哈哈啊
摘要:席位分配是日常生活中经常遇到的问题,对于企业、公司、、学校政府部门都能解决实际的问题。席位可以是代表大会、股东会议、公司企业员工大会、等的具体座位。假设说,有一个学校要召集开一个代表会议,席位只有20个,三个系总共200人,分别是甲系100,乙系60,丙系如果你是会议的策划人,你要合理的分配会议厅的20个座位,既要保证每个系部都有人参加,最关键的就是要对个公平都公平,保证三个系部对你所安排的位置没有异议。那么这个问题就要靠数学建模的方法来解决。关键词: Q值法 公平席位问题的重述:三个系部学生共200名,(甲系乙系60,丙系40)代表会议共20席,按比例分配三个系分别为10、6、4席。老情况变为下列情况怎样分配才是最公平的,现因学生转系三系人数为(1) 问20席该如何分配。(2) 若增加21席又如何分配。问题的分析:一、通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即: 某单位席位分配数 = 某单位总人数比例′总席位 如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这样最初学生人数及学生代表席位为 系名 甲 乙 丙 总数 学生数 100 60 40 200 学生人数比例 100/200 60/200 40/200 席位分配 10 6 4 20学生转系情况,各系学生人数及学生代表席位变为 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 3 3 4 20 按惯例席位分配 10 6 4 20(1)20席应该甲系10席、乙系6席,丙系4席这样分配二、学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 815 615 57 21 按惯例席位分配 11 7 3 21这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。要怎样才能公平呢,这时就要用数学建模要解决。模型的建立:假设由两个单位公平分配席位的情况,设 单位 人数 席位数 每席代表人数单位A p1 n1 单位B p2 n2 要公平,应该有 = , 但这一般不成立。注意到等式不成立时有 若 > ,则说明单位A 吃亏(即对单位A不公平 ) 若 < ,则说明单位B 吃亏 (即对单位B不公平 )因此可以考虑用算式 来作为衡量分配不公平程度,不过此公式有不足之处(绝对数的特点),如:某两个单位的人数和席位为 n1 =n2 =10 , p1 =120, p2=100, 算得 p=2另两个单位的人数和席位为 n1 =n2 =10 , p1 =1020,p2=1000, 算得 p=2虽然在两种情况下都有p=2,但显然第二种情况比第一种公平。下面采用相对标准,对公式给予改进,定义席位分配的相对不公平标准公式:若 则称 为对A的相对不公平值, 记为 若 则称 为对B的相对不公平值 ,记为 由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。确定分配方案: 使用不公平值的大小来确定分配方案,不妨设 > ,即对单位A不公平,再分配一个席位时,关于 , 的关系可能有 > ,说明此一席给A后,对A还不公平; < ,说明此一席给A后,对B还不公平,不公平值为 > ,说明此一席给B后,对A不公平,不公平值为 < ,不可能 上面的分配方法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。用不公平值的公式来决定席位的分配,对于新的席位分配,若有 则增加的一席应给A ,反之应给B。对不等式 rB(n1+1,n2)
重点:数模论文的格式及要求 难点:团结协作的充分体现 一、 写好数模论文的重要性 数模论文是评定参与者的成绩好坏、高低、获奖级别的惟一依据 数模论文是培训(或竞赛)活动的最终成绩的书面形式。 写好论文的训练,是科技论文写作的一种基本训练。 二、数模论文的基本内容 1,评阅原则: 假设的合理性; 建模的创造性; 结果的合理性; 表述的清晰程度 2,数模论文的结构 0、摘要 1、问题的提出:综述问题的内容及意义 2、模型的假设:写出问题的合理假设,符号的说明 3、模型的建立:详细叙述模型、变量、参数代表的意义和满足的条件,进行问题分析,公式推导,建立基本模型,深化模型,最终或简化模型等 4、模型的求解:求解及算法的主要步骤,使用的数学软件等 5、模型检验:结果表示、分析与检验,误差分析等 6、模型评价:本模型的特点,优缺点,改进方法 7、参考文献:限公开发表文献,指明出处 8、 附录:计算框图、计算程序,详细图表 三、需要重视的问题 0.摘要 表述:准确、简明、条理清晰、合乎语法。 字数300-500字,包括模型的主要特点、建模方法和主要结果。可以有公式,不能有图表 简单地说,摘要应体现:用了什么方法,解决了什么问题,得到了那些主要结论。还可作那些推广。 1、 建模准备及问题重述: 了解问题实际背景,明确建模目的,搜集文献、数据等,确定模型类型,作好问题重述。 在此过程中,要充分利用电子图书资源及纸质图书资源,查找相关背景知识,了解本问题的研究现状,所用到的基本解决方法等。 2、模型假设、符号说明 基本假设的合理性很重要 (1)根据题目条件作假设; (2)根据题目要求作假设; (3)基本的、关键性假设不能缺; (4)符号使用要简洁、通用。 3、模型的建立 (1)基本模型 1) 首先要有数学模型:数学公式、方案等 2) 基本模型:要求完整、正确、简明,粗糙一点没有关系 (2)深化模型 1)要明确说明:深化的思想,依据,如弥补了基本模型的不足…… 2)深化后的模型,尽可能完整给出 3)模型要实用,有效,以解决问题有效为原则。数学建模面临的、是要解决实际问题,不追求数学上的高(级)、深(刻)、难(度)。 ▲能用初等方法解决的、就不用高级方法; ▲能用简单方法解决的,就不用复杂方法; ▲能用被更多人看懂、理解的方法,就不用只有少数人看懂、理解的方法。 4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在 ▲建模中:模型本身,简化的好方法、好策略等; ▲模型求解中; ▲结果表示、分析,模型检验; ▲推广部分。 5)在问题分析推导过程中,需要注意的: ▲分析要:中肯、确切; ▲术语要:专业、内行; ▲原理、依据要:正确、明确; ▲表述要:简明,关键步骤要列出; ▲忌:外行话,专业术语不明确,表述混乱、繁琐,冗长。 4、模型求解 (1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,论证要尽可能严密; (2)需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,要说明采用此软件的理由,软件名称; (3)计算过程,中间结果可要可不要的,不要列出。 (4)设法算出合理的数值结果。 5、模型检验、结果分析 (1) 最终数值结果的正确性或合理性是第一位的 ; (2)对数值结果或模拟结果进行必要的检验。 当结果不正确、不合理、或误差大时,要分析原因,对算法、计算方法、或模型进行修正、改进; (3)题目中要求回答的问题,数值结果,结论等,须一一列出; (4)列数据是要考虑:是否需要列出多组数据,或额外数据;对数据进行比较、分析,为各种方案的提出提供可依赖的依据; (5)结果表示:要集中,一目了然,直观,便于比较分析。(最好不要跨页) ▲数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲求解方案,用图示更好 (6) 必要时对问题解答,作定性或规律性的讨论。 最后结论要明确。 6.模型评价 优点要突出,缺点不回避。若要改变原题要求,重新建模则可在此进行。推广或改进方向时,不要玩弄新数学术语。 7、参考文献 限于公开发表的文章、文献资料或网页 规范格式: [1] 陈理荣,数学建模导论(M),北京:北京邮电大学出版社, [2] 楚扬杰,快速聚类分析在产品市场区分中的应用(J),武汉理工大学学报,2004,23(2),20- 8、附录 详细的数据、表格、图形,计算程序均应在此列出。但不要错,错的宁可不列。主要结果数据,应在正文中列出。 9、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题 问题以怎样的方式回答――结果以怎样的形式表示 每个问题要列出哪些关键数据――建模要计算哪些关键数据 每个量,列出一组还是多组数――要计算一组还是多组数…… 10、答卷要求的原理 ▲ 准确――科学性 ▲ 条理――逻辑性 ▲ 简洁――数学美 ▲ 创新――研究、应用目标之一,人才培养需要 ▲ 实用――建模。实际问题要求。 四、建模理念 应用意识:要让你的数学模型能解决或说明实际问题,其结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。相同问题上要能够推广。 创新意识:建模有特点,要合理、科学、有效、符合实际;要有普遍应用意义;不单纯为创新而创新 五、格式要求 参赛论文写作格式 论文题目(三号黑体,居中) 一级标题(四号黑体,居中) 论文中其他汉字一律采用小四号宋体,单倍行距。论文纸用白色A4,上下左右各留出5厘米的页边距。 首页为论文题目和作者的专业、班级、姓名、学号,第二页为论文题目和摘要,论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字“1”开始连续编号。 第四页开始论文正文 正文应包括以下八个部分: 问题提出: 叙述问题内容及意义; 基本假设: 写出问题的合理假设; 建立模型: 详细叙述模型、变量、参数代表的意义和满足的条件及建模的思想; 模型求解: 求解、算法的主要步骤; 结果分析与检验:(含误差分析); 模型评价: 优缺点及改进意见; 参考文献: 限公开发表文献,指明出处; 参考文献在正文引用处用方括号标示参考文献的编号,如[1][3]等。参考文献按正文中的引用次序列出,其中 书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:出版年 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日) 附录:计算框图,原程序及打印结果。 六、分工协作取佳绩 最好三人一组,这三人中尽量做到一人数学基础较好,一人应用数学软件和编程的能力较强,一人科技论文写作水平较好。科技论文的写作要求整篇论文的结构严谨,语言要有逻辑性,用词要准确。 三人之间要能够配合得起来。若三人之间配合不好,会降低效率,导致整个建模的失败。 在合作的过程中,最好是能够找出一个组长,即要能够总揽全局,包括任务的分配,相互间的合作和进度的安排。 在建模过程中出现意见不统一时,要尊重为先,理解为重,做到 “给我一个相信你的理由”和“相信我,我的理由是……”,不要作无谓的争论。要善于斗争,勇于妥协。 还要注意以下几点: 注意存盘,以防意外 写作与建模工作同步 注意保密,以防抄袭 数学建模成功的条件和模型: 有兴趣,肯钻研;有信心,勇挑战;有决心,不怕难;有知识,思路宽;有能力,能开拓;有水平,善协作;有办法,点子多;有毅力,轻结果。
数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。请采纳。
数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究数学模型的另一个特征是经济性用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真所谓"模型就是模型"(而不是原型),即是指该性质二、数学建模 数学建模是利用数学方法解决实际问题的一种实践即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解简而言之,建立数学模型的这个过程就称为数学建模模型是客观实体有关属性的模拟陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题如果有现成的数学工具当然好如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路而在现在,要真正解决一个实际问题,离了计算机几乎是不行的数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型从这一意义上讲,可以说数学建模是一切科学研究的基础没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法 (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法 (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用 (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式 (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型 (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定机理分析法建模的具体步骤大致可见左图仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验① 离散系统仿真--有一组状态变量② 连续系统仿真--有解析表达式或系统结构图(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响近年来随着数学的发展,又有所谓突变性模型和模糊性模型静态模型和动态模型 取决于是否考虑时间因素引起的变化线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的五、数学建模的一般步骤建模的步骤一般分为下列几步:模型准备首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息模型假设在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解不同的简化假设会得到不同的模型假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化经验在这里也常起重要作用写出假设时,语言要精确,就象做习题时写出已知条件那样模型构成根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型把问题化为数学问题要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用模型求解利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设在难以得出解析解时,也应当借助计算机求出数值解模型分析对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等模型检验分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善模型应用所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善应用的方式自然取决于问题的性质和建模的目的参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。
数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献%3A+%C2%DB%CE%C4&ch=uf&num=10&w=site%3A+%C2%DB%CE%C4点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!