论文,没有本科、专科区别。毕业论文,一般5000-10000字。字数少了,论不清楚的!
论文我们写一般正文要求:专科毕业论文正文字数一般应在5000字以上,本科文学学士毕业论文通常要求8000字以上,硕士论文可能要求在3万字以上。
如果是专科论文的话,那么一般来说字数会要求在5000字左右,一般少一点的话,3000字就可以了。
毕业论文字数随学历不同也有所不同,专业不同也有t不同的字数要求。本科工科类5万字到2万字。
大约2000字吧
本科毕业论文篇幅一般在六干字以上。大学本科毕业生的毕业论文,如果写得好,可以作为学士学位的论文。 毕业论文是大学生在大学的最后一个学期,运用所学的基础课和专业课知识,独立地探讨或解决本学科某一问题的论文,它是在撰写学年论文取得初步经验后写作的,它的题目应该比学年论文大一点、深一点。其基本标准应该是:通过毕业论文,可以大致反映作者能否运用大学三四年间所学得的基础知识来分析和解决本学科内某一基本问题的学术水平和能力。当然,它的选题一般也不宜过大,内容不太复杂,要求有一定的创见性,能够较好地分析和解决学科领域中不太复杂的问题。大专毕业论文篇幅一般在五千字左右,本科毕业论文篇幅一般在六干字以上。拓展资料 其它学术论文字数要求 学年论文。它是大学生在大学读了三年基础课,具备了一些基本知识之后,初次锻炼运用已有知识去分析和解决一个学术问题的能力。论文的题目不宜太大,篇幅不宜太长,涉及问题的面不宜过宽,论述的问题也不求过深。初学论文写作,主要是取得撰写论文的经验,初步掌握撰写论文的方法,为今后撰写毕业论文和学位论文奠定基础。在大学的前两年,基本上是听讲、看书、接受前人已有知识;而写论文,就不是听讲、看书、作笔记和汇总前人的知识了,而是要求自己运用前人的知识去解决一些前人没有解决的问题了。由于写学年论文是大学生初次学做的一件新工作,所以,撰写学年论文是在有经验的教师指导下进行的。 硕士论文。这是攻读硕士学位研究生的学位论文,其学术水平比学士论文要高。它必须能够反映出作者所掌握知识的深度,有作者自己的较新见解。国家学位条例第五条规定,高等院校和科学研究机构的研究生,或具有研究生毕业同等学历的人员,只有在本学科上掌握坚实的基础理论和比较系统的专门知识,具有从事科研工作和专门技术工作的独立能力者,才可通过论文答辩,取得硕士学位。这就是说,硕士论文强调作者在学术问题上应有自己的较新见解和独创性,其篇幅一般要长一些,撰写前应阅读较多的有关重要文献。 博士论文。它是非常重要的科研成果。它要求作者必须在某一学科领域中具有坚实而深广的知识基础,必须有独创性的成果;它应有较高的学术水平和学术价值,能够对别人进行同类性质问题的研究和其他问题的探讨有明显的启发性、引导性,在某一学科领域中起先导、开拓的。
0
多省文件规定:中级以后在公开发行的省级以上学术刊物发表本专业论文三篇以上。论文查重率10-30%,中级以后发表的在副高评审合格之前永远有效。未指定刊物名称。领导说详情搜:中国职称大学郑密路航海路全国办(必搜最关键的“郑密路航海路”)、高级职称论文郑密路航海路全国办、高级经济师学院郑密路航海路全国办、高级农经师学院郑密路航海路全国办、高级会计师学院郑密路航海路全国办、高级审计师学院郑密路航海路全国办、高级统计师学院郑密路航海路全国办、高级政工师学院郑密路航海路全国办、高级工程师学院郑密路航海路全国办、高级教师学院郑密路航海路全国办、高级人力资源管理师学院郑密路航海路全国办等。
数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究数学模型的另一个特征是经济性用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真所谓"模型就是模型"(而不是原型),即是指该性质二、数学建模 数学建模是利用数学方法解决实际问题的一种实践即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解简而言之,建立数学模型的这个过程就称为数学建模模型是客观实体有关属性的模拟陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题如果有现成的数学工具当然好如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路而在现在,要真正解决一个实际问题,离了计算机几乎是不行的数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型从这一意义上讲,可以说数学建模是一切科学研究的基础没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法 (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法 (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用 (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式 (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型 (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定机理分析法建模的具体步骤大致可见左图仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验① 离散系统仿真--有一组状态变量② 连续系统仿真--有解析表达式或系统结构图(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响近年来随着数学的发展,又有所谓突变性模型和模糊性模型静态模型和动态模型 取决于是否考虑时间因素引起的变化线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的五、数学建模的一般步骤建模的步骤一般分为下列几步:模型准备首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息模型假设在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解不同的简化假设会得到不同的模型假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化经验在这里也常起重要作用写出假设时,语言要精确,就象做习题时写出已知条件那样模型构成根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型把问题化为数学问题要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用模型求解利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设在难以得出解析解时,也应当借助计算机求出数值解模型分析对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等模型检验分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善模型应用所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善应用的方式自然取决于问题的性质和建模的目的参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。
不同的刊物有不同的要求 一般的学术论文2000字符起发
只要不是图片中的,都算! ==================论文写作方法=========================== 论文网上没有免费的,与其花人民币,还不如自己写,万一碰到人的,就不上算了。 写作论文的简单方法,首先大概确定自己的选题,然后在网上查找几份类似的文章,通读一遍,对这方面的内容有个大概的了解! 参照论文的格式,列出提纲,补充内容,实在不会,把这几份论文综合一下,从每篇论文上复制一部分,组成一篇新的文章! 然后把按自己的语言把每一部分换下句式或词,经过换词不换意的办法处理后,网上就查不到了,祝你顺利完成论文!
严格上说医学课题结题一般需要三篇论文,但是并没有严格要求论文级别。实际上课题结题的论要求是看课题级别的。首先要清楚自己的课题是属于什么级别的,从上到下,医学类的课题一般是:国基金,省级,市级和中管局,最后是院级课题。因此,你发什么级别的期刊要看自己是什么级别的课题,另外当时立项时项目计划是怎么写的,比如当时预计发表什么级别的。所以,优助医学对课题结题发表什么级别的论文的几点:期刊级别越高越好根据课题级别而定根据立项书计划而定贴合课题内容论文级别高低影响后期评奖
不同的学校对于本科毕业论文字数要求不同,一般非211、985学校的本科毕业论文字数在6000-8000字左右,一些要求较高的专业或者重点院校则要求论文字数高达10000字左右或者以上。论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成可有可无。论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献、附录和致谢。1、毕业论文格式的写作顺序是:标题、作者班级、作者姓名、指导教师姓名、中文摘要及关键词、英文摘要及英文关键词、正文、参考文献。2、毕业论文中附表的表头应写在表的上面,居中;论文附图的图题应写在图的下面,居中。按表、图、公式在论文中出现的先后顺序分别编号。3、毕业论文中参考文献的书写格式严格按以下顺序:序号、作者姓名、书名(或文章名)、出版社(或期刊名)、出版或发表时间。4、论文格式的字体:各类标题(包括参考文献标题)用粗宋体;作者姓名、指导教师姓名、摘要、关键词、图表名、参考文献内容用楷体;正文、图表、页眉、页脚中的文字用宋体;英文用TimesNewRoman字体。5、论文格式的字号:论文题目用三号字体,居中;一级标题用四号字体;二级标题、三级标题用小四号字体;页眉、页脚用小五号字体;其它用五号字体;图、表名居中。6、格式正文打印页码,下面居中。7、论文打印纸张规格:A4210297毫米。8、在文件选项下的页面设置选项中,字符数/行数选使用默认字符数;页边距设为上:3厘米;下:5厘米;左:8厘米;右:8厘米;装订线:8厘米;装订线位置:左侧;页眉:8厘米;页脚8厘米。9、在格式选项下的段落设置选项中,缩进选0厘米,间距选0磅,行距选5倍,特殊格式选(无),调整右缩进选项为空,根据页面设置确定行高格线选项为空。10、页眉用小五号字体打印XX大学XX学院20XX级XX专业学年论文字样,并左对齐。11、文献注释注释不同于参考文献。参考文献是作者写作论著时所参考的文献书目,集中列于文末。而注释则是作者对正文中某一内容作进一步解释或补充说明的文字,不要列入文末的参考文献,而要作为注释放在页下,用①②标识序号。毕业论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,缺少一个是不行的。
毕业论文字数要求的范围一般是指正文部分,不包含摘要、前言、致谢等内容。论文的字数指的是正文字数,即第一章到最后一章,不包含摘要、目录、致谢、参考文献、附录等,这里说的是字数,不是字符数。比如3万字的毕业论文,就是3万字的汉字,不包括标点和空格。硕士毕业论文不仅有字数要求也有页数要求,页数要求在60-80页之间,这也是指的正文部分。参考文献的篇数一般不少于40篇,其中外文参考文献不少于20篇,参考文献中近五年的文献数一般不少于总数的三分之一,参考文献在正文中要有引用标注。
问题的限制在于资金的流动性问题;资金的流动性与利息收益的最大化之间的矛盾,可以转化为目标优化问题;模型解决的就是这个矛盾,最后得出多少存活期,多少一年定期,之类的。不算难,认真思考一下吧!
300个字就差不多了,硕士研究生毕业论文摘要不超过600个字,这是国家规定的论文标准格式。
高数学习对许多大一学生生来讲, 有些困难,成绩不理想。教师一直在苦苦思考:虽然教师在授课过程中尽了种种努力, 但还是有许多学生学习不好, 这是什么原因?调查显示:这部分学生或者学习兴趣不高,或者学习不得要领。因而, 高数学习必须充分调动学习者的积极性, 掌握合适的学习方法,才能有所收获。1 学习者要意识到学习高数的重要性, 提高学习兴趣, 变被动学习为主动学习据了解, 许多学生意识不到高数学习的重要性,他们对大学课程里学习高数的重要性不甚清楚,也没有学习的热情,更谈不上积极性了。1 1 数学教育具有重要的基础性作用与素质教育作用现代信息、空间技术、核能利用、基因工程、微电子、纳米材料等引领的新技术革命, 以及现代人文科学的定量分析需要以数学为主要基础。数学学科严密的定义方式、缜密的逻辑思维、全面的系统分析是辩证唯物主义思想在数学学科中的集中反映, 在大学生素质教育中起着不可替代的作用。素质表现在数学意识、数学语言、数学技能、数学思维四个方面。素质的提高有助于学生形成良好的思想道德素质,科学文化素质,生理心理素质,从而提高人的素质。这是有例子可以验证的。以北京大学地质系为例,一个系就培养了48 位中科院院士, 而这得益于李四光先生的理念——加强数理基础, 原因就是学生的工科数学基础好、逻辑思维强、头脑清晰。1 2 培养对高数的兴趣能激发学习热情“兴趣是最好的老师”。心理学家布鲁纳认为:“学习是主动的过程,对学生学习内因的最好的激发是对所学教材的兴趣。”“有了兴趣就会乐此不疲,好之不倦,就会挤时间学习了。”学生只有对学习感兴趣,能把心理活动指向和集中在学习的对象上,感知活跃,注意力集中,观察敏锐,记忆持久而准确,思维敏锐而丰富,强化学习的内在动力,调动学习的积极性,激发智力和创造力,提高学习效率。1 提高学习高数的兴趣首先从了解数学史做起我们可以首先了解中国数学史,了解中国数学的萌芽、发展、全盛、衰弱的过程和原因;我们还可以从高数中的微积分发明的历史谈起,通过对历史的了解和感受来体会到数学的博大精深,激发探求欲望。
应用的可多了,比方说电视,DVCD,音箱,MP3 4,======最典型的就是计算机了。要是说细节方面的就是正电和负电接通后灯才能亮,而且有的灯还需要经过处理的电才能导通,比方说给电一定的阻力=====,或者说经过二极管整流,或经过变压器降压或升压。简单点说就是任何用到电的地方都需要电子技术。
题目(用2号黑体,加粗,居中;字数一般不超过20字) 作者:(5号宋体)指导老师:(5号宋体,居中) (XX大学工学院 XX年级专业 合肥 230036(5号宋体,居中)) 摘要:(小4号黑体)(内容:×××××××××××× ××××××××××× ×××(小4号宋体,20磅行距)××××××××××××××××××××× ××××××××××××。(要求300字 左右)关键词: ××× ××× ××× ×××(小4号宋体,关键词3—5个) (小4号黑体) [正文控制在6000---8000字左右(不包括附录和程序),字数不宜太多] 1 引言(或绪论)(可作为正文第1章标题,用小3号黑体,加粗,并留出上下间距为:段前5行,段后5行) ×××××××××(小4号宋体,20磅行距)×××××××××××××××××××××………1.1 ××××××(作为正文2级标题,用4号黑体,加粗) ×××××××××(小4号宋体,20磅行距)××××××…………1 ××××(作为正文3级标题,用小4号黑体,不加粗) ×××××××××(小4号宋体,20磅行距)×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××……… 2 ×××××××(作为正文第2章标题,用小3号黑体,加粗,并留出上下间距为:段前5行,段后5行) ×××××××××(小4号宋体,20磅行距)×××××××××××××××××××××××××××××××××××………注:1.正文中表格与插图的字体一律用5号宋体; 2.正文各页的格式请以此页为标准复制,页眉中的页码用阿拉伯数字表示; 3.为保证打印效果,学生在打印前,请将全文字体的颜色统一设置成黑色。 A4纸型(空2行) 结 论(小3号黑体,居中) ×××××××××(小4号宋体,20磅行距)×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××…………(空2行) 致 谢(小3号黑体,居中) ×××××××××(小4号宋体,20磅行距)×××××××××××××××××××××………… 参 考 文 献(小3号黑体,居中) 1 ×××××××(小4号宋体,行距18磅)××××× 2 ×××××××××××××××××××××××××××××××××××××××××× 3 ×××××××××××××××××××××× …………例如: 1 刘国钧,陈绍业,王凤翥图书馆目录第1版北京:高等教育出版社,2008 2 傅承义,陈运泰,祁贵中地球物理学基础北京:科学出版社,2008,447 3 华罗庚,王元论一致分布与近似分析中国科学,2006(4):339~357 4 张筑生微分半动力系统的不变集研究:[学位论文],北京:数学系统学研究所,2005 5 Borko H,Bernier C L.Indexing concepts and methods New York:Academic Pr,2006 …………(英文文献不少于3篇) (毕 业 论 文 外 文 摘 要)Title ××××××××(4号宋体) Abstract×××××××××(小4号宋体,20磅行距,第一个字应顶格写)××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××(空2行)Keywords ××× ××× ××× ×××(小4号宋体)(小4号黑体)
不算,图片是没法计算字数的