells coculture〔J〕.Cell Biol Intern,2007;31:6918.
6 Brown AL,BrookAllred TT,Waddell JE,et al.Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscleurothelial cell interactions〔J〕.Biomaterials,2005;26:52943.
7 Suh JK,Matthew HW.Application of chitosanbased polysaccharide biomaterials in cartilage tissue engineering:A review〔J〕.Biomaterials,2000;21(24):258998.
8 Grande DA,Halberstadt C,Naughton G,et al.Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts〔J〕.J Biomed Mater Res,1997;34(2):21120.
9 Fansa H,Schneider W,Wolf G,et al.Host responses after acellular muscle basal lamina allografting used as a matrix for tissue engineered nerve grafts〔J〕.Transplantation,2002;74(3):3817.
10 李培建,胥少汀.去细胞肌肉支架移植及神经生长因子对脊髓横断性损伤的修复作用〔J〕.中国脊柱脊髓杂志,2000;10(4):2203.
11 Fansa H,Keilhoff G.Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects〔J〕. Neurol Res,2004;26(2):16773.
12 Brown AL,Farhat W,Merguerian PA,et al.22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model〔J〕.Biomaterials,2002;23:217990.
13 李培建,李兵仓,胥少汀.肌基膜管移植修复脊髓缺损的实验研究〔J〕.中华创伤杂志,2001;17(9):5258.
张海龙博士近年发表的主要论文:1.张海龙,侯铁胜 细胞治疗椎间盘退变的研究进展。中国脊柱脊髓杂志, 2007, 17:226-228.2.张海龙,傅强,赵鑫,陈元贵,吴大江,侯铁胜 兔骨髓间充质干细胞在壳聚糖支架上的诱导培养,中国脊柱脊髓杂志,2008,18:385-388.3.张海龙,傅强,葛星野,赵鑫,陈元贵,尚保华,侯铁胜 双钢板在颈前路手术中的应用,中国矫形外科杂志,2008,16:325-327.4.张海龙,贺石生,侯铁胜,张立国 颈椎髓外硬膜内外周性原始神经外胚层瘤诊治,中国神经免疫学和神经病学,2011,1:60-62..5.Hai-Long Zhang, Multiple brown tumors — A diagnostic dilemma, The Endocrinologist,2010,20:152-154.6. 张海龙,贺石生, 侯铁胜,蔡郑东,张立国. 颈椎髓外硬膜内外周性原始神经外胚层瘤的诊治.中国神经免疫学和神经病学杂志 2011年18卷01期7. Ning Yan, Hailong Zhang (coauthor), GU Guang-feiL,IU Bi-feng,LIU Yan-bin,ZHANG Li-guo,GU Xin, DING Yue, GUO Cheng-bin ,HE Shi-sheng. Magnetic Resonance Imaging Analysis of Surgical Trans-sacral Axial L5/S1 Interbody Fusion. Chinese Medical Journal. 2011年 18 期8. 张海龙,顾昕,贺石生, 顾广飞 ,张立国 ,丁悦 ,贾建波 ,周旭 ,袁超群 ,李佳怡, 袁嘉敏. 微创经椎间孔椎体间融合术与开放手术治疗腰椎滑脱症的疗效比较. 中华骨科杂志 2011年10期9. 张海龙,贺石生,丁 悦,顾广飞,李忠海,侯铁胜.颈前路椎体次全切除融合术后邻近节段病的手术治疗[J].中国脊柱脊髓杂志,2012,(1):92-94.10. 赵鑫, 张海龙,黄师, 严宁, 侯铁胜. 骨髓间充质干细胞复合藻酸盐凝胶支架修复兔退变椎间盘的效果,上海医学,2008,31:562-56511. 赵鑫,黄师, 张海龙,白玉树,石健,赵新刚,严宁,侯铁胜,人骨形成蛋白7基因转染骨髓间充质干细胞对兔退变椎间盘蛋白多糖的影响 . 中国临床解剖学杂志,2008,4:413-41512. 赵鑫, 赵新刚,张海龙,黄师,刘超乾,侯铁胜 .纤维环穿刺法与髓核抽吸法建立兔椎间盘退变模型的比较 . 解剖学杂志,2008, 31: 394-39613. 李忠海,赵杰,张海龙,侯铁胜, 陈志明,马辉,王聪.二期前后路手术治疗颈椎后纵韧带骨化症的疗效分析.中国骨与关节损伤杂志,2009,24:964-96714. Jingfeng Li, MD, Hongxing Shen, MD, Tiesheng Hou, MD, Ming Li, MD, Shisheng He, MD, and Hailong Zhang, MD.Acquired Hemophilia A in a Patient With Lumbar Disc Herniation. SPINE, 2009, 34:305-308
你看看这是不是你需要的类型论文,不过我还是建议只是参考,自己写最好了。 干细胞作为一种既有自我更新能力、又有多分化潜能的细胞,具有非常重要的理论研究意义和临床应用价值。近几年来,干细胞的研究取得了重大突破, 1999和2000年,世界最权威的美国《Science》杂志连续2年将干细胞和人类基因组计划列为当年的10大科学突破之首。美国《时代》周刊认为干细胞和人类基因组计划将同时成为新世纪最具有发展和应用前景的领域。为抢占这一科技制高点,世界各国纷纷投入大量的人力、物力和财力加紧研究开发,并已取得应用性成果:2005年10月,美国食品和药物管理局(FDA)也已批准将神经干细胞移植入人体大脑;2005年11月,美国心脏协会报道了干细胞治疗心肌梗塞的204例临床病例的研究报告,其结论是干细胞对心脏功能的改善效果,是没有任何现有临床药物能达到的;日本在2000年启动的“千年世纪工程”中,将干细胞工程作为四大重点之一,于第一年度就投入了108亿日元的巨额资金;瑞典、巴西也于2005年通过立法继续支持干细胞研究,并于2005年进行一项多中心1200病例的用干细胞治疗心脏病的临床应用研究。干细胞技术作为生物技术领域最具有发展前景和后劲的前沿技术,将可能导致一场医学和生物学革命,给无数疑难病症治疗带来了新的希望。 按照科学家描绘的美妙蓝图,通过干细胞技术的有效应用,今后更换人体器官就像给汽车换零件一样简单,血细胞、脑细胞、骨骼和内脏都将可以更换,即使患上绝症也能绝处逢生。其实,干细胞技术不仅在疾病治疗方面有着极其诱人的前景,而且其对动物克隆、植物转基因生产、发育生物学、新药物的开发与药效、毒性评估等领域也将产生极其重要的影响。干细胞技术是世纪之交最为引人注目的科技成果,被认为是人类生命科学研究的重要里程碑,预示着生命科学研究将进入快速发展时期。 参考资料:
《细胞发现》。《细胞发现》是一份开放获取的国际期刊,发表在分子和细胞生物学的各个领域具有重要意义和广泛兴趣的研究成果。
这个最好问一下导师,如果是综述类文章就更加要参考导师意见了,中文类期刊中与不中与导师的后台有很大关系。 细胞方面的文章,《细胞生物学杂志》可以考虑,综述比较多,其他的我也没有太多了解。 参考导师意见或许是个最佳办法。好运。
你是学的植物吗?我知道植物领域比较牛的期刊plant cell,plant journal。不是很好投。
细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!
细胞因子的生物学活性
关键字: 细胞因子
细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。
一、免疫细胞的调节剂
免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)
二、免疫效应分子
在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。
三、造血细胞刺激剂
从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。
四、炎症反应的促进剂
炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。
五、其它
许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。
细胞衰老的分子生物学机制
摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。
关键词:细胞衰老;分子生物学;机制研究
细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。
细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。
衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。
1 细胞衰老的特征
科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。
衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。
2 分子水平的变化
①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。
3 细胞衰老原因
迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。
3.1差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。
3.1.1自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。
英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。
生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。
3.1.2端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。
3.2遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。
参考文献:
[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.
[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.
[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.
细胞工程论文
细胞工程是生物工程的一个重要方面。总的来说,它是应用细胞生物学和分子生物学的理论和方法,按照人们的设计蓝图,进行在细胞水平上的遗传操作及进行大规模的细胞和组织培养。下面是我为大家整理的细胞工程论文,欢迎阅读。
【摘要】 目的制作去细胞肌肉组织工程支架,并检测其与人羊膜上皮细胞的生物相容性。方法 采用TNT和十二烷基磺酸钠结合的化学萃取方法制作去细胞肌肉组织工程支架,冰冻切片观察其结构。将人羊膜上皮细胞种入支架培养7 d后,用免疫组化检测羊膜上皮细胞的增殖活性、NT3及BDNF的表达,扫描电子显微镜观察其超微结构。结果 支架中细胞去除完全,其主要结构为平行排列的管状结构。细胞外基质的主要成分弹性纤维和胶原纤维保持完好。羊膜上皮细胞在支架里有增殖活性,并呈现NT3、BDNF免疫反应阳性。扫描电镜显示,羊膜上皮细胞在支架中分布均匀,生长良好。结论 成功的制作了去细胞肌肉组织工程支架,其与人羊膜上皮细胞有良好的相容性。
【关键词】 去细胞肌肉;人羊膜上皮细胞;生物相容性
近年来组织工程研究的重要进展之一就是采用自体或异体移植物制作天然生物降解材料的组织工程支架。其中去细胞移植物与机体有良好的生物相容性。去细胞肌肉支架可作为生物工程支架支持神经细胞轴突再生。Mligiliche等〔1〕把去细胞肌肉移植入大鼠坐骨神经缺损处,4 w后发现有大量神经轴突长入去细胞肌肉支架中。由于单独应用去细胞肌肉支架治疗神经系统疾病的效果有限,去细胞肌肉支架要发挥更大的作用往往需要向支架中植入种子细胞〔2,3〕。研究表明羊膜上皮细胞可分泌多种神经因子〔4,5〕,促进神经元轴突的生长,是一种良好的治疗神经系统疾病的种子细胞。本研究利用化学去细胞的方法制成去细胞肌肉支架,并把羊膜上皮细胞种入去细胞肌肉支架内,探究两者的相容性,为开展组织工程治疗神经系统方面的疾病提供新的途径。
1 材料与方法
1.1 材料
1.1.1 实验动物 Wistar 大鼠由吉林大学白求恩医学院实验动物中心提供。
1.1.2 试剂 IMDM培养基及小牛血清由Hyclone 公司提供。5′溴尿嘧啶核苷(BrdU) 及BrdU 单克隆抗体购自Neomarker公司;神经营养素(NT)3,脑源性神经营养因子(BDNF)兔抗人多克隆抗体购自武汉博士德公司,SABC免疫组化试剂盒购自福州迈新生物公司。人羊膜上皮细胞株为本实验室保存。
1.2 方法
1.2.1 去细胞肌肉支架的制备 参考 Brown等〔6〕去细胞膀胱的制作方法制备去细胞肌肉支架,简述如下:取Wistar大鼠腹锯肌,放入蒸馏水中,在摇床中以37℃、50 r/min摇48 h后,转入3%的TritonX100溶液,摇床中37℃、50 r/min摇48 h。然后放入蒸馏水中,摇床37℃、50 r/min摇48 h。换成1% SDS溶液,摇床37℃,50 r/min摇48 h。PBS洗24 h。PBS中4℃保存备用。
1.2.2 支架形态结构的观察及成分鉴定 肉眼观察去细胞肌肉的形态。去细胞肌肉用4%多聚甲醛PBS固定1 h,5%蔗糖90 min,15%蔗糖90 min,30%蔗糖过夜以梯度脱水,OCT包埋,冷丙酮速冻,之后放入-70℃冰箱保存。恒冷箱切片机切片,HE 染色,观察其内部结构。此外对切片进行Van Gienson(VG)染色和 Weigert染色(VG+ET染色)检测支架的细胞外基质成分。
1.2.3 人羊膜上皮细胞的培养 人羊膜上皮细胞在DMEM培养液中(含10%胎牛血清,100 U/ml青霉素,100 mg/ml链霉素,200 μg/ml的谷氨酰胺),37℃、5 % CO2及饱和湿度条件下的细胞培养箱中培养,隔天换液,待单层培养细胞生长至80%汇合后,传代培养。
1.2.4 人羊膜上皮细胞与去细胞肌肉支架相容性的鉴定
1.2.4.1 取生长良好的人羊膜上皮细胞,80%细胞接近融合,弃去培养液,0.25%胰蛋白酶消化,当胞体回缩,细胞间隙变宽时,用血清终止消化,反复轻吹瓶壁细胞,制成单细胞悬液于离心管中,1 000 r/min,离心3 min。用DMEM重悬细胞。用1 ml注射器吸入细胞悬液,以2×106/ml 密度注入去细胞肌肉支架中分装至24孔板中,在37℃、5 % CO2及饱和湿度条件下的细胞培养箱中培养,隔天换液,培养1 w。掺入Brdu(终浓度为10 mg/L),继续培养1 d后,恒冷箱切片机切片(方法同前)。切片经PBS 洗后,3% H2O2灭活内源性过氧化物酶10 min,血清封闭20 min;一抗用BrdU(1∶1 000稀释)单克隆抗体,BDNF和NT3多克隆抗体(1∶100稀释)4℃孵育过夜,PBS 洗后,二抗37℃孵育30 min,PBS 洗后,SABC37℃孵育30 min,DAB显色。光镜下观察。
1.2.4.2 扫描电子显微镜鉴定羊膜上皮细胞在去细胞肌肉支架上的生长情况 取生长良好的人羊膜上皮细胞,80%细胞接近融合时,用上述方法消化下来后,把羊膜上皮细胞种植到去细胞肌肉支架中,放在24孔板中,在37℃、5 % CO2及饱和湿度条件下的细胞培养箱中培养7 d后,用2%戊二醛固定后,梯度乙醇脱水,CO2临界点干燥,镀膜,采用扫描电子显微镜观察并拍照。
2 结 果
2.1 支架的组织结构与成分 去细胞肌肉外观呈乳白色,半透明,质地柔软。从大体上看,肌肉去细胞前后整体大小与形状无显著变化。支架纵切面的HE染色观察可见骨骼肌细胞成分消失,而纤维网架结构保持完整,支架内主要为平行管道。VG+ET染色证明支架成分主要为胶原纤维和弹力纤维等细胞外基质成分,胶原纤维为红色波浪状结构,弹性纤维为蓝色丝状结构,见图1。
2.2 羊膜上皮细胞与去细胞肌肉支架的兼容性 见图2,HE染色显示人羊膜上皮细胞在支架中生长良好,分布均匀(图
图1 去细胞肌肉支架大体与组织切片染色
图2 去细胞肌肉支架的病理图片2A)。免疫组化染色显示,BrdU阳性细胞数目多,提示支架中的人羊膜上皮细胞有增殖能力(图2B)。抗NT3和BDNF染色显示,支架中的人羊膜上皮细胞含有NT3、BDNF阳性颗粒,呈棕褐色分布在细胞质中(图2C,2D)。JSM5600LV扫描电子显微镜显示,在支架内部分布有大量细胞,细胞在支架中分布比较均匀,生长状态良好(图2E)。
3 讨 论
理想的支架材料应与细胞外基质类似,与活体细胞有良好的生物相容性〔7,8〕。去细胞肌肉作为治疗神经损伤的生物工程支架材料有如下优势:(1)去细胞肌肉的细胞外基质成分对组织细胞的'迁移、黏附、生长代谢都有重要作用,研究表明再生的轴突可以很好的黏附在去细胞肌肉支架上〔9〕。(2)去细胞肌肉的排列结构与神经膜管类似,仅在直径上略大于神经膜管〔10〕,它们提供了轴突可生长穿过的足够空间〔9〕,该结构对于诱导神经轴突再生是十分重要的。 Fansa等比较了接种施万细胞的不同去细胞生物材料(肌肉,静脉,神经外膜)桥接缺损的外周神经的结果,发现缺乏神经膜管样结构的去细胞肌肉支架(静脉和神经外膜支架)中的再生轴突是无序和排列混乱的,而有神经膜管样结构的去细胞肌肉支架中的再生轴突是有序排列的〔11〕。这种轴突再生的有序性对神经损伤的轴突再生同样也是十分重要的。(3)去细胞肌肉引起的免疫排斥反应较小〔9,12〕。这些优势都说明去细胞肌肉可作为治疗神经损伤的理想的材料。本研究采用的制作去细胞肌肉的方法主要用来减少异种移植材料的免疫排斥反应。该方法能有效的去除脂膜和膜相关抗原以及可溶性蛋白,并能有效的保留细胞外基质成分的原始空间结构。肌细胞正常呈平行分布,其细胞外基质成分也是平行分布的,从支架纵切面的结果看支架的纤维成分也是平行排布的,VG+ET染色结果显示细胞外基质的主要成分胶原纤维和弹性纤维保持完好。这些结果进一步证实此方法可成功制备去细胞肌肉支架。
由于单独应用去细胞肌肉支架治疗神经系统疾病的效果有限〔13〕,去细胞肌肉的生物相容性也有待验证。本研究用人羊膜上皮细胞作为种子细胞种入去细胞肌肉支架以探讨其相容性。研究表明,羊膜上皮细胞中含有多种生物活性因子,包括黏蛋白、转移生长因子、前列腺素E、表皮生长因子样物质,IL1,IL8 等因子,另外,还可分泌BDNF和NT3等重要的神经营养因子〔4〕。其中层黏蛋白、BDNF和NT3等生物活性因子对神经损伤的治疗具有十分重要的作用。羊膜上皮细胞可作为一种较理想的种子细胞,与去细胞肌肉支架结合可能成为治疗神经系统疾病的一个理想的组织工程材料。本实验观察到人羊膜上皮细胞在去细胞肌肉支架中分布均匀,抗BrdU、BDNF及NT3免疫组化显示去细胞肌肉支架中羊膜上皮细胞有良好的增殖能力,并能表达BDNF和NT3,说明羊膜上皮细胞在去细胞肌肉支架中保持了良好的生物学活性。以上结果一方面证明了本研究制作的去细胞肌肉支架有良好的生物相容性,另一方面为应用羊膜上皮细胞和去细胞肌肉支架结合治疗神经系统疾病提供了理论和实验基础。
总之 ,本研究成功制备了去细胞肌肉支架,并证实人羊膜上皮细胞在去细胞肌肉支架中能分泌重要的神经营养因子,人羊膜上皮细胞与去细胞肌肉支架桥接体为神经缺损再生提供了基底膜、神经营养因子等种种有利因素,构成了良好的神经再生微环境,有利于使神经缺损得到较好地修复,为进一步研究羊膜上皮细胞与去细胞肌肉支架桥接体治疗神经损伤奠定了一定的实验基础。
【参考文献】
1 Mligiliche N,Kitada M,Ide C.Grafting of detergentdenatured skeletal muscles provides effective conduits for extension of regenerating axons in the rat sciatic nerve〔J〕.Arch Histol Cytol,2001;64 (1):2936.
2 Fansa H,Keilhoff G,Forster G,et al.Acellular muscle with Schwanncell implantation:an alternative biologic nerve conduit〔J〕.J Reconstr Microsurg,1999;15(7):5317.
3 Gulati AK,Rai DR,Ali AM.The influence of cultured Schwann cells on regeneration through acellular basal lamina grafts〔J〕.Brain Res,1995;705(12):11824.
4 朱 梅,陈 东,盂晓婷,等.羊膜上皮细胞移植治疗帕金森病大鼠的实验研究〔J〕.中国老年学杂志,2006;26(2):2279.
5 Meng XT,Chen D,Dong ZY,et al.Enhanced neural differentiation of neural stem cells and neurite growth by amniotic epithelial cells coculture〔J〕.Cell Biol Intern,2007;31:6918.
6 Brown AL,BrookAllred TT,Waddell JE,et al.Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscleurothelial cell interactions〔J〕.Biomaterials,2005;26:52943.
7 Suh JK,Matthew HW.Application of chitosanbased polysaccharide biomaterials in cartilage tissue engineering:A review〔J〕.Biomaterials,2000;21(24):258998.
8 Grande DA,Halberstadt C,Naughton G,et al.Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts〔J〕.J Biomed Mater Res,1997;34(2):21120.
9 Fansa H,Schneider W,Wolf G,et al.Host responses after acellular muscle basal lamina allografting used as a matrix for tissue engineered nerve grafts〔J〕.Transplantation,2002;74(3):3817.
10 李培建,胥少汀.去细胞肌肉支架移植及神经生长因子对脊髓横断性损伤的修复作用〔J〕.中国脊柱脊髓杂志,2000;10(4):2203.
11 Fansa H,Keilhoff G.Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects〔J〕. Neurol Res,2004;26(2):16773.
12 Brown AL,Farhat W,Merguerian PA,et al.22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model〔J〕.Biomaterials,2002;23:217990.
13 李培建,李兵仓,胥少汀.肌基膜管移植修复脊髓缺损的实验研究〔J〕.中华创伤杂志,2001;17(9):5258.
生物按其结构来分,就分为三种类型,一是由真核细胞构成的真核生物;二是由原核细胞来构成的原核生物;三是没有细胞结构的病毒。所以没有细胞结构的生物就只有病毒了。 其实病毒是一个大的范围,它还包括一个分支——亚病毒(如朊病毒就是属于亚病毒的一类),亚病毒就是比病毒结构更简单的生物。但如果从宏观来讲,也把亚病毒划在病毒学的范畴。所以对于高中生物知识来说,除了病毒外,其它的生物都是由细胞来构成的了(包括真核和原核)。 在光学显微镜下观察植物的细胞,可以看到它的结构分为下列四个部分(图3-1-1)。细胞壁 位于植物细胞的最外层,是一层透明的薄壁。它主要是由纤维素组成的,孔隙较大,物质分子可以自由透过。细胞壁对细胞起着支持和保护的作用。 细胞膜 细胞壁的内侧紧贴着一层极薄的膜,叫做细胞膜。这层由蛋白质分子和脂类分子组成的薄膜,水和氧气等小分子物质能够自由通过,而某些离子和大分子物质则不能自由通过,因此,它除了起着保护细胞内部的作用以外,还具有控制物质进出细胞的作用:既不让有用物质任意地渗出细胞,也不让有害物质轻易地进入细胞。 细胞膜在光学显微镜下不易分辨。用电子显微镜观察,可以知道细胞膜主要由蛋白质分子和脂类分子构成。在细胞膜的中间,是磷脂双分子层,这是细胞膜的基本骨架。在磷脂双分子层的外侧和内侧,有许多球形的蛋白质分子,它们以不同深度镶嵌在磷脂分子层中(图3-1-2),或者覆盖在磷脂分子层的表面。这些磷脂分子和蛋白质分子大都是可以流动的,可以说,细胞膜具有一定的流动性。细胞膜的这种结构特点,对于它完成各种生理功能是非常重要的。细胞质 细胞膜包着的黏稠透明的物质,叫做细胞质。在细胞质中还可看到一些带折光性的颗粒,这些颗粒多数具有一定的结构和功能,类似生物体的各种器官,因此叫做细胞器。例如,在绿色植物的叶肉细胞中,能看到许多绿色的颗粒,这就是一种细胞器,叫做叶绿体。绿色植物的光合作用就是在叶绿体中进行的。在细胞质中,往往还能看到一个或几个液泡,其中充满着液体,叫做细胞液。在成熟的植物细胞中,液泡合并为一个中央液泡,其体积占去整个细胞的大半。 细胞质不是凝固静止的,而是缓缓地运动着的。在只具有一个中央液泡的细胞内,细胞质往往围绕液泡循环流动,这样便促进了细胞内物质的转运,也加强了细胞器之间的相互联系。细胞质运动是一种消耗能量的生命现象。细胞的生命活动越旺盛,细胞质流动越快,反之,则越慢。细胞死亡后,其细胞质的流动也就停止了。 除叶绿体外,植物细胞中还有一些细胞器,它们具有不同的结构,执行着不同的功能,共同完成细胞的生命活动。这些细胞器的结构需用电子显微镜观察。在电镜下观察到的细胞结构称为亚显微结构(图3-1-3)。线粒体 呈线状、粒状,故名。在线粒体上,有很多种与呼吸作用有关的颗粒,即多种呼吸酶。它是细胞进行呼吸作用的场所,通过呼吸作用,将有机物氧化分解,并释放能量,供细胞的生命活动所需,所以有人称线粒体为细胞的“发电站”或“动力工厂”。 内质网 内质网是细胞质中由膜构成的网状管道系统。它与细胞膜相通连,对细胞内蛋白质等物质的合成和运输起着重要作用。 核糖体 核糖体是一种颗粒状小体,多存在于内质网膜的外表面,是合成蛋白质的重要基地。 中心体 中心体存在于动物细胞和某些低等植物细胞中,因为它的位置靠近细胞核,所以叫中心体。 中心体与细胞的有丝分裂有密切关系。 细胞核 细胞质里含有一个近似球形的细胞核,是由更加黏稠的物质构成的。细胞核通常位于细胞的中央,成熟的植物细胞的细胞核,往往被中央液泡推挤到细胞的边缘。细胞核中有一种物质,易被洋红、苏木精等碱性染料染成深色,叫做染色质。生物体用于传种接代的物质即遗传物质,就在染色质上。当细胞进行有丝分裂时,染色质就变化成染色体。多数细胞只有一个细胞核,有些细胞含有两个或多个细胞核,如肌细胞、肝细胞等。细胞核可分为核膜、染色质、核液和核仁四部分。核膜与内质网相通连,染色质位于核膜与核仁之间。染色质主要由蛋白质和DNA组成。DNA是一种有机物大分子,又叫脱氧核糖核酸,是生物的遗传物质。在有丝分裂时,染色体复制,DNA也随之复制为两份,平均分配到两个子细胞中,使得后代细胞染色体数目恒定,从而保证了后代遗传特性的稳定。 动物细胞与植物细胞相比较,具有很多相似的地方,如动物细胞也具有细胞膜、细胞质、细胞核等结构。但是动物细胞与植物细胞又有一些重要的区别,如动物细胞的最外面是细胞膜,没有细胞壁;动物细胞的细胞质中不含叶绿体,也不形成中央液泡(图3-1-4)。 总之,不论是植物还是动物,都是由细胞构成的。细胞是生物体结构和功能的基本单位自己找一部分吧