首页

> 学术论文知识库

首页 学术论文知识库 问题

测定钙片中的含量的毕业论文

发布时间:

测定钙片中的含量的毕业论文

那你应该自己去看下(食品与营养科学),一般论文都是需要自己写的~~~

还是要自己动手写的

可以模仿写 但最好改变一下内容 不然撞车就难看了

1实验原理钙片的主要成分为碳酸钙和维生素D.本实验用适量酸将碳酸钙完全溶解,并过滤与其他成分分离.Ca2+用EDTA滴定法,采用铬黑T指示剂进行测定.为防止Fe3+、Al3+或Mg2+对指示剂的封闭现象,滴定前,在酸性条件下,加入三乙醇胺和酒石酸钠以掩蔽试液中可能存在的Fe3+、Al3+,然后再碱化,在碱性条件下掩蔽可能存在的Mg2+,加铬黑T指示剂,用EDTA标准溶液滴定至溶液由红色变成蓝色.最后根据EDTA溶液的浓度和所消耗的体积,计算钙片中的钙含量.

水中钙含量的测定毕业论文

钙离子的测定: 用移液管吸取50ml水样于250ml锥形瓶中,加3ml三乙醇胺溶液(1:2),7ml氢氧化钾溶液(200g/L)和约钙一羧酸指示剂,用EDTA标准滴定溶液()滴定,近终点时速度要缓慢,当溶液颜色紫红色变为亮兰色时即为终点。 Ca(mmol/L)=(V×C×1000)/V水 磷含量的测定: (1)工作曲线的绘制 分别取0(空白)、 mL、 mL、 mL、 mL、 mL、、 mL、 mL PO3-4的磷标准溶液于9个50 mL容量瓶中,依次向各瓶中加入约25 mL水, mL钼酸铵溶液, mL抗坏血酸溶液,用水稀释至刻度,摇匀,25℃~30℃放置10min,在分光度计710nm处,用1cm吸收池,以空白调零吸光度。以测得的吸光度为纵坐标,相对应的PO3-4量(µg)为横坐标绘制工作曲线。 (2)测定 从试样中取试样溶液于100mL锥形瓶中,加入(1+35)硫酸溶液,过硫酸钾溶液,用水调整锥形瓶中溶液体积至约25mL,置于可调电炉上缓慢煮沸15min至溶液近蒸干为止。取出后用水冷却至室温,定量转移至50mL容量瓶中。加入钼酸铵溶液,抗坏血酸溶液,用水稀释至刻度,摇匀,室温下放置10min。在分光光度计波长710nm处,用1cm吸收池,以未加试验溶液的空白调零测吸光度。 4、结果计算: 以mg/L表示的试样中总磷(以PO4 3-)含量(ρ)按式计算: ρ=m/v 式中:m——从工作曲线上查得的以µg表示的PO3-4量; v——移取试验溶液的体积,ml。

就用EDTA滴定就可以了,成本上考虑比较合算,提高EDTA的浓度,是反应比较灵敏,只是在控制反应过程中要十分用心,容易滴过……

将EDTA(乙二胺四乙酸或其盐)加入到含有钙和镁离子的水或钻井液滤液中时,它首先与钙离子络合。样品pH值足够高时,镁离子以氢氧化物形式沉淀。实验步骤用移液管取1ml或更多样品于150ml烧杯中。2、用刻度移液管,加入10ml次氯酸钠溶液并混合均匀。(除去体系中的有机物)3、用刻度移液管,加入1ml冰乙酸并混合均匀。(调节pH,使溶液始终澄清)4、将样品煮沸5分钟,在煮沸期间按需加入去离子水以保持样品体积不变。煮沸的目的是为了除去过量的氯气。将pH试纸浸在样品中可证实氯气是否被除净。如果试纸被漂白,则需要继续煮沸,充分煮沸过的样品的pH值为。应在通风的地方进行此项操作。5、冷却样品并用去离子水冲洗烧杯内壁。如果样品无色或颜色浅,可省去2,5步骤6、用去离子水将样品稀释至50ml,加入10,15ml氢氧化钠溶液或足量的氢氧化钠使pH值达到12。此时镁离子全部生成氢氧化镁沉淀。7、加入掩蔽剂1ml。8、加入钙指示剂,如果钙离子存在,则会出现粉红色或酒红色,指示剂加的过多终点将会不明显。如果将几滴甲基橙指示剂与钙指示剂一起加入,则可改善终点的观察。9、边摇动边用EDTA溶液滴定至终点。钙指示剂将由红色变为蓝色。继续加入EDTA溶液时不再有由红到蓝的颜色变化,即可达到恰当的终点。10、按下式计算钙离子含量:EDTA与金属离子形成配合物的摩尔比为1:1 ,M+Y=MY已知EDTA的浓度,记录EDTA消耗的体积,再除以加入EDTA之前的体积,就是钙离子浓度。另取一份试样,加入氨-氯化铵缓冲溶液使pH等于9,加入铬黑T指示剂,用EDTA滴定试样至指示剂变色,记录消耗的EDTA体积,用此体积计算钙镁离子的总量;钙镁离子的总量减去钙离子的量就是镁离子的量.

牛奶中钙含量的测定毕业论文

火焰原子吸收法测定牛奶中钙含量的实验原理建立奶粉中钙含量的快速分析方法。方法利用火焰原子吸收光谱法测定奶粉中钙的含量。结果该方法在范围内线性关系良好,相关系数r=,检测限为μg/ml,干法灰化法和微波消解法的回收率分别为和。结论干法灰化法和微波消解法,操作简单、快速、定量准确,均适用于奶粉中钙的含量的测定。

用EDTA滴定法。

EDTA可以和Ca2+1:1发生配合反应,反应终点有颜色变化。用铬黑T做指示剂。

EDTA和钙离子以1:1的方式进行络合,加入铬黑T是酒红色的,滴定到终点是纯蓝色的。

乙二胺四乙酸(EDTA)是一种有机化合物,其化学式为C10H16N2O8,常温常压下为白色粉末。它是一种能与Mg2+、Ca2+、Mn2+、Fe2+等二价金属离子结合的螯合剂。

扩展资料

EDTA用途很广,可用作彩色感光材料冲洗加工的漂白定影液,染色助剂,纤维处理助剂,化妆品添加剂,血液抗凝剂,洗涤剂,稳定剂,合成橡胶聚合引发剂,EDTA是螯合剂的代表性物质。能和碱金属、稀土元素和过渡金属等形成稳定的水溶性络合物。

除钠盐外,还有铵盐及铁、镁、钙、铜、锰、锌、钴、铝等各种盐,这些盐各有不同的用途。

此外EDTA也可用来使有害放射性金属从人体中迅速排泄起到解毒作用。也是水的处理剂。EDTA还是一种重要的指示剂,可是用来滴定金属镍,铜等 ,用的时候要与氨水一起使用,才能起指示剂的作用。

参考资料来源:百度百科——EDTA

取适量牛奶X升,蒸馏至干,称取质量为M取等量适量牛奶,通二氧化碳,直至沉淀不再产生,蒸馏至干,称取质量为m,得(m-M)为被钙吸收的二氧化碳的量,则钙的质量为Y=(m-M)*100/44那么,牛奶中钙含量为Y/X

用EDTA进行滴定测量!!EDTA是基准物质,可以直接配置,也可以配置成大概浓度后进行标定用铬黑T做指示剂,EDTA和钙离子以1:1的方式进行络合我测过钙片里的钙含量,就用EDTA滴定如果牛奶太浓不好观察终点可以对牛奶进行稀释加入铬黑T是酒红色的,滴定到终点是纯蓝色的哦,忘了一点,要调节pH大概在10左右用pH=10的缓冲溶液就可以

猪肝中铁含量的测定毕业论文

每100克猪肝中含铁毫克,蛋白质毫克。猪肝中还含有丰富的维生素A和叶酸,营养较全面。但猪肝中含有较多的胆固醇,一次不宜吃得太多。

功效作用1.增强视力:猪肝中含有丰富的维生素A,维生素A可以提高视网膜的视觉功能,防止眼睛疲劳,干涩,对夜盲症也有很好的预防效果。2.预防贫血:猪肝中铁元素丰富,且易于人体吸收,对缺铁性贫血有很好的预防作用。3.营养神经:猪肝中的维生素B12,可以滋养神经系统,改善睡眠质量,提高老年人人群的认知能力。4.排毒:猪肝中的维生素B2能补充机体内的重要辅酶,帮助身体排毒。5.增强免疫力:猪肝中含有丰富的维生素A,维生素C和微量元素硒,有增强人体免疫力,抗氧化,抑制肿瘤的作用。6.护肤:猪肝中含有的维生素E是重要的抗氧化剂之一,补充维生素E对维持身体正常的机体功能与美容护肤有一定的功效。7.补充营养:猪肝中维生素多种多样,各种矿物质含量也较高,是营养不良人群补充营养的好食物,也是幼儿辅食的食材之一。猪肝的禁忌1、高血压、冠心病患者应少食猪肝猪肝含有的胆固醇较高。如果一次食得过多,摄入的胆固醇就多,会导致动脉硬化和加重心血管疾病,因此高血压和冠心病患者应少食猪肝。2、不宜和维生素C同食维生素C易被氧化破坏,尤其是遇到某些微量元素时氧化更为迅速。猪肝中铜元素含量较高,它可与维生素C结合,使维生素C失去原来的功能,因此,食猪肝不能同时服用维生素C。3、吃猪肝时不能服用酶制剂药类常见的酶制剂有胃蛋白酶、胰酶、淀粉酶、多酶片等,猪肝中的铜可与酶蛋白质、氨基酸分子的酸性基因形成沉淀物,影响药效。﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌▼﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌

1、 猪肝营养价值 (1)补血。猪肝中铁质丰富,补血食品中最常用的食物,食用猪肝可调节和改善贫血病人造血系统的生理功能。 (2)改善皮肤。猪肝中含有丰富的维生素A,具有维持正常生长和生殖机能的作用,能维持健康的肤色,对皮肤的健美具有重要意义。 (3)预防肝炎。猪肝中具有一般肉类食品不含的维生素C和微量元素硒,能增强人体的免疫反应,抗氧化,防衰老,并能抑制肿瘤细胞的产生,也可治急性传染性肝炎。 (4)排毒。经常食用动物肝还能补充维生素B2,这对补充机体重要的辅酶,完成机体对一些有毒成分的去毒有重要作用。 2、危害:猪肝含有的胆固醇较高。如果一次食得过多,摄入的胆固醇就多,会导致动脉硬化和加重心血管疾病,因此高血压和冠心病患者应少食猪肝。

肝脏是动物体内储存养料和解毒的重要器官,含有丰富的营养物质,具有营养保健功能,是最理想的补血佳品之一。营养价值1、猪肝中铁质丰富,是补血食品中最常用的食物,食用猪肝可调节和改善贫血病人造血系统的生理功能。2、猪肝中含有丰富的维生素A,能保护眼睛,维持正常视力,防止眼睛干涩、疲劳,维持健康的肤色,对皮肤的健美具有重要意义。3、经常食用动物肝还能补充维生素B2,这对补充机体重要的辅酶,完成机体对一些有毒成分的去毒有重要作用。4、猪肝中还具有一般肉类食品不含的维生素C和微量元素硒,能增强人体的免疫反应,抗氧化,防衰老,并能抑制肿瘤细胞的产生,也可治急性传染性肝炎。食用功效1、明目:猪肝中含有丰富的维生素A,能保护眼睛,维持正常视力,防止眼睛干涩、疲劳,维持健康的肤色,对皮肤的健美具有重要意义。适合血虚萎黄、夜盲、目赤、浮肿、脚气等患者。2、补血:猪肝中铁质丰富,是补血食品中最常用的食物,食用猪肝可调节和改善贫血病人造血系统的生理功能。信息源自网络,侵权即删

污水中含氧量的测定毕业论文

COD测定一般两种方法:高锰酸钾氧化法,和燃烧法。现有的设备分为在线的和离线的。在线的设备一般都具备自动取样功能。即自动抽取水样,并自动完成测定。数值可以本地显示存储、也可通过通讯接口上传。国内做的比较高端的测量电极基本都是进口的。国内用的多的就是美国哈西。价格基本都在十几万吧

飞秒检测发现化学需氧量COD(Chemical Oxygen Demand)是以化学方法测量水样中需要被氧化的还原性物质的量。废水、废水处理厂出水和受污染的水中,能被强氧化剂氧化的物质(一般为有机物)的氧当量。在河流污染和工业废水性质的研究以及废水处理厂的运行管理中,它是一个重要的而且能较快测定的有机物污染参数,常以符号COD表示。测定方法:重铬酸盐法、高锰酸钾法、分光光度法、快速消解法、快速消解分光光度法符合国家标准HJ-T399-2007水质化学需氧量的测定。化学需氧量测定的标准方法以我国标准GB11914《水质化学需氧量的测定重铬酸盐法》和国际标准ISO6060《水质化学需氧量的测定》为代表,该方法氧化率高,再现性好,准确可靠,成为国际社会普遍公认的经典标准方法。其测定原理为:在硫酸酸性介质中,以重铬酸钾为氧化剂,硫酸银为催化剂,硫酸汞为氯离子的掩蔽剂,消解反应液硫酸酸度为9mol/L,加热使消解反应液沸腾,148℃±2℃的沸点温度为消解温度。以水冷却回流加热反应反应2h,消解液自然冷却后,加水稀释至约140ml,以试亚铁灵为指示剂,以硫酸亚铁铵溶液滴定剩余的重铬酸钾,根据硫酸亚铁铵溶液的消耗量计算水样的COD 值。所用氧化剂为重铬酸钾,而具有氧化性能的是六价铬,故称为重铬酸盐法。

全文地址 摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料电极等构成生物传感器,在发酵工业、环境监测、食品监测、临床医学等方面得到广泛的应用。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。关键词:生物传感器;发酵工业;环境监测。一、 引言从1962年,Clark和Lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(PCR)的发展,应用PCR的DNA生物传感器也越来越多。二、 研究现状及主要应用领域1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。(1). 原材料及代谢产物的测定微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(Psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(Trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。此外,还有用大肠杆菌()组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌—胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。(2). 微生物细胞总数的测定在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的[1]。(3). 代谢试验的鉴定传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等[2]。2、 环境监测(1). 生化需氧量的测定生化需氧量(biochemical oxygen demand –BOD)的测定是监测水体被有机物污染状况的最常用指标。常规的BOD测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种SPT1和SPT2,并将其固定在玻璃碳极上以构成微生物传感器用于测量BOD,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中BOD的测定,其测量最小值可达2 mg/l,所用时间为5min[3]。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中BOD的测定提供了快捷简便的方法[4]。除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的BOD值。该传感器的反应时间是15min,最适工作条件为30°C,pH=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(Fe3+、Cu2+、Mn2+、Cr3+、Zn2+)所影响。该传感器已经应用于河水BOD的测定,并且获得了较好的结果[4]。现在有一种将BOD生物传感器经过光处理(即以TiO2作为半导体,用6 W灯照射约4min)后,灵敏度大大提高,很适用于河水中较低BOD的测量[5]。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的BOD值。它使用三对发光二极管和硅光电二极管,假单胞细菌(Pseudomonas fluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中[5]。(2). 各种污染物的测定常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(NOx-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的NOx-进行了测量,其效果较好[6]。硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在pH=、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是,与氢电极连接构成[7]。最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌()中,用来检测砷的有毒化合物[8]。水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5 ´10-9mol。该传感器工作的最适条件为:pH=、35℃,连续工作时间为30h[9]。还有一种假单胞菌属(Pseudomonas rathonis)制成的测量表面活性剂浓度的电流型生物传感器,将微生物细胞固定在凝胶(琼脂、琼脂糖和海藻酸钙盐)和聚乙醇膜上,可以用层析试纸GF/A,或者是谷氨酸醛引起的微生物细胞在凝胶中的交联,长距离的保持它们在高浓度表面活性剂检测中的活性和生长力。该传感器能在测量结束后很快的恢复敏感元件的活性[10]。还有一种电流式生物传感器,用于测定有机磷杀虫剂,使用的是人造酶。利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测量极限为100´10-9mol,在40℃只要4min[11]。还有一种新发展起来的磷酸盐生物传感器,使用丙酮酸氧化酶G,与自动系统CL-FIA台式电脑结合,可以检测(32~96)´10-9mol的磷酸盐,在25°C下可以使用两周以上,重复性高[12]。最近,有一种新型的微生物传感器,用细菌细胞作为生物组成部分,测定地表水中壬基酚(nonyl-phenol etoxylate --NP-80E)的含量。用一个电流型氧电极作传感器,微生物细胞固定在氧电极上的透析膜上,其测量原理是测量毛孢子菌属(Trichosporum grablata)细胞的呼吸活性。该生物传感器的反应时间为15~20min,寿命为7~10天(用于连续测定时)。在浓度范围内,电信号与NP-80E浓度呈线性关系,很适合于污染的地表水中分子表面活性剂的检测[13]。除此之外,污水中重金属离子浓度的测定也是不容忽视的。目前已经成功设计了一个完整的,基于固定化微生物和生物体发光测量技术上的重金属离子生物有效性测定的监测和分析系统。将弧菌属细菌(Vibrio fischeri)体内的一个操纵子在一个铜诱导启动子的控制下导入产碱杆菌属细菌(Alcaligenes eutrophus (AE1239))中,细菌在铜离子的诱导下发光,发光程度与离子浓度成正比。将微生物和光纤一起包埋在聚合物基质中,可以获得灵敏度高、选择性好、测量范围广、储藏稳定性强的生物传感器。目前,这种微生物传感器可以达到最低测量浓度1´10-9mol[14]。还有一种专门测量铜离子的电流型微生物传感器。它用酒酿酵母(Saccharomyces cerevisiae)重组菌株作为生物元件,这些菌株带有酒酿酵母CUP1基因上的铜离子诱导启动子与大肠杆菌lacZ基因的融合体。其工作原理,首先是CUP1启动子被Cu2+诱导,随后乳糖被用作底物进行测量。如果Cu2+存在于溶液中,这些重组体细菌就可以利用乳糖作为碳源,这将导致这些好氧细胞需氧量的改变。该生物传感器可以在浓度范围()´10-3mol范围内测定CuSO4溶液。目前已经将各类金属离子诱导启动子转入大肠杆菌中,使得大肠杆菌会在含有各种金属离子的的溶液中出现发光反应。根据它发光的强度可以测定重金属离子的浓度,其测量范围可以从纳摩尔到微摩尔,所需时间为60~100min[15][16]。用于测量污水中锌浓度的生物传感器也已经研制成功,使用嗜碱性细菌Alcaligenes cutrophus,并用于对污水中锌的浓度和生物有效性进行测量,其结果令人满意[17]。估测河口出水流污染情况的海藻传感器是由一种螺旋藻属蓝细菌( cyanobacterium Spirlina subsalsa)和一个气敏电极构成的。通过监测光合作用被抑制的程度来估测由于环境污染物的存在而引起水的毒性变化。以标准天然水为介质,对三种主要污染物(重金属、除草剂、氨基甲酸盐杀虫剂)的不同浓度进行了测定,均可监测到它们的有毒反应,重复性和再生性都很高[18]。近来由于聚合酶链式反应技术(PCR)的迅猛发展及其在环境监测方面的广泛应用,不少科学家开始着手于将它与生物传感器技术结合应用。有一种应用PCR技术的DNA压电生物传感器,可以测定一种特殊的细菌毒素。将生物素酰化的探针固定在装有链酶抗生素铂金表面的石英晶体上,用1´10-6mol的盐酸可以使循环式测量在同一晶体表面进行。用细菌中提取的DNA样品进行同样的杂交反应并由PCR放大,产物为气单胞菌属(Aeromonas hydrophila)的一种特殊基因片断。这种压电生物传感器可以鉴别样品中是否含有这种基因,这为从水样中检测是否含带有这种病原的各种气单胞菌提供了可能[19]。还有一种通道生物传感器可以检测浮游植物和水母等生物体产生的腰鞭毛虫神经毒素等毒性物质,目前已经能够测量在一个浮游生物细胞内含有的极微量的PSP毒素[20]。DNA传感器也在迅速的得到应用,目前有一种小型化DNA生物传感器,能将DNA识别信号转换为电信号,用于测量水样中隐孢子和其他水源传染体。该传感器着重于改进核酸的识别作用和加强该传感器的特异性和灵敏性,并寻求将杂交信号转化为有用信号的新方法,目前研究工作为识别装置和转换装置的一体化[21]。

废水COD(化学需氧量)检测可以采样送至具备资质的第三方环境检测机构。

相关百科

热门百科

首页
发表服务