同时,因特网信息资源的骤增及其异构性、动态性,不断给信息检索带来新的挑战。信息检索已成为现代社会信息化和各种应用的关键。如何更高层次的模拟、应用人脑的智能原理,从本质上变革信息资源检索方法,已成为现代化信息知识检索理论研究的热点。实践证明,将人工智能技术与信息技术结合,发挥人工智能的作用,是一条成功的经验。下面就知识检索与信息检索的关联和发展,作初步的探讨。一、布尔检索利用布尔逻辑算符进行检索词或代码的逻辑组配,是现代信息检索系统中最常用的一种方法。常用的布尔逻辑算符有三种,分别是逻辑或“OR”、逻辑与“AND”、逻辑非“NOT”。用这些逻辑算符将检索词组配构成检索提问式,计算机将根据提问式与系统中的记录进行匹配,当两者相符时则命中,并自动输出该文献记录。下面以“计算机”和“文献检索”两个词来解释三种逻辑算符的含义。①“计算机”AND“文献检索”,表示查找文献内容中既含有“计算机”又含有“文献检索”词的文献。②“计算机”OR“文献检索”,表示查找文献内容中含有“计算机”或含有“文献检索”以及两词都包含的文献。③“计算机”NOT“文献检索”,表示查找文献内容中含有“计算机”而不含有“文献检索”的那部分文献。检索中逻辑算符使用是最频繁的,对逻辑算符使用的技巧决定检索结果的满意程度。用布尔逻辑表达检索要求,除要掌握检索课题的相关因素外,还应在布尔算符对检索结果的影响方面引起注意。另外,对同一个布尔逻辑提问式来说,不同的运算次序会有不同的检索结果。布尔算符使用正确但不能达到应有检索效果的事情是很多的。二、信息检索信息检索起源于图书馆的参考咨询和文摘索引工作,从19世纪下半叶首先开始发展,至20世纪40年代,索引和检索已成为图书馆独立的工具和用户服务项目。信息检索通常指文本信息检索,包括信息的存储、组织、表现、查询、存取等各个方面,其核心为文本信息的索引和检索。它是基于信息组织形式,如字符串、结构化数据库,应用信息处理方法,如排序数据查找、字符匹配,实现效率不高的检索。信息检索综合应用布尔检索方法和基于超链的检索技术,改进了基本检索功能,但缺点是对精确的提问不能给出精确的回答。从历史上看,信息检索经历了手工检索、计算机检索到目前网络化、智能化检索等多个发展阶段。目前,信息检索已经发展到网络化和智能化的阶段。信息检索的对象从相对封闭、稳定一致、由独立数据库集中管理的信息内容扩展到开放、动态、更新快、分布广泛、管理松散的Web内容;信息检索的用户也由原来的情报专业人员扩展到包括商务人员、管理人员、教师学生、各专业人士等在内的普通大众,他们对信息检索从结果到方式提出了更高、更多样化的要求。适应网络化、智能化以及个性化的需要是目前信息检索技术发展的新趋势。三、知识检索知识检索的基本思想是,模拟扩展人类关于知识处理与利用的智能行为和认识思维方法,是充分利用在线图书馆和数字图书馆的文献信息资源的有利工具。例如:抽象思维方法,形象思维方法。知识检索具有明显的优势:①实现信息服务向知识服务的转化,向用户提供潜在内容知识,以及分析预测后的超前性领域成果或知识。②提供主动服务方式,自动优化用户需求,主动提供个性化检索。③面向用户,依据用户的需求及其变化,能灵活选择理想的检索策略和技术,并且将繁重的知识信息存取工作从用户移向了计算机。④综合应用各类知识和各种高效的智能技术,全面提高检索效率。
树妈妈生了一些可爱的嫩芽弟弟妹妹许多叶儿宝宝都穿着绿色的礼服去凑热闹,从远处看,像一块无暇的翡翠,给大树妈妈增添了许多生机 忽然,从远处传来了一阵扑鼻的芳香原来是美人蕉妹妹为春天姐姐的到来,穿上了华丽的礼服,以表示欢迎咦,那边怎么那么多花朵,红的、白的、紫的、黄的等,五彩缤纷走近一看,哦,原来花儿们正在比美比艺花儿们有的显示着自己有的在唱歌,声音是那么好听,所有的演员都被吸引住了有的在表演优美的舞蹈《天鹅湖》、《白雪公主》等真是太精彩了
事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。他在 大数据时代一书中说,以前,一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了。比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时。但如今,数据已经成为一种商业资本,可以创造新的经济利益。数据能够成为一种资本,与移动互联网有密切关系。随着智能手机、平板电脑等移动数码产品的“白菜化”,Wi-Fi信号覆盖的无孔不入,越来越多的人不再有“在线时间”和“不在线时间”之分,只要他们愿意,便可几乎24小时一刻不停地挂在线上;在线交易、在线支付、在线注册等网络服务的普及固然方便了用户,却也让人们更加依赖网络,依赖五花八门的网上平台。而随着科技的进步,以往需要几盒软盘或一张光盘保存的信息,如今只需一片指甲盖大小的芯片,即可全部储存而且绰绰有余;以往需要电脑、显示器、读卡器等专门设备才能读取的数码信息载体,如今或许只需一部智能手机和一个免费下载的APP第三方应用程序,便可将数据一览无余。大数据时代的科技进步,让人们身上更多看似平常的东西成为“移动数据库”,如带有存储芯片的第二代银行卡、信用卡,带有芯片读取功能的新型护照、驾驶证、社保卡、图书证,等等。在一些发达国家,官方为了信息录入方便,还不断将多种“移动数据库”的功能组合成一体。数字化时代使得信息搜集、归纳和分析变得越来越方便,传统的随机抽样被“所有数据的汇拢”所取代,基于随机抽样而变得重要的一些属性,如抽样的精确性、逻辑思辨和推理判断能力,就变得不那么重要,尽可能汇集所有数据,并根据这些数据得出趋势和结论才至为关键。简单说,以往的思维决断模式是基于“为什么”,而在“大数据时代”,则已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此,将更精确,更有预见性。不过,一些学者指出,由于“大数据”理论过于依靠数据的汇集,那么一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因为数据本身的问题,而做出错误的预测和决策。
获得学位意味着被授予者的受教育程度和学术水平达到规定标准的学术称号, 经在高等学校或科学研究部门学习和研究,成绩达到有关规定,由有关部门授予并得到国家社会承认的专业知识学习资历。
222 浏览 5 回答
218 浏览 2 回答
224 浏览 3 回答
223 浏览 1 回答
148 浏览 4 回答
239 浏览 1 回答
219 浏览 3 回答
196 浏览 1 回答
220 浏览 7 回答
266 浏览 3 回答
227 浏览 7 回答
356 浏览 8 回答
203 浏览 8 回答
321 浏览 4 回答
211 浏览 9 回答
85 浏览 8 回答
251 浏览 12 回答
271 浏览 11 回答
298 浏览 7 回答
268 浏览 3 回答