首页

职称论文知识库

首页 职称论文知识库 问题

gfs论文发表年限

发布时间:

gfs论文发表年限

HDFS 最早是根据 GFS(Google File System)的论文概念模型来设计实现的,但是也有一些区别。

发布式容易发论文的吗?在1979年karger发表的论文中首次使用了一致性哈希的术语。

分布式工程学是一门实践性很强的工科学。所以会出现与其他工科一样的现象就是实践会先于理论。在1960年末被公认为是第一个分布式系统的ARPANET就诞生于美国[1]。在美国50年代到60年受曼哈顿计划的影响,计算机理论迎来了大爆炸的时代。在那个年代发明了我们今天所用到的大部分计算机理论。作为一个新兴学科,当年的科学家大都是刚刚毕业正是壮年。而今他们大多已经是高龄老人,有些科学家则已经离世。在这里向哪些为计算机理论作出贡献的科学家们表示敬意。

简单点来说,就是Hadoop是继承了Google的MapReduce、GFS思想,开发出来的一套框架,后来又交给了Apache作为开源项目。MapReduce诞生于谷歌实验室,MapReduce与GFS、BigTable并称为谷歌的三驾马车,、而Hadoop则是谷歌三驾马车的开源实现。2003年,Google发表了一篇技术学术论文谷歌文件系统(GFS)。GFS是google公司为了存储海量搜索数据而设计的专用文件系统。2004年,Nutch创始人Doug Cutting基于Google的GFS论文实现了分布式文件存储系统名为NDFS。2004年,Google又发表了一篇技术学术论文MapReduce。MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行分析运算。2005年,Doug Cutting又基于MapReduce,在Nutch搜索引擎实现了该功能。2006年,Yahoo雇用了Doug Cutting,Doug Cutting将NDFS和MapReduce升级命名为Hadoop,Yahoo开建了一个独立的团队给Goug Cutting专门研究发展Hadoop。

gfs论文发表于哪年

以下哪个产品使用了HDFS作为基础,那个你的选项都没有发出来,然后不知道怎么选哪一个呀。

简单说有三大核心技术:拿数据,算数据,卖数据。通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。涉及到的技术很多LogstashSqoopStromZookeeperHadoop等等

Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统。它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。

使用安卓的产品作为他的基础,因为作为他的基础的话,会特别的棒

gfs论文发表哪一年

没有那么容易,比较难分布式工程学是一门实践性很强的工科学。所以会出现与其他工科一样的现象就是实践会先于理论。在1960年末被公认为是第一个分布式系统的ARPANET就诞生于美国[1]。在美国50年代到60年受曼哈顿计划的影响,计算机理论迎来了大爆炸的时代。在那个年代发明了我们今天所用到的大部分计算机理论。作为一个新兴学科,当年的科学家大都是刚刚毕业正是壮年。而今他们大多已经是高龄老人,有些科学家则已经离世。在这里向哪些为计算机理论作出贡献的科学家们表示敬意。

等会让他赶紧染发剂对人体

在1997年Karger发表的论文中首次使用了一致性哈希的术语。虽然Teradata公司在1986年开发的分布式数据中已经...

分布式工程学是一门实践性很强的工科学。所以会出现与其他工科一样的现象就是实践会先于理论。在1960年末被公认为是第一个分布式系统的ARPANET就诞生于美国[1]。在美国50年代到60年受曼哈顿计划的影响,计算机理论迎来了大爆炸的时代。在那个年代发明了我们今天所用到的大部分计算机理论。作为一个新兴学科,当年的科学家大都是刚刚毕业正是壮年。而今他们大多已经是高龄老人,有些科学家则已经离世。在这里向哪些为计算机理论作出贡献的科学家们表示敬意。

gfs论文发表于那一年

结构化存储(structured storage systems)的历史非常古老,典型的场景就是事务处理系统或者关系型数据库(RDBMS)。传统的结构化存储都是从单机做起的,比如大家耳熟能详的 MySQL。有句话说:MySQL的成长史就是互联网的成长史。这一点也不为过。除了 MySQL 之外,PostgreSQL 也是近几年来势头非常强劲的一个 RDBMS. 我们发现,传统的结构化存储系统强调的是:结构化的数据(例如关系表)。强一致性 (例如,银行系统,电商系统等场景)随机访问(索引,增删查改,SQL 语言)。然而,正是由于这些性质和限制,结构化存储系统的可扩展性通常都不是很好,这在一定程度上限制了结构化存储在大数据环境下的表现。随着摩尔定律面临的瓶颈,传统的单机关系型数据库系统面临着巨大的挑战。不过真的没办法了吗.在此我们先埋下一个伏笔)非结构化存储(no-structed storage systems). 和结构化存储不同的是,非结构化存储强调的是高可扩展性,典型的系统就是分布式文件系统。分布式文件系统也是一个古老的研究话题,比如 70 年代的 Xerox Alto, 80 年代的 NFS, AFS, 90 年代 xFS 等等。然而,这些早期的分布式文件系统只是起到了网络磁盘的作用, 其最大的问题就是不支持 容错 (fault tolerance)和 错误恢复 (fault recovery)。而 Google 在 2003 年 SOSP 上推出的 GFS (google file system) 则是做出了里程碑的一步,其开源实现对应为 HDFS. GFS 的主要思想. Google 设计 gfs 最初的目的是为了存储海量的日志文件以及网页等文本信息,并且对其进行批量处理(例如配合 mapreduce 为文档建立倒排索引,计算网页 PageRank 等)。和结构化存储系统相比,虽然分布式文件系统的可扩展性,吞吐率都非常好,但是几乎无法支持随机访问(random access)操作,通常只能进行文件进行追加(append)操作。而这样的限制使得非结构化存储系统很难面对那些低延时,实时性较强的应用。

随着大数据分析市场迅速渗透到各行各业,大家对大数据的关注度也越来越高,大数据技术是什么?

1.Hadoop

Hadoop确实是现在着名的大数据技术.

从2003年到2004年,谷歌发表了GFS、Mapreduce和BigTable三篇技术论文(这几篇论文成为云计算、大数据领域发展的重要基础).

当时,由于公司破产在家的程序员DougCutting基于前两篇论文,开发了简化的山寨版GFS——HDFS和基于MapReduce的计算框架.这是Hadoop当初的版本.

之后,Cutting被Yahoo雇佣,依靠Yahoo的资源改善Hadoop,为Apache开源社区做出贡献.

简要说明Hadoop原理:数据分布式存储,运算程序分别发送到各数据节点进行运算(Map),合并各节点的运算结果(Reduce),产生结果.

对于移动TB级数据,计算程序一般为KB--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

在其诞生近十年来,Hadoop以其简单、易用、高效、免费、社区支持丰富等特点成为许多企业云计算、大数据实施的优先事项.

2.Storm

Hadoop很好,但有死穴.其一,其运算模式是批处理.这对许多有实时要求的业务没有很好的支持.

一、课题来源: 本课题来源于作者在学习和实习中了解到的两个事实,属于自拟课题。 其一,作者在2011年7月在XXX公司调研,了解到现如今各行业都面临着数据量剧增长,并由此带来业务处理速度缓慢,数据维护困难等问题。为了应对此挑战,很多企业开实施大数据发展战略。现如今的大数据发展战略可以概括为两类,一类是垂直扩展。即采用存储容量更大,处理能力更强的设备,此种方式成本较大,过去很多大公司一直采用此种方法处理大数据。但自从2004年Google发布关于GFS,MapReduce和BigTable三篇技术论文之后,云计算开始兴起,2006年Apache Hadoop项目启动。随后从2009年开始,随着云计算和大数据的发展,Hadoop作为一种优秀的数据分析、处理解决方案,开始受到许多 IT企业的关注。相较于垂直扩张所需的昂贵成本,人们更钟情于采用这种通过整合廉价计算资源的水平扩展方式。于是很多IT企业开始探索采用Hadoop框架构建自己的大数据环境。 其二,作者自2013年4月在XXX实习过程中进一步了解到,因为关系数据库在存储数据格式方面的局限,以及其Schema机制带来的扩展性上的不便,目前在大部分的大数据应用环境中都采用非结构化的数据库,如列式存储的Hbase,文档型存储的MangoDB,图数据库neo4j等。这些非结构化数据库因为可扩展性强、资源利用率高,高并发、响应速度快等优势,在大数据应用环境中得到了广泛的应用。但此种应用只解决了前端的业务处理,要真正利用大数据实现商务智能,还需要为决策支持系统和联机分析应用等提供一数据环境——数据仓库。为此,导师指导本文作者拟此题目,研究基于Hadoop框架的数据仓库解决方案。 二、研究目的和意义: 现如今,数据已经渗透到每一个行业,成为重要的生产因素。近年来,由于历史积累和和数据增长速度加快,各行业都面临着大数据的难题。事实上,大数据既是机遇又时挑战。合理、充分利用大数据,将其转变为海量、高增长率和多样化的信息资产,将使得企业具有更强的决策力、洞察发现力和流程优化等能力。因此,很多IT企业都将大数据作为其重要的发展战略,如亚马逊、FaceBook已布局大数据产业,并取得了骄人的成绩。事实上,不止谷歌、易趣网或亚马逊这样的大型互联网企业需要发展大数据,任何规模的企业都有机会从大数据中获得优势,并由此构建其未来业务分析的基础,在与同行的竞争中,取得显著的优势。 相较于大型企业,中小企业的大数据发展战略不同。大公司可以凭借雄厚的资本和技术实力,从自身环境和业务出发,开发自己的软件平台。而中小企业没有那样的技术实力,也没有那么庞大的资金投入,更倾向于选择一个普遍的、相对廉价的解决方案。本文旨在分析大数据环境下数据库的特点,结合当下流行的Hadoop框架,提出了一种适用于大数据环境的数据仓库的解决方案并实现。为中小企业在大数据环境中构建数据仓库提供参考。其具体说来,主要有以下三方面意义: 首先,目前主流的数据库如Oracle、SQL Server都有对应自己数据库平台的一整套的数据仓库解决方案,对于其他的关系型数据库如MySQL等,虽然没有对应数据库平台的数据仓库解决方案,但有很多整合的数据仓库解决方案。而对于非结构化的数据库,因其数据模型不同于关系型数据库,需要新的解决方案,本文提出的基于Hive/Pentaho的数据仓库实现方案可以为其提供一个参考。 其次,通过整合多源非结构化数据库,生成一个面向主题、集成的数据仓库,可为大数据平台上的联机事务处理、决策支持等提供数据环境,从而有效利用数据资源辅助管理决策。 再次,大数据是一个广泛的概念,包括大数据存储、大数据计算、大数据分析等各个层次的技术细节,本文提出的“大数据环境下的数据仓库解决方案及实现“丰富了大数据应用技术的生态环境,为大数据环境下的数据分析、数据挖掘等提供支撑。 三、国内外研究现状和发展趋势的简要说明: 本文研究的主体是数据仓库,区别于传统基于关系型数据库的数据仓库,本文聚焦大数据环境下基于非结构数据库的数据仓库的构建与实现。因此,有必要从数据仓库和大数据环境下的数据库两方面进行阐述。 (一) 数据仓库国内外研究现状 自从Bill Inmon 在1990年提出“数据仓库”这一概念之后,数据仓库技术开始兴起,并给社会带来新的契机,逐渐成为一大技术热点。目前,美国30%到40%的公司已经或正在建造数据仓库。现如今随着数据模型理论的完善,数据库技术、应用开发及挖掘技术的不断进步,数据仓库技术不断发展,并在实际应用中发挥了巨大的作用。以数据仓库为基础,以联机分析处理和数据挖掘工具为手段的决策支持系统日渐成熟。与此同时,使用数据仓库所产生的巨大效益又刺激了对数据仓库技术的需求,数据仓库市场正以迅猛的势头向前发展。 我国企业信息化起步相对较晚,数据仓库技术在国内的发展还处于积累经验阶段。虽然近年来,我国大中型企业逐步认识到利用数据仓库技术的重要性,并已开始建立自己的数据仓库系统,如中国移动、中国电信、中国联通、上海证券交易所和中国石油等。但从整体上来看,我国数据仓库市场还需要进一步培育,数据仓库技术同国外还有很大差距。为此,我国许多科技工作者已开始对数据仓库相关技术进行深入研究,通过对国外技术的吸收和借鉴,在此基础上提出适合国内需求的技术方案。 (二) 非结化数据库国内外研究现状 随着数据库技术深入应用到各个领域,结构化数据库逐渐显露出一些弊端。如在生物、地理、气候等领域,研究面对的数据结构并不是传统上的关系数据结构。如果使用关系数据库对其进行存储、展示,就必须将其从本身的数据结构强行转换为关系数据结构。采用此种方式处理非结构数据,不能在整个生命周期内对非关系数据进行管理,并且数据间的关系也无法完整的表示出来。在此背景下,非结构化数据库应运而生。相较于关系数据库,非结构数据库的字段长度可变,并且每个字段的记录又可以由可重复或不可重复的子字段构成。如此,它不仅可以处理结构化数据,更能处理文本、图象、声音、影视、超媒体等非结构化数据。近年来,随着大数据兴起,非结构数据库开始广泛应用,以支持大数据处理的多种结构数据。 目前,非结构化的数据库种类繁多,按其存储数据类型分,主要包含内存数据库、列存储型、文档数据库、图数据库等。其中,常见的内存数据库有SQLite,Redis,Altibase等;列存储数据库有Hbase,Bigtable等;文档数据库有MangoDB,CouchDB,RavenDB等;图数据库有Neo4j等。近年来,我国非结构数据库也有一定发展,其中代表的是国信贝斯的iBASE数据库。可以预见在不久的将来,伴随这大数据的应用,非结构数据库将会得到长足的发展和广泛的应用。 四、主要研究内容和要求达到的深度: 本文研究的方向是数据仓库,并且是聚焦于大数据这一特定环境下的数据仓库建设,其主要内容包括以下几点: 1. 非结构数据库的数据仓库解决方案:本文聚焦于大数据这一特定环境下的数据仓库建设,因为大数据环境下的数据仓库建设理论文献很少,首先需要以研究关系数据库型数据仓库的解决方案为参考,然后对比关系数据库和非结构数据库的特点,最后在参考方案的基础上改进,以得到适合非结构数据库环境的数据仓库解决方案。 2. 非结构数据库和关系数据库间数据转换:非结构数据库是对关系数据库的补充,很多非结构数据库应用环境中都有关系数据库的身影。因此,非结构数据库和关系数据库间数据转换是建立非结构数据库需要解决的一个关键问题。 3. 基于非结构数据库的数据仓库构建:本文拟采用手礼网的数据,分析其具体的数据环境和需求,为其构建基于非结构数据库的数据仓库,主要包括非结构数据库的数据抽取,Hive数据库入库操作和Pentaho前台数据展现等。 五、研究工作的主要阶段、进度和完成时间: 结合研究需要和学校教务管理的安排,研究工作主要分以下四阶段完成: 第一阶段:论文提纲:20XX年6月——7月 第二阶段:论文初稿 :20XX年8月——10月 第三阶段:论文修改:20XX年11月——2014年3月 第四阶段:最终定稿:20XX年4月 六、拟采用的研究方法、手段等及采取的措施: 在论文提纲阶段,本文拟采用调查统计的方法,收集目前大数据环境下数据库应用情况,着重统计各类型数据库的应用比例。同时采用文献分析和个案研究的方法研究数据仓库构建的一般过程和对应的技术细节,并提出解决方案。在论文初稿和修改阶段,本文拟通过实证研究,依据提纲阶段在文献分析中收集到的理论,基于特定的实践环境,理论结合实践,实现某一具体数据仓库的构建。最后采用定性和定量相结合的方法,详细介绍大数据环境下数据库和数据仓库的特点,其数据仓库实现的关键问题及解决方案,以及数据仓库个例实现的详细过程。 七、可能遇见的困难、问题及拟采取的解决办法、措施: 基于本文的研究内容和特点分析,本文在研究过程中最有可能遇到三个关键问题。 其一,非结构数据库种类繁多,每类数据库又对应有不同的数据库产品,由于当下非结构数据库没有统一标准,即便同类数据库下不同产品的操作都不尽相同,难以为所有非结构数据库提出解决方案。针对此问题,本文拟紧贴大数据这一背景,选择当下大数据环境中应用最多的几类数据库的代表性产品进行实现。 其二,虽然经过二十年的发展,数据仓库的理论已日趋完善,但大数据是近几年才发展起来的技术热点,大树据环境下的数据仓库建设理论文献很少。针对此问题,本文拟参考现有的成熟的关系数据库环境下数据仓库构建方案和非结构化数据仓库理论,研究适合非结构数据库的数据仓库构建方案,请导师就方案进行指导,然后再研究具体技术细节实现方案。 其三,基于大数据环境的数据仓库实现是本文重要的组成部分,要完成此部分的工作需要企业提供数据支持,但现在数据在企业当中的保密级别都很高,一般企业都不会将自己的业务数据外传。针对此问题,本文拟采用企业非核心业务数据进行数据仓库实现。 八、大纲 本文的基本构想和思路,文章拟分为导论、大数据环境下的数据库介绍、大数据下数据仓库关键问题研究、基于XX电子商务的大数据下数据仓库实现、结论五部分。 导论 一、研究背景 二、国内外研究现状述评 三、本文的主要内容与研究思路 第一章 大数据环境下的数据库介绍 第一节 大数据对数据库的要求 第二节 关系数据库和非结构数据库比较 第三节 大数据下常用非结构数据库介绍 小结 第二章 大数据下数据仓库关键问题研究 第一节 非结构数据模型和关系数据模型的转换 第二节 基于多源非结构数据库的数据抽取 第三节 数据类型转换 第四节 数据仓库前端展示 第三章 大数据下数据仓库实现方案 第一节 大数据环境介绍 第二节 实现方案 第二节 Hive介绍 第三节 Pentaho介绍 第四章 基于XX电子商务的大数据下数据仓库实现 第一节 需求分析 第二节 模型设计 第三节 概要设计 第四节 基于Hive的数据入库操作实现 第五节 基于Pentaho的数据仓库前端展示实现 结论

比如说hdfs系统,从谷歌的那篇GFS论文发表的2004年到现在的2014年年底,已经整整的10年过去了。学习一个系统,最好的方法是纵轴和横轴来看。纵轴就是观察系统的演变过程,还是拿hdfs来说,十年的时间变化很多,hdfs的架构变化是为了解决可靠性,可用性。从最初的hdfs 1.0的 single NameNode + SecondaryNameNode + DataNode 架构,到hdfs 2.0 的NameNode HA + NameNode Federation,这个架构的演变,就值得细细把玩。横轴看,就是将同类型的系统拿来做比较,有了比较,就有了更直观的认识。还是拿hdfs来说,同类型的系统,有 MapR FS 和谷歌的GFS 2.0(谁有资料,麻烦发一下),MapR FS 的资料还是有一些的。通过比较这些个系统的不同,会加深对分布式文件系统的理解,不仅仅是hdfs这一个,因为很多理论和实践是相通的。最后补充一句话,对于一家公司来说,照搬开源不一定是好事.

gfs论文发表于哪一年

结构化存储(structured storage systems)的历史非常古老,典型的场景就是事务处理系统或者关系型数据库(RDBMS)。传统的结构化存储都是从单机做起的,比如大家耳熟能详的 MySQL。有句话说:MySQL的成长史就是互联网的成长史。这一点也不为过。除了 MySQL 之外,PostgreSQL 也是近几年来势头非常强劲的一个 RDBMS. 我们发现,传统的结构化存储系统强调的是:结构化的数据(例如关系表)。强一致性 (例如,银行系统,电商系统等场景)随机访问(索引,增删查改,SQL 语言)。然而,正是由于这些性质和限制,结构化存储系统的可扩展性通常都不是很好,这在一定程度上限制了结构化存储在大数据环境下的表现。随着摩尔定律面临的瓶颈,传统的单机关系型数据库系统面临着巨大的挑战。不过真的没办法了吗.在此我们先埋下一个伏笔)非结构化存储(no-structed storage systems). 和结构化存储不同的是,非结构化存储强调的是高可扩展性,典型的系统就是分布式文件系统。分布式文件系统也是一个古老的研究话题,比如 70 年代的 Xerox Alto, 80 年代的 NFS, AFS, 90 年代 xFS 等等。然而,这些早期的分布式文件系统只是起到了网络磁盘的作用, 其最大的问题就是不支持 容错 (fault tolerance)和 错误恢复 (fault recovery)。而 Google 在 2003 年 SOSP 上推出的 GFS (google file system) 则是做出了里程碑的一步,其开源实现对应为 HDFS. GFS 的主要思想. Google 设计 gfs 最初的目的是为了存储海量的日志文件以及网页等文本信息,并且对其进行批量处理(例如配合 mapreduce 为文档建立倒排索引,计算网页 PageRank 等)。和结构化存储系统相比,虽然分布式文件系统的可扩展性,吞吐率都非常好,但是几乎无法支持随机访问(random access)操作,通常只能进行文件进行追加(append)操作。而这样的限制使得非结构化存储系统很难面对那些低延时,实时性较强的应用。

随着大数据分析市场迅速渗透到各行各业,大家对大数据的关注度也越来越高,大数据技术是什么?

1.Hadoop

Hadoop确实是现在着名的大数据技术.

从2003年到2004年,谷歌发表了GFS、Mapreduce和BigTable三篇技术论文(这几篇论文成为云计算、大数据领域发展的重要基础).

当时,由于公司破产在家的程序员DougCutting基于前两篇论文,开发了简化的山寨版GFS——HDFS和基于MapReduce的计算框架.这是Hadoop当初的版本.

之后,Cutting被Yahoo雇佣,依靠Yahoo的资源改善Hadoop,为Apache开源社区做出贡献.

简要说明Hadoop原理:数据分布式存储,运算程序分别发送到各数据节点进行运算(Map),合并各节点的运算结果(Reduce),产生结果.

对于移动TB级数据,计算程序一般为KB--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

在其诞生近十年来,Hadoop以其简单、易用、高效、免费、社区支持丰富等特点成为许多企业云计算、大数据实施的优先事项.

2.Storm

Hadoop很好,但有死穴.其一,其运算模式是批处理.这对许多有实时要求的业务没有很好的支持.

不推荐看理论性很强的书(不意味着不需要掌握)。找个你感兴趣的开源工具,然后看看他的document和论文,读读源码,用一用。不只要知道很多分布式的工具可以做什么,最重要的还是自己要深入一个。有广度有深度,领会某个优秀工具设计上的理念。先看看google的mapreduce,bigtable那几篇经典的论文。不要太多,要选择经典。因为绝多数都不怎么样。然后选择简单和成熟的分布式系统玩玩,写几个简单的程序。并对他们敢兴趣的地方看看源代码。然后就是想想已有系统有什么不好的地方进行一下修改。所有的系统都是tradeoff的产物,所以你总是可以找到性能提升的地方。中途会遇到很多bug,多问问论坛。也会遇到理论上的不足,这个时候有针对性的看论文或者书籍。大致如此吧!

相关百科

热门百科

首页
发表服务