首页

> 论文发表知识库

首页 论文发表知识库 问题

小目标检测效果最好的论文

发布时间:

小目标检测效果最好的论文

原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为  最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。  需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。

论文原文:

YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:

如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:

每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:

其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。

每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)

举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:

在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:

等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。

1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。

2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。

3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。

4、损失函数公式见下图:

在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:

解决方法:

只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。

然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。

作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。

作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。

作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。

YOLO模型相对于之前的物体检测方法有多个优点:

1、 YOLO检测物体非常快

因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。

2、 YOLO可以很好的避免背景错误,产生false positives

不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。

3、 YOLO可以学到物体的泛化特征

当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。

尽管YOLO有这些优点,它也有一些缺点:

1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。

2、YOLO容易产生物体的定位错误。

3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。

小目标问题在物体检测和语义分割等视觉任务中一直是存在的一个难点,小目标的检测精度通常只有大目标的一半。

CVPR2019论文: Augmentation for small object detection 提到了一些应对小目标检测的方法,笔者结合这篇论文以及查阅其它资料,对小目标检测相关技巧在本文进行了部分总结。

小目标的定义: 在MS COCO数据集中,面积小于 32*32 的物体被认为是小物体。

小目标难以检测的原因: 分辨率低,图像模糊,携带的信息少。由此所导致特征表达能力弱,也就是在提取特征的过程中,能提取到的特征非常少,这不利于我们对小目标的检测。

1、由于小目标面积太小,可以放大图片后再做检测,也就是在尺度上做文章,如FPN(Feature Pyramid Networks for Object Detection),SNIP(An Analysis of Scale Invariance in Object Detection – SNIP)。

Feature-Fused SSD: Fast Detection for Small Objects, Detecting Small Objects Using a Channel-Aware Deconvolutional Network 也是在多尺度上做文章的论文。

2、在Anchor上做文章(Faster Rcnn,SSD, FPN都有各自的anchor设计),anchor在设置方面需要考虑三个因素:

anchor的密度: 由检测所用feature map的stride决定,这个值与前景阈值密切相关。

anchor的范围: RetinaNet中是anchor范围是32~512,这里应根据任务检测目标的范围确定,按需调整anchor范围,或目标变化范围太大如MS COCO,这时候应采用多尺度测试。

anchor的形状数量: RetinaNet每个位置预测三尺度三比例共9个形状的anchor,这样可以增加anchor的密度,但stride决定这些形状都是同样的滑窗步进,需考虑步进会不会太大,如RetinaNet框架前景阈值是时,一般anchor大小是stride的4倍左右。

该部分anchor内容参考于:

3、在ROI Pooling上做文章,文章SINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection 认为小目标在pooling之后会导致物体结构失真,于是提出了新的Context-Aware RoI Pooling方法。

4、用生成对抗网络(GAN)来做小目标检测:Perceptual Generative Adversarial Networks for Small Object Detection。

1、从COCO上的统计图可以发现,小目标的个数多,占到了,但是含有小目标的图片只有,大目标所占比例为,但是含有大目标的图像却有。这说明有一半的图像是不含小目标的,大部分的小目标都集中在一些少量的图片中。这就导致在训练的过程中,模型有一半的时间是学习不到小目标的特性的。

此外,对于小目标,平均能够匹配的anchor数量为1个,平均最大的IoU为,这说明很多情况下,有些小目标是没有对应的anchor或者对应的anchor非常少的,即使有对应的anchor,他们的IoU也比较小,平均最大的IoU也才。

如上图,左上角是一个anchor示意图,右上角是一个小目标所对应的anchor,一共有只有三个anchor能够与小目标配对,且配对的IoU也不高。左下角是一个大目标对应的anchor,可以发现有非常多的anchor能够与其匹配。匹配的anchor数量越多,则此目标被检出的概率也就越大。

实现方法: 1、Oversampling :我们通过在训练期间对这些图像进行过采样来解决包含小对象的相对较少图像的问题(多用这类图片)。在实验中,我们改变了过采样率和研究不仅对小物体检测而且对检测中大物体的过采样效果

2、Copy-Pasting Strategies:将小物体在图片中复制多分,在保证不影响其他物体的基础上,增加小物体在图片中出现的次数(把小目标扣下来贴到原图中去),提升被anchor包含的概率。

如上图右下角,本来只有一个小目标,对应的anchor数量为3个,现在将其复制三份,则在图中就出现了四个小目标,对应的anchor数量也就变成了12个,大大增加了这个小目标被检出的概率。从而让模型在训练的过程中,也能够有机会得到更多的小目标训练样本。

具体的实现方式如下图:图中网球和飞碟都是小物体,本来图中只有一个网球,一个飞碟,通过人工复制的方式,在图像中复制多份。同时要保证复制后的小物体不能够覆盖该原来存在的目标。

网上有人说可以试一下lucid data dreaming Lucid Data Dreaming for Multiple Object Tracking ,这是一种在视频跟踪/分割里面比较有效的数据增强手段,据说对于小目标物体检测也很有效。

基于无人机拍摄图片的检测目前也是个热门研究点(难点是目标小,密度大)。 相关论文: The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking(数据集) Drone-based Object Counting by Spatially Regularized Regional Proposal Network Simultaneously Detecting and Counting Dense Vehicles from Drone Images Vision Meets Drones: A Challenge(数据集)

1: 2: 3: 4: 5: 6: 7:

论文检测最好

1、知网论文查重系统:知网查重系统应当是不少人都有所了解的一个查重网站,它具备的优势也十分突出,如数据库庞大、文章、资料更新及时,可以为使用者提供十分可靠的查重结果;知网查重系统还具备了批量上传、下载测试结果等功能,操作起来也十分的方便快捷,便于保障使用者的查重效率,节省查重时间。2、PaperPass检测系统: PaperPass采用 了自主研发的动态指纹越级扫描检测技术,具备查重速度快、精度高的优点,高度的准确率可以为使用者提供精确的查重报告,有利于使用者及时的对论文进行修改、调整。3、万方论文查重系统:万方查重系统采用的检测技术十分先进科学,能够为使用者提供多版本、多维度的论文查重报告;万方查重系统还可同时为科研管理、教育教学、人事管理等多个领域的学术机构提供学术成果相似性检测服务。4、维普论文查重系统:该论文查重系统采用了国际领先的海量论文动态语义跨域识别加指纹比对技术,能够快捷准确的检测论文是否存在抄袭问题;中文期刊论文库、硕博学位论文库、高校特色论文库、互联网数据资源等多个数据库的存在,也使得维普论文查重系统能够高效的比对文本数据。一、论文查重标准是什么?我国大部分高校要求本科论文重复率不高于30%。当然,学历越高,对论文的要求就越严格。对于大学硕士生和博士生教育来说,他们对论文的查重要求一般不高于20%和10%。然而,不同的大学对查重率有不同的要求。例如,一些严格的学校要求本科生的论文不超过20%。除了学生论文外,期刊论文检查权重率的要求也与期刊的等级有关。核心期刊论文查重率要求更高,不能超过15%,高级期刊论文查重率要求小于20%,普通期刊论文查重率小于30%才能发表。二、论文查重到底怎么查的?论文查重是借助论文查重系统进行的,论文作者只需要把论文上传到查重系统,系统会根据论文目录进行分段查重。查重系统会根据连续出现13个字符的重复来计算论文的整体查重率。由于不同系统的数据库包含不同的文献和算法,查重结果会有所不同。在选择论文查重系统是,尽量选择跟大学或者大学要求一致的查重系统,或者企业选择一个安全、可靠、准确的第三方查重系统设计进行管理自查。

靠谱的论文查重网站:

一、中国知网

由清华大学和清华同方发起,在党和国家领导以及教育部、中宣部、科技部、新闻出版总署、国家版权局和国家发改委的大力支持下,在全国学术界、教育界、出版界和图书情报界等社会各界的密切配合和清华大学的直接领导下,CNKI工程集团经过多年努力。

采用自主开发并具有国际领先水平的数字图书馆技术,建成了世界上全文信息量规模最大的”CNKI数字图书馆”,并正式启动建设《中国知识资源总库》及CNKI网格资源共享平台,通过产业化运作,为全社会知识资源高效共享提供最丰富的知识信息资源和最有效的知识传播与数字化学习平台。

是目前最安全、最快捷、最权威的论文检测软件,全面覆盖研究生毕业论文查重、大学生抄袭检测、职称评审及相关学术成果,大部分单位机构都是与知网进行合作。除了收费昂贵之外,几乎没有任何缺点。

二、维普

是国内领先的论文查重软件,可以快速准确地检测出毕业论文、博士、硕士论文、期刊论文中的不当引用、过度引用、论文抄袭、伪造、篡改等学术不端行为,自动生成检测报告,并支持PDF、网页等浏览格式,最大特点就是快!

三、万方

采用科学先进的检测技术,实现海量学术文献数据全文比对,秉持客观、公正、精准、全面的服务原则,为用户提供精准详实多维度的查重检测报告。提供包括万方通用版、硕博论文版、大学生论文版、职称论文版等,查重检测结果客观、准确、详实!

四、蝌蚪论文查重

蝌蚪论文查重系统扫码直接登录就可以享受每天免费查重服务,不需要做任何任务,不受字数限制(10万字内),同时提供在线智能降重、人工降重等服务。

采用阿里云认证的高防服务器,检测系统全程自动论文检测,无任何人工参与,系统不保存用户源文件,解除用户论文泄露之忧。

系统数据库覆盖9000万的学术期刊和学位论文,10亿数量的互联网数据源,有效确保精准论文查重! 采用强大的智能语义识别技术,能够快速命中并识别出相似内容。并进行周期性算法升级,实现智能算法预处理学科分类,准确度高出行业70%。

每个学校要求的论文查重系统不同,但是我们也需要自己提前进行查重,因为不查重是无法知道自己的论文内容是否有问题的,就算已经修改了,说不定重复率还是很高。目前网上的论文查重系统很多,大家各自的选择都不同,只有对比才知道哪个系统更加适合自己。一、对比网站的专业性一般都是在百度搜索论文查重,然后会出现很多网站,我们不要马上提交自己的论文内容,先对比网站设置如何。因为现在都是在网上提交查重,如果网站不稳定的话,那么查重结果肯定不准确的。所以,大家要谨慎进行选择,不要随意看到一个论文查重网站后马上提交检测。二、看论文查重系统的更新情况论文查重怎么计算重复率主要是看数据库是否广泛,例如学校查后的重复率只有20%,自己查重后的重复率可能有30%或者15%,这也是因为每个系统的数据库不同。所以,我们在选择论文查重系统时,必须特别注意网站的数据库如何。三、网络成功案例的衡量选择论文查重系统,我们可能是导师或者同学推荐的,网上的成功案例还是很重要的。有的论文确实是第一次查重都达到了60%,在论文查重系统的帮助下能降到30%,这类系统若有庞大的文献数据库,并能帮助我们对论文进行修改,这样的系统才是值得选择的。

最好的是学校要求的定稿检测系统,多数学校指定的是知网查重,前期初稿检测可以使用papertime免费查重软件,通过海量数据库对提交论文进行对比分析,准确地查到论文中的潜在抄袭和不当引用,实现了对学术不端行为的检测服务。

怎么给论文降重效果最好

就让我们paperfree免费查重小编讲讲降低论文查重率的方法:1、插入空格法:将文章中的所有字与字之间插入空格中,然后将空格字与字之间的距离调整到最小。由于学科行论文查重的依据是基于单词,空格切断了单词,自然跳过了检查系统。2、自己的原创法:自己动手写论文,在写作时,不复制粘贴原文;正确的添加引用。3、google翻译工具翻译法:使用别人论文中的文字google翻译成英文,再翻译回来,句型和结构就会发生变化,再自行修改下语病,就能顺利避免查重。4、转换图片法:把别人论文里的文字剪成图片,放在自己的论文里。因为目前学科论文检测系统只能查文字,不能查图片和表格,所以可以避免查重。5、插入文档法:通过一些参考文本word在论文中插入文件的形式。6、外文翻译法:查阅研究领域的外国文献,特别是高水平期刊,如Science,Nature,WaterRes等等,把理论解释翻译成中文,放在自己的论文里。7、改变措辞法:重写他人论文中的文本,或根据其含义重写,或改变句子结构,改变主语和被动语态,或改变关键词,或通过增加或减少。当然,如果它属于一个经典的句子,或者根据经典的方法引用。

论文降重的一般方法:

1、文字转图片

将一些重要的论点文献等无法进行改写的内容,可以将其转化成图片的形式来进行降重,不过这种方法只适用于点缀。不能够大面积使用。

2、数据转表格

在部分数据较多的专业下,即便是自己实验得出的数据也是很容易飘红的,那么这个时候,可以将数据以表格或者图表的形式来进行展现,既能降低论文的重复度,又能提升论文的美观度哦。

3、段落改写

将较长的段落进行拆分,一个大段拆分成几个小段,并添加部分自己的理解与内容,对段落进行一个承上启下的作用。

4、段落删除

如果论文的长度过多的话,完全是可以进行一定的删除,将论文飘红的地方进行适当的删减与修改。也是非常有效的。

5、调整结构

论文的结构一般能不动就不动了,毕竟调整结构是一个比较浩大的工程,但是若是论文查重率居高不下,那么很有可能就是论文的结构重复度过高。

论文降重最有效的方法是图片转化法。

多数情况下论文中的图片以及图表并不参与查重,因此可以将文章中的文字内容转化为图表的形式,但要控制好论文的字数,避免出现文字字数不足的情况。

其它方法

1、调整结构法:即是将论文中被认定为重复的句子进行一定的调整,例如调整句子的主谓宾的顺序、将疑问句改为肯定句或者添加一些关联词等等,以达到降重的目的,但要注意不要改变句子的含义。

2、翻译法:对于大段的难以自我修改的内容,可以使用翻译器译制成其他语言,再译回中文,这样可以导致句子结构变化,从而达到降重的目的。

万变不离其宗。把原文中从其他文献复制的文本通读理解,然后分别转换为自己的语言,虽然这个过程比较辛苦,但是这是最有效的办法。

英文翻译法:首先把重复率比较高的文献放到翻译工具中,从中文翻译成英文,然后从英文再翻译为中文,然后再修改一下,到语句通顺,可以一定程度的降低重复率,不过一定要把语句修改通顺,翻译软件毕竟智商有限。

一、明确问题,进行观念梳理

在大家要解决论文进行科学降重的问题时,要先明确一个概念:论文的重复率降低了也代表着论文的质量也会相对下降,重复率低不代表论文的质量就高,当我们解决论文降重的这个问题的时候要记住以下几点原则:

1、专业名词、专业术语不能动;

2、降重后的字数不能动;

3、降重的前后意思不能变;

4、如果是使用机器降重或者是使用百度进行翻译,那通常语句翻译都不通顺,所以重复率才会降下来,那论文也不会那么鲜活了。

二、论文查重怎么科学进行降重的具体方法

1、替换同义词:最常见的一个降重办法,但是简单的Word同义词替换效果不一定很好,很有可能会导致语句出现不通顺的现象。

2、解构论文句子:论文的学术性比较强,部分句子会非常的长,那我们就可以将它拆分,变成短句,这样子也是降低了读者在阅读时的难度。

3、调整句子顺序:论文降重当中最简单的方法就是把论文当中并列的结构进行顺序调换。

4、更换表达方式:将句意读懂时,更换一下表达的方式。

5、增加论文字数:要想增加论文的字数是比较麻烦的,论文的字数增加的时候还要想着论文的质量,重复的话不能一直说,但是可以把小点进行分解、细化

以上是一些关于科学降重的一些小建议,论文查重是写论文当中最重要的一个部分,我们提前在正规并且靠谱的网站上查重之后得到结果之后,我们才可以更好的更有针对性的去降低文章的重复率。

以上内容就是关于“论文怎样进行科学的降重”的详细内容讲解,有更多论文讯息想了解请持续关注papertime官网哦~

论文的研究目标与效果

论文的目的是阐明你想要通过研究来解决什么问题或解答什么疑问。目的通常包括研究的主要问题、目标和研究计划。

论文的意义是说明研究的重要性,它将如何改变已有的知识或实践,或者如何为未来的研究提供基础。

在写目的和意义时,可以遵循以下几点提示:

希望能帮助到您~

毕业论文的主要研究内容和目标特色:(一)论文名称论文名称就是课题的名字第一,名称要准确、规范。准确就是论文的名称要把论文研究的问题是什么,研究的对象是什么交待清楚,论文的名称一定要和研究的内容相一致,不能太大,也不能太小,要准确地把你研究的对象、问题概括出来。第二,名称要简洁,不能太长。不管是论文或者课题,名称都不能太长,能不要的字就尽量不要,一般不要超过20个字。(二) 论文研究的目的、意义研究的目的、意义也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本论文的研究有什么实际作用,然后,再写论文的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。主要内容包括:⑴ 研究的有关背景(课题的提出): 即根据什么、受什么启发而搞这项研究。 ⑵ 通过分析本地(校) 的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。(三) 本论文国内外研究的历史和现状(文献综述)。规范些应该有,如果是小课题可以省略。一般包括:掌握其研究的广度、深度、已取得稜成果;寻找有待进一步研究的问题,从而确定本课题研究的平台(起点)、研究的特色或突破点。(四)论文研究的指导思想指导思想就是在宏观上应坚持什么方向,符合什么要求等,这个方向或要求可以是哲学、政治理论,也可以是政府的教育发展规划,也可以是有关研究问题的指导性意见等。

我们在写论文或者是看别人的论文时,总容易被研究背景和研究意义等名词搞混淆; 最近查了一些资料,对以下名词做了相应解释,总结如下: 01 研究背景 02 研究目的与意义 03 研究目标 04 研究内容 05 研究对象 06 国内外研究现状 07 研究方法 正文共:2131 字 1 图 预计阅读时间:6 分钟 01 研究背景 ① 研究主题的大环境介绍 在什么样的环境下你要做这个主题的研究?? 是行业发展至此,需要考虑这个问题;还是以前存在,一直未得到解决的问题。 ② 研究主题的现实背景与理论背景 研究是为了满足某种“需求”,因此,现实背景是现实的需求,理论背景是现有理论的缺陷或者漏洞。研究背景即提出问题,阐述研究该课题的原因。 有些论文的研究背景仅是堆砌现有的研究进展,而不明确提出当前研究的不足。如此写作虽然与研究主题相关,但是与后文的衔接缺乏因果关联。 02 研究目的与意义 研究目的:做这项研究是为了解决什么问题,对成果的预期。 研究意义:做这项研究之后,能够产生什么样的价值和推动作用。 “目的”的对象更加具体一些,实实在在的做了哪些事情,解决了哪些问题。“意义”可以适当抽象一些,包含自己对研究成果的预期,成果会对该行业(或者领域)产生什么样的影响,推动什么的前进。 03 研究目标 研究目标是指具体的要达到的“目的”,如通过研究构建某种教学模式、教学策略、方法,获得某某规律,揭示某某机理等等。 目标是过程,目的是结果。 研究目标是对“研究内容”的高度概括,“研究内容”是通过做许多事情达到研究目标。 04 研究内容 研究内容是为了达到“研究目标”所做的具体操作步骤。 在研究目标的基础上,细化达到这个目标具体要做的事情。要事无巨细的列出来,明确每一步的内容该怎么开展下去。该节内容要注意与“可行性与创新性”相关。 研究目的、研究目标和研究内容的关系 05 研究对象 研究对象是我们“研究内容”的主体,一般是较为具体事物或理论; 针对该主体使用各类方式进行研究,从而得出研究的结论。 06 国内外研究现状 我们通过了解国内外研究现状可以得到: 人家在研究什么、研究到什么程度? 你想研究而别人还没有做的问题。 别人已做过,你认为做得不够(或有缺陷),从而提出完善的想法或措施。 别人已做过,你要重新做实验来验证。 该节注意事项: 不要把研究现状写成事物本身发展现状。 例如,写股指期货研究现状,应该写有哪些专著或论文、哪位作者、有什么观点,而不是写股指期货本身何时产生、有哪些交易品种、如何演变。 要反映最新研究成果。 不要写得太少。如果只写一小段,那就说明你没有看多少同类材料。 如果没有与选题直接相关的文献,可以选择一些与选题比较靠近的内容来写。 07 研究方法 研究方法有很多种,均是经过时间检验的方法,整理部分如下: ① 归纳方法与演绎方法 归纳就是从个别事实中概括出一般性的结论原理;演绎则是从一般性原理、概念引出个别结论。归纳是从个别到一般的方法;演绎是从一般到个别的方法。 门捷列夫使用归纳法,在人们认识大量个别元素的基础上,概括出了化学元素周期律。后来他又从元素周期律预言当时尚未发现的若干个元素的化学性质,使用的就是演绎法。 ② 分析方法与综合方法 分析就是把客观对象的整体分为各个部分、方面、特征和因素而加以认识。它是把整体分为部分,把复杂的事物分解为简单的要素分别加以研究的一种思维方法。 分析是达到对事物本质认识的一个必经步骤和必要手段。分析的任务不仅仅是把整体分解为它的组成部分,而且更重要的是透过现象,抓住本质,通过偶然性把握必然性。 ③ 因果分析法 就是分析现象之间的因果关系,认识问题的产生原因和引起结果的辩证思维方法。使用这种方法一定要注意到真正的内因与结果,而不是似是而非的因果关系。 要注意结果与原因的逆关系,一方面包括“用原因来证明结果”,同时也包括“用结果来推论原因”。不同的事物,一般都一身二任,既是原因,又是结果,而且一个结果往往有不同层次的几个原因。因此,在研究过程中,对所分析的问题必须寻根究底。 ④ 比较分析法 比较分析法又称类推或类比法。它是对事物或者问题进行区分,以认识其差别、特点和本质的一种辩证逻辑方法。在资料不多,还不足以进行归纳和演绎推理时,比较分析法更具有价值。康德说:“每当理智缺乏可靠论证的思路时,类比这个方法往往能指引我们前进。” ⑤ 定性分析法与定量分析法 就是通过确定事物的质的关系和数量关系以认识问题和分析问题的辩证思维方法。任何事物或任何问题都是质和量的统一,事物的质量。表现为一定的量,又表现为一定的质。 因此,在研究中,只有弄清质的方面,又弄清量的方面,才能找出其中规律性的问题。在研究中,定性分析就是据事论理,划清事物质的界限。定量分析就是对问题的规模、范围、数目等数量关系的情况及变化,进行精确的统计,计算、分析、对比,就是弄清事物发展中量的变化关系。 ⑥ 观察法 观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有目的性和计划性、系统性和可重复性。 ⑦ 文献研究法 文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被广泛用于各种学科研究中。

论文的目的、意义也就是要写为什么要研究、研究它有什么价值,一般可以先从现实需求方面去论述,指出现实当中存在这个问题所需要研究解决的内容,本论文的研究有什么实际作用。然后再写论文的理论和学术价值。这些都要写得具体、有针对性的,不能漫无边际地空喊口号。

★论文的目的和意义一般包含哪些方面的内容

一,研究的相关背景,我们是根据什么、受什么启发从而决定研究这个课题的;二,通过学校的教育实际,指出我们为什么会选择研究这个课题,我们要解决什么问题,解决之后会产生什么价值。

具体写作的时候,我们要抓住一点,由于论文本身的创新性和科学性,我们研究的问题一定是前人没有解决的、或是前人没有发现的问题,并且具有一定的学术价值,是值得我们花费时间和精力去研究的。我们可以将前人已经得出的结论作为论据,但必须有针对性,不是随便一个结论都可以作为论据使用的。

其次在写作的过程中,要注意使用书面语,论文是一种专业性很强的文体,不需要太多华丽的修饰,我们要尽可能的使用简洁、高度概括的语言去清晰的阐述事实,得出结论。并且涉及的方面要广泛客观。

目标检测论文好写吗

能不能给我发一份呢?

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

论文原文:

YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:

如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:

每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:

其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。

每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)

举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:

在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:

等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。

1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。

2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。

3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。

4、损失函数公式见下图:

在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:

解决方法:

只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。

然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。

作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。

作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。

作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。

YOLO模型相对于之前的物体检测方法有多个优点:

1、 YOLO检测物体非常快

因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。

2、 YOLO可以很好的避免背景错误,产生false positives

不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。

3、 YOLO可以学到物体的泛化特征

当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。

尽管YOLO有这些优点,它也有一些缺点:

1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。

2、YOLO容易产生物体的定位错误。

3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。

相关百科

热门百科

首页
发表服务