生命科学最大的基础工程 生物技术在过去的几十年风起云涌,70年代出现的重组DNA,使得人们有可能按照需求生产出基因工程的药物。到了80年代,转基因技术在农业方面的应用极大地提高了农作物、动物的产量和品质。90年代有代表性的进展就是克隆技术,使得重组生命成为可能,这是很伟大的进步。信息技术在很大程度上改变了社会,正如未来学家所说,信息技术使我们能够做的更多做得更快、更好。但是,生命科学、生物技术有可能改变人类自身,改变未来社会的发展,其影响更重大。从总体上看,生命科学无论从揭示未知领域的广度深度,从产业化的巨大前景,保证人类基本的物质生活的需求,强身健体的需要,还是推动整个人类的进步来说,都是非常重要的一个领域,因此说21世纪是生命科学的世纪是很有道理的。 人类基因组研究是目前生命科学领域里的一项最大的基础工程。生命活动在相当大的程度上是受遗传因素影响的,要理解生命,战胜疾病,提高健康,就必须对控制生命的遗传信息有所了解,而且不是支离破碎的了解,是整体化的了解。所谓基因组是生命遗传信息的总合,它不是个体基因的概念,它是所有基因在一起,再加上那些调控基因的遗传信息。这个项目的驱动因素也是双重性的,一个是科学家的好奇心,求知欲望,像任何其他基础科学一样;另外一个巨大的驱动力就是人类健康的一种需求。 生命科学要揭示的奥秘很多,整个框架搭起来的过程就是从具象到微象,从大到小,由表及里,但到达"里"以后发现,对个别的孤立的分子进行研究,恐怕不能揭示其中的规律,这样就从分析进入到综合。进入到人类基因组时代,生命科学全新形态,即大科学形态,系统科学形态,交叉科学形态。人类基因组揭示的信息量大概只有天文的数字可以与之相比。如果把生物的变异性考虑进去的话,这种海量信息的储存、分析、传输,收集,把信息从数据变成知识,这就要求信息技术、数学等加入进来,所以生物信息学产生了。要在同一时间研究所有的基因、所有的蛋白质的表达和相互作用,是一种系统科学的研究方法。为了进行这样的分析,新的平台就要发展,比如生物芯片,在一个指甲盖大小的面积上可以把人类的所有基因,将来可能发展到所有的蛋白,都放在这个小的平面上,用定型化来进行系统化的研究。当今的生命科学的大科学平台,为我们揭示生命的奥秘提供了可能。破译"天书"只为造福社会 经过全球科学家包括中国科学家的努力,2000年6月人类基因组计划完成了框架测序,大概再过两三年,到2003年就可以把人类基因组的精细的序列完成。中国科学家承担的的1%的任务完成得还是非常优秀的,在6个国家中最早地完成了自己应该承担的区域的精细测序。也就是说,第一份人类的遗传"天书"已经展现在我们眼前,但是我们还不怎么读得懂。现在提出功能基因组计划,就是要理解这个"天书"里说的是什么内容,"天书"上的信息是怎么表达的,这种表达又是如何控制的,这种表达、控制和环境又是如何相互作用的,这种相互作用在人类的健康和疾病当中又是怎么样变化的。 人的生老病死这些活动,实际上既有遗传因素,又有环境因素。人类基因组计划研究的意义最后还是体现在对人类的实际贡献上,尤其体现在对人类重大疾病的防治上来。这里又有一个医学基因组问题。基因组是有变异的,不是一成不变的,这就为遗传信息的变异奠定了基础。为什么在一些人群和家族中比较容易发生某些疾病,比如高血压、肥胖症等。据调查,目前中国人中有25%超重,少儿肥胖者达7-8%,而且增长速度很快。这里既有遗传因素又有其他因素,医学基因组学就是要搞清那些遗传疾病的原因及其防治办法。由于人的千差万别,对于疾病的易感性,对药物的反应性包括对疗效的反应性和对副作用的反应性,都跟遗传信息的变异有关,所以,不仅要"天书"读出来,而且要把人群、个体之间主要差异,就是把"天书"里的那些符号识别出来。 基因技术提供无限商机 基因技术对医药行业来说是提供了无限商机,一部分基因的蛋白质产物可以直接用来做药,大多数基因蛋白质的产物可以用来筛选药物。化学药物在身体里作用的靶点,主要是基因编码的蛋白质。以前是先有化合物,再来一点点识别这个化合物作用在哪些靶位上。现在反过来了,先知道那么多的靶点,再来筛选化合物,这样药物发现的速度就加快了。识别疾病基因就使疾病的诊断进入到基因诊断阶段,对异常的基因进行替代,就产生了基因治疗。 人类基因组发展到今天,主要就是从整理天书到真正的生物学功能,然后应用于人类的治疗疾病、健康和医药上。人类基因组计划也推动了对其他生命基因组的研究,推而广之,还包括了对简单生命体的基因组,比如大肠杆菌一直到植物,比如水稻再到动物的研究。仅仅看到人类基因天书,很难理解为什么是人类,什么让我们区别于其他动物。把生命天书拿出来,从最简单的生命体到最复杂的人类生命进化过程中,不同阶段的生命体的遗传特性,拿出来进行比较,就可以发现在基因组水平进化的规律,了解基因组的结构和功能怎么样从简单到复杂,由低级到高级发展的。这个计划的带动对解析生命科学的最复杂问题如进化、发育、脑功能等,都有巨大作用。 中国的生命科学研究过去几十年来走过了一条艰难曲折的道路。直到20世纪80年代末期,基因组科学在很落后的情况下,争取一个很快的发展。因为基因学科是带动学科,中国的科学发生了前所未有的整合、发展,促进了生命科学的发展。应该说,人类基因组的参与,开始是跟踪,后来是参与,后来是人类疾病的研究,如果说人类疾病组的研究我们还只是补充、跟踪、参与,那么,水稻基因组的研究,我们就是主角。目前,多个课题研究进展顺利,预计2002年这些成果都可能以长篇论文的方式,在国际上最著名的重要专业刊物上发表。基因工程是生命科学的重要组成部分,比如说,分子生物学跟基因组的工作就有千丝万缕的联系。在前沿学科,我们有了比较大的进展,从耳聋的基因到血压基因、指趾基因,从白血病、肝癌到肌体瘤、鼻咽癌等等。实际上,在肿瘤基因方面,中国是国际上最早涉及的国家之一。基因研究的成果,在医学科学上起子一个很大的带动作用。 在前沿生物高科技领域,中国科学家能产生任何一种已知的生物药品。我们已经掌握了20多种生物克隆的核心技术,新近的克隆羊、克隆牛,已有成功的报道。转基因已走进生产领域,国内的基因棉花,可以和国外的转基因棉花一决雌雄。生物信息学平台已初步建立起来,而且形成一些自己的特色,在其它墓因组的研究中都已得到很好的发挥。 把知识变成经济竞争力 虽然中国的生物科学研究成果非常喜人,但离国家的要求差距还很大。加入WTO就暴露出我们的差距非常之大。在生命科学领域,我觉得有两个重要课题:一是如何提高农业的品质,另一个如何把国家的制药工业搞上去。 中国农业的效率、效益不高,竞争力不够,农民富不起来,科学界有责任啊!如何让农产品不仅是数量上,而且是质量上提高,同时不要以牺牲环境、资源为代价,只能靠科学技术。农民正眼巴巴地等着科技人员去解决农业生产上许多问题。农民富不起来,中国的现代化也是一句空话。这是吃饭的问题。 再看吃药的问题。现在中国虽然是药物生产大国,但是我们的技术创新能力很低,我们的研究能力、创新药物能力很低,90%以上都是仿制药物。我们在国际中药市场上只占3%的份额,严重落后于日本、韩国等国。当健康水平不断提高,医疗条件不断改善,总体上已经控制了大部分危性传染病,营养性(营养缺陷)的疾病也会逐步消失,将来退行性疾病会成为主要的危害。包括老年痴呆症、器官功能退化等。还有代谢性疾病,如心血管、脑血管疾病,脚颤,糖尿病等等。生老病死,由盛到衰,衰就是人体在衰老过程中的器官功能的减退,并由此引起的疾病。此外,还有外伤、器官损伤等等,进行组织和器官的再造,由此产生一个重大需求。面对这些疾病成为人类健康的障碍时,就提出了一种医学,叫"再生医学",包括减缓衰老和替代人体衰老的器官。完全由非生命材料造成的人工器官,还存在很大的局限性,所以,器官再造就成为很引人注目的生物技术发展的新潮流。在这一过程中,干细胞技术、克隆技术提供了一个条件,带来了医学新的曙光。 现在的一个重要问题是,如何把我们基础研究所积累起来的知识,要变成产品,变成市场,变成经济上的竞争力。这里首先需要科研人员转变观念,需要进行技术创新。参考资料:回答者:tianzhu345 - 门吏 三级 6-12 19:38评价已经被关闭 目前有 2 个人评价 好100% (2) 不好0% (0)
最新成果:一:在生产领域,人们可以利用基因技术,生产转基因食品.例如,科学家可以把某种肉猪体内控制肉的生长的基因植入鸡体内,从而让鸡也获得快速增肥的能力.但是,转基因因为有高科技含量, 怕吃了转基因食品中的外源基因后会改变人的遗传性状,比如吃了转基因猪肉会变得好动,喝了转基因牛奶后易患恋乳症等等。华中农业大学的张启发院士认为:“转基因技术为作物改良提供了新手段,同时也带来了潜在的风险。基因技术本身能够进行精确的分析和评估,从而有效地规避风险。对转基因技术的风险评估应以传统技术为参照。科学规范的管理可为转基因技术的利用提供安全保障。生命科学基础知识的科普和公众教育十分重要。” 二:军事上的应用.生物武器已经使用了很长的时间.细菌,毒气都令人为之色变.但是,现在传说中的基因武器却更加令人胆寒。 三: 环境保护上,也可以应用基因武器.我们可以针对一些破坏生态平衡的动植物,研制出专门的基因药物,既能高效的杀死它们,又不会对其他生物造成影响.还能节省成本.例如一直危害我国淡水区域的水葫芦,如果有一种基因产品能够高校杀灭的话,那每年就可以节省几十亿了. 科学是一把双刃剑.基因工程也不例外.我们要发挥基因工程中能造福人类的部分,抑止它的害处. 四,医疗方面 随着人类对基因研究的不断深入,发现许多疾病是由于基因结构与功能发生改变所引起的。科学家将不仅能发现有缺陷的基因,而且还能掌握如何进行对基因诊断、修复、治疗和预防,这是生物技术发展的前沿。这项成果将给人类的健康和生活带来不可估量的利益。所谓基因治疗是指用基因工程的技术方法,将正常的基因转如病患者的细胞中,以取代病变基因,从而表达所缺乏的产物,或者通过关闭或降低异常表达的基因等途径,达到治疗某些遗传病的目的。目前,已发现的遗传病有6500多种,其中由单基因缺陷引起的就有约3000多种。因此,遗传病是基因治疗的主要对象。 第一例基因治疗是美国在1990年进行的。当时,两个4岁和9岁的小女孩由于体内腺苷脱氨酶缺乏而患了严重的联合免疫缺陷症。科学家对她们进行了基因治疗并取得了成功。这一开创性的工作标志着基因治疗已经从实验研究过渡到临床实验。1991年,我国首例B型血友病的基因治疗临床实验也获得了成功。 基因治疗的最新进展是即将用基因枪技术于基因治疗。其方法是将特定的DNA用改进的基因枪技术导入小鼠的肌肉、肝脏、脾、肠道和皮肤获得成功的表达。这一成功预示着人们未来可能利用基因枪传送药物到人体内的特定部位,以取代传统的接种疫苗,并用基因枪技术来治疗遗传病。 目前,科学家们正在研究的是胎儿基因疗法。如果现在的实验疗效得到进一步确证的话,就有可能将胎儿基因疗法扩大到其它遗传病,以防止出生患遗传病症的新生儿,从而从根本上提高后代的健康水平。 五,基因工程药物研究 基因工程药物,是重组DNA的表达产物。广义的说,凡是在药物生产过程中涉及用基因工程的,都可以成为基因工程药物。在这方面的研究具有十分诱人的前景。 基因工程药物研究的开发重点是从蛋白质类药物,如胰岛素、人生长激素、促红细胞生成素等的分子蛋白质,转移到寻找较小分子蛋白质药物。这是因为蛋白质的分子一般都比较大,不容易穿过细胞膜,因而影响其药理作用的发挥,而小分子药物在这方面就具有明显的优越性。另一方面对疾病的治疗思路也开阔了,从单纯的用药发展到用基因工程技术或基因本身作为治疗手段。 现在,还有一个需要引起大家注意的问题,就是许多过去被征服的传染病,由于细菌产生了耐药性,又卷土重来。其中最值得引起注意的是结核病。据世界卫生组织报道,现已出现全球肺结核病危机。本来即将被消灭的结核病又死灰复燃,而且出现了多种耐药结核病。据统计,全世界现有亿人感染了结核病菌,每年有900万新结核病人,约300万人死于结核病,相当于每10秒钟就有一人死于结核病。科学家还指出,在今后的一段时间里,会有数以百计的感染细菌性疾病的人将无药可治,同时病毒性疾病日益曾多,防不胜防。不过与此同时,科学家们也探索了对付的办法,他们在人体、昆虫和植物种子中找到一些小分子的抗微生物多肽,它们的分子量小于4000,仅有30多个氨基酸,具有强烈的广普杀伤病原微生物的活力,对细菌、病菌、真菌等病原微生物能产生较强的杀伤作用,有可能成为新一代的“超级抗生素”。除了用它来开发新的抗生素外,这类小分子多肽还可以在农业上用于培育抗病作物的新品种。 六,加快农作物新品种的培育 科学家们在利用基因工程技术改良农作物方面已取得重大进展,一场新的绿色革命近在眼前。这场新的绿色革命的一个显著特点就是生物技术、农业、食品和医药行业将融合到一起。 本世纪五、六十年代,由于杂交品种推广、化肥使用量增加以及灌溉面积的扩大,农作物产量成倍提高,这就是大家所说的“绿色革命”。但一些研究人员认为,这些方法目前已很难再使农作物产量有进一步的大幅度提高。 基因技术的突破使科学家们得以用传统育种专家难以想象的方式改良农作物。例如,基因技术可以使农作物自己释放出杀虫剂,可以使农作物种植在旱地或盐碱地上,或者生产出营养更丰富的食品。科学家们还在开发可以生产出能够防病的疫苗和食品的农作物。 基因技术也使开发农作物新品种的时间大为缩短。利用传统的育种方法,需要七、八年时间才能培育出一个新的植物品种,基因工程技术使研究人员可以将任何一种基因注入到一种植物中,从而培育出一种全新的农作物品种,时间则缩短一半。 虽然第一批基因工程农作物品种5年前才开始上市,但今年美国种植的玉米、大豆和棉花中的一半将使用利用基因工程培育的种子。据估计,今后5年内,美国基因工程农产品和食品的市场规模将从今年的40亿美元扩大到200亿美元,20年后达到750亿美元。有的专家预计,“到下世纪初,很可能美国的每一种食品中都含有一点基因工程的成分。” 尽管还有不少人、特别是欧洲国家消费者对转基因农产品心存疑虑,但是专家们指出,利用基因工程改良农作物已势在必行。这首先是由于全球人口的压力不断增加。专家们估计,今后40年内,全球的人口将比目前增加一半,为此,粮食产量需增加75%。另外,人口的老龄化对医疗系统的压力不断增加,开发可以增强人体健康的食品十分必要。 加快农作物新品种的培育也是第三世界发展中国家发展生物技术的一个共同目标,我国的农业生物技术的研究与应用已经广泛开展,并已取得显著效益。 七,分子进化工程的研究 分子进化工程是继蛋白质工程之后的第三代基因工程。它通过在试管里对以核酸为主的多分子体系施以选择的压力,模拟自然中生物进化历程,以达到创造新基因、新蛋白质的目的。 这需要三个步骤,即扩增、突变、和选择。扩增是使所提取的遗传信息DNA片段分子获得大量的拷贝;突变是在基因水平上施加压力,使DNA片段上的碱基发生变异,这种变异为选择和进化提供原料;选择是在表型水平上通过适者生存,不适者淘汰的方式固定变异。这三个过程紧密相连缺一不可。 现在,科学家已应用此方法,通过试管里的定向进化,获得了能抑制凝血酶活性的DNA分子,这类DNA具有抗凝血作用,它有可能代替溶解血栓的蛋白质药物,来治疗心肌梗塞、脑最新技术:(一)反义技术 根据目前研究的内容,反义技术(antisense technology)是指根据碱基互补原理,用人工合成(或生物体合成)的特定互补RNA或DNA片段(或其化学修饰产物)抑制或封闭基因表达的技术。反义技术理论的形成和发展是以原核生物中天然存在的反义RNA及其调控机理的研究为基础的。在真核生物中一直尚未找到天然存在的反义RNA调控系统,但检测出了许多具有互补碱基序列的小分子RNA,推测其中一部分可能参与基因表达调控,起着类似于反义RNA的作用。1.反义RNA的人工合成 常见的获得反义RNA的方法与基因工程方法相同。首先是以mRNA为模板,合成互补的一条DNA链;然后再以此互补DNA为模板合成互补配对的另一条DNA链,所得到的双链DNA片段就是目的基因片段,反向装上启动子和终止子并反向地插入适当的载体中。将此重组载体导入细胞,当重组载体表达时,就会转录出反义RNA。此外也可以用人工合成的反义寡聚核苷酸,用以解除核糖体的翻译活性。2.反义RNA的作用原理 反义RNA是通过与靶基因转录的RNA碱基互补形成复合体,参与有关基因表达的调控,推测反义RNA的作用方式可能是:①与mRNA形成二聚体,阻断了mRNA与核糖体的结合,以致不能进行翻译。②与mRNA结合,使mRNA不能向细胞质运输,造成特定基因失活或关闭。③与mRNA结合,使得mRNA易被酶识别而降解。④反义RNA与DNA结合,使DNA的复制受阻。3.反义技术的应用前景 反义技术的操作和突变不同,能在不破坏目的基因的前提下调控基因的表达,因此,它既是阐明基因功能的一种新手段,又拓宽了通过基因工程改良动、植物品质和治疗疾病的途径。1986年Ecker等首先报道了反义技术在植物基因工程中的应用情况。他们用农杆菌上的nos等启动子构建了一组有义和反义的氯霉素乙烯转移酶(CAT)基因载体,将这些有义和反义的载体按一定比例混合,通过电激融合法,同时转化胡萝卜原生质体。在继续培养的原生质体再生细胞中,发现cat基因的表达受到了明显的抑制,且其抑制程度随反义基因质粒的增加而增强。目前在植物中反义RNA的研究主要是在控制花的颜色及果实成熟和后熟方面,如对番茄果实成熟和软化控制的研究已取得令人瞩目的进展。这就是把与果实软化和成熟相关的酶如多聚乳糖醛酸酶(PG)、乙烯形成酶(EFE)等基因的反义RNA转入番茄。对转化体的自交后代的分析结果表明,果实细胞壁软化受到了显著的抑制,从而增加了果实的耐压抗裂性,贮藏期延长,果实的加工特性也有所改善。对于改良作物品种的不良性状,克服产品中的不良性质,反义基因技术有其独特的优点。反义技术的建立扩展了机体抵御外来微生物的经典免疫学概念,这就是用反义RNA通过核酸分子之间的相互作用,可以抑制外源病毒等的侵袭。如用反义RNA已成功地抑制了流感病毒、疱疹病毒和人类免疫缺陷综合症病毒等对所培养的组织细胞的侵袭。针对植物病毒的反义RNA可使植株产生保护和抗害作用。在癌症及遗传病治疗方面,反义技术也同样展现了令人鼓舞的前景。如将携带反义RNA的骨髓白血病(MYC)基因及编码大肠杆菌黄嘌呤鸟嘌呤磷酸核糖转移酶基因的质粒,通过原生质体融合并引入到前骨髓白血病细胞系,获得高水平表达反义MYC RNA的细胞系,其MYC蛋白质比对照组下降70%。结果还表明,反义RNA不仅能在转录水平而且还能在翻译水平抑制癌基因的表达。反义RNA对细胞内原癌基因的阻抑,不仅使细胞增殖力下降,还启动了单细胞分化,进而使癌变得以缓解乃至痊愈。(二)蛋白质工程1.蛋白质工程的主要内容 蛋白质工程(protein engineering)是近十余年来在基因工程取得成就的基础上,融合蛋白质结晶学、计算机辅助设计以及蛋白质化学等多种学科而形成的一个新的研究领域。蛋白质空间结构的信息包含在它的氨基酸排列顺序中,而这种氨基酸的排列顺序又是由其编码基因的核苷酸序列所决定的,因此,通过对其编码基因的修饰和基因工程途径,便可创造出新型的蛋白质分子。可见蛋白质工程正是集中了当前分子生物学中一些前沿领域的最新成就,把核酸研究与蛋白质研究相结合,把基础研究与应用研究相结合,使人类从认识生命走向改造生命。遗传工程使人类能以在控制条件下生产自然界中存在的蛋白质,而蛋白质工程则开创了按人们意愿设计制造符合人类所需蛋白质分子的新时期,因此被誉为第二代遗传工程。蛋白质工程的具体程序大抵是:首先分离纯化~ mg目的蛋白质,测定其部分肽段的一级结构,据此及编码原则合成含有同位素标记的寡聚核苷酸探针,从基因文库中分离编码该蛋白质的克隆化基因,转入噬菌体M13系统,用双脱氧链端终止法完成其DNA序列分析,通过表达载体获得较大量(~)该蛋白质。用于空间结构测定,从晶体结构模型及结构与功能研究出发,借助计算机辅助分子设计提出分子预期性质及改造方案。通过合成寡核苷酸-M13系统定位突变并分离其突变体,引入表达载体生产并纯化多量突变型蛋白质,分析及测试其性质,指导进一步分子设计,以最终获得所预期性质的分子(图19-13)。2.蛋白质工程研究中寡核苷酸诱导的定点突变 蛋白质工程是一门从改变基因入手,创造新的蛋白质的技术科学,因此,改变基因的方法就成为蛋白质工程的主要内容之一。蛋白质工程研究中使用的基因突变技术,按照对突变位点确定的程度,大致可分为定点突变和非定点突变两大类。定点突变是对已知序列的基因(DNA)中任意指定位置进行突变的技术,包括核苷酸的置换、插入或删除。非定点突变是指那些不能预先确定产生突变位点的点突变技术。在基因突变技术中采用寡核苷酸诱导的定点突变(oligonucleotide-directed mutagenesis)方法,可以定向地改变基因的序列结构,也就是说用这种方法可以改变任何想要改变的碱基。因此,这一方法已成为当前蛋白质工程中改变基因的主要方法。这项技术主要是利用带有预定突变序列的寡核苷酸单链引物,在体外与原基因序列退火,诱导合成少量完整的突变基因,然后,通过体内增殖得到大量的突变基因。其具体步骤如图19-14。在此技术中,最初用作单链模板的DNA分子为ΦX174噬菌体。近年来随着单链噬菌体M13运载系统的发展,由于它所具有的一些优点,如含有许多可被克隆的位点,转化产生的噬菌斑可根据插入物的有无呈现不同颜色而易于筛选,这类运载体在宿主细胞中拷贝数多(约200个)而表达效率高,这一系统可插入的外源DNA长度变化范围也较大,以及能够较简便快捷地提取到单链模板DNA,因而M13运载系统已被广泛地应用于位点定向诱变工作。到20世纪80年代中期,利用定点突变法已先后进行了枯草杆菌蛋白酶、二氢叶酸还原酶、胰蛋白酶以及酪氨酰-tRNA合成酶的基因改造。血栓等疾病。提问者评价谢了评论(3)|34zhen玉玲珑 |四级采纳率17%擅长:生活网络游戏教育/科学按默认排序|按时间排序其他1条回答检举|2008-09-06 20:19laozijsj|三级2月27至28日,依托北京大学的蛋白质工程及植物基因工程国家重点实验室接受了国家科技部委托国家自然科学基金委组织的评估。评估工作检阅了重点实验室五年来的研究成果,专家组认为比上一个评估周期有明显进步,取得了显著成绩。特别是近三年来,重点实验室的研究人员连续在世界一流学术刊物《植物细胞》(Plant Cell)、《美国科学院院报》(Proc. Natl. Acad. Sci.)上发表了多篇有重要影响的科研论文,反映了重点实验室强劲的发展势头和突出成果。 最新一期的Plant Cell(2006年3月,第18卷651-664页)上发表了重点实验室朱玉贤教授研究组的研究论文,此项研究采用转录组学、生物信息学(与重点实验室魏丽萍研究组合作)、生物化学及植物生理学方法证实植物激素乙烯控制棉花纤维伸长。这是棉花纤维发育和细胞伸长机制研究中的一个重大突破,也是乙烯参与调控植物细胞伸长的最新证据。 仅仅在半年以前,重点实验室瞿礼嘉教授研究组刚刚在这个植物科学界最有影响力的刊物上发表了研究论文(Plant Cell,2005年10月,第17卷2693-2704页)。他们通过对一个叶片显著上卷的拟南芥突变体(iamt1-D)的研究,发现编码吲哚乙酸(IAA)羧甲基转移酶的IAMT1基因过量表达是引起该突变表型的根本原因,证明IAA的甲基化在调节植物的发育和植物生长素的动态平衡上起重要作用。他们的研究还发现,外源施加的IAA甲酯抑制主根和下胚轴的伸长的活性比IAA更强,表明植物可以通过甲基化来有效地调节IAA活性。该项研究首次证明植物叶片的平展和发育涉及植物生长素活性的合理空间分布。 重点实验室赵进东教授研究组对钙离子在蓝藻异型胞分化中的作用进行系统深入的研究,研究成果连续两年发表在Proc. Natl. Acad. Sci.上。他们研究发现调控异型胞分化的主开关基因产物HetR是一个DNA结合蛋白,HetR与DNA的结合是异型胞分化的前提,异型胞分化抑制物PatS能抑制HetR与DNA的结合,证明HetR与PatS的相互作用是调控异型胞格式形成的关键。该研究成果2004年4月发表于Proc. Natl. Acad. Sci.(第101卷4848-4853页)。随后,他们又克隆了一个蓝藻的钙结合蛋白基因(称为CcbP),并证明钙离子对蓝藻异型胞分化有关键性调节作用。该研究成果在2005年4月以封面论文的形式发表于Proc. Natl. Acad. Sci.(102: 5744–5748页)。 重点实验室许智宏院士和白书农教授共同主持的研究组用组蛋白去乙酰化酶抑制剂TSA处理拟南芥植株,发现组蛋白乙酰化模式的改变直接影响了部分在根表皮细胞分化模式决定过程中有重要作用的基因表达。据此,他们提出组蛋白乙酰化是诱导根表皮细胞分化模式形成的“位置信息”的重要介导组分,为认识植物细胞模式形成机制提供了新的视角。该研究成果2005年10月发表于Proc. Natl. Acad. Sci.(第102卷14469–14474页)。 重点实验室苏晓东教授研究组以三维晶体结构为基础,结合生物化学及细胞生物学方法确定了一个人类未知功能蛋白AD-004为核定位的核苷酸激酶,将其命名为AK6(Adenylate Kinase,AK),是第一类被发现定位于细胞核内的腺苷酸激酶。AK6不仅在核苷酸及能量代谢研究领域具有重大理论价值,最近国际上其他实验室的结果表明,它很可能与真核细胞中核糖体的组装相关。AK6的晶体结构解析是在国内首次利用实验室常规转靶光源,通过测定天然蛋白晶体中的硫(S)原子反常散射信号(S-SAD)完成的,在方法学上也有新贡献。该研究成果2005年1月发表于Proc. Natl. Acad. Sci.(第102卷303–308页)。 蛋白质工程及植物基因工程国家重点实验室研究人员发表的上述有重要影响的研究论文,均以北京大学作为第一作者单位及通讯作者单位,对于提升北京大学在相关领域的国际地位发挥了重要作用。根据美国科学情报研究所(ISI)科学引文数据库(SCI)截止到2005年10月的统计,北京大学(含原北京医科大学)共有9个研究领域跻身全球引用前1%排行榜,包括数学、物理学、化学、生物学与生物化学、地球科学、材料科学、工程、植物与动物科学、临床医学。其中,蛋白质工程及植物基因工程国家重点实验室基本涵盖并涉及了北京大学植物科学及生物化学这两个学科点,充分表明该实验室已经成为国际上相关领域具有重要影响的基础研究基地。
高中的生物书上也有,例如基因修复,培养转基因动植物等。
基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。下面是由我整理的基因工程学术论文,谢谢你的阅读。 基因工程学术论文篇一 摘 要:基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。这项工程创造出原本自然界不存在的重组基因。它不仅为医药界带来新希望,在农业上提高产量改良作物,并且对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。基因工程的发展现状和前景是怎么样呢,而又有哪些利弊? 关键词:基因工程;发展现状;发展前景;基因工程利弊 一、基因工程 (一)基因工程的概念及发展 1.概念 基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 2.发展 生物学家于20 世纪50 年代发现了DNA 的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。60 年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。 (二)基因工程的发展现状及前景 1.发展现状 (1)基因工程应用于农业方面。运用基因工程方法,把负责特定的基因转入农作物中去,构建转基因植物,有抗病虫害,抗逆,保鲜,高产,高质的优点。 下面列举几个代表性方法。 ①增加农作物产品营养价值如:增加种子、块茎蛋白质含量,改变植物蛋白必需氨基酸比例等。 ②提高农作物抗逆性能如:抗病虫害、抗旱、抗涝、抗除草剂等性能。 ③生物固氮的基因工程。若能把禾谷等非豆科植物转变为能同根瘤菌共生,或具固氮能力,将代替无数个氮肥厂。④增加植物次生代谢产物产率。植物次生代谢产物构成全世界药物原料的 25% ,如治疗疟疾的奎宁、治疗白血病的长春新碱、治疗高血压的东莨菪碱、作为麻醉剂的吗啡等。 ⑤运用转基因动物技术,可培育畜牧业新品种。 二、基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快产业之一,前景广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。对预防人类肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 并且应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。 三、基因工程应用于环保方面 工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,基因工程技术可提高微生物净化环境的能力。美国利用DNA 重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4 种菌体基因链接,转移到某一菌体中构建出可同时降解4 种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3 烃类降解完,而天然菌株需 1 年之久。90 年代后期问世的DNA 改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR 技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。 (一)发展前景 基因工程应用重组DNA 技术培育具有改良性状的粮食作物的工作已初见成效。重组DNA 技术的一个显著特点是,它注往可以使一个生物获得与之固有性状完全无关的新功能,从而引起生物技术学发生革命性的变革,使人们可以在大量扩增的细胞中生产哺乳动物的蛋白质,其意义无疑是相当重大的。将控制这些药物合成的目的基因克隆出来,转移到大肠杆菌或其它生物体内进行有效的表达,于是就可以方便地提取到大量的有用药物。目前在这个领域中已经取得了许多成功的事例,其中最突出的要数重组胰岛素的生产。 重组DNA 技术还有力地促进了医学科学研究的发展。它的影响所及有疾病的临床诊断、遗传病的基因治疗、新型疫苗的研制以及癌症和艾滋病的研究等诸多科学,并且均已取得了相当的成就。 (二)基因工程的利与弊 1.基因工程的利 遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。 基因筛检并不改变人的遗传组成,但基因治疗则会。目前全世界正重视发展永续性农业,希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。 2.基因工程的弊 广泛的基因筛检将会引起一连串的社会问题。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。基因工程会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。转基因食品不同于相同生物来源之传统食品,遗传性状的改变,将可能影响细胞内之蛋白质组成,进而造成成份浓度变化或新的代谢物生成,其结果可能导致有毒物质产生或引起人的过敏症状,甚至有人怀疑基因会在人体内发生转移,造成难以想象的后果。转基因食品潜在危害包括:食物内所产生的新毒素和过敏原;不自然食物所引起其它损害健康的影响;应用在农作物上的化学药品增加水和食物的污染;抗除草剂的杂草会产生;疾病的散播跨越物种障碍;农作物的生物多样化的损失;生态平衡的干扰。 四、结束语 随着社会科技的进步,基因工程的发展将成为必然。尽管它会给我们带来一些危害但是仍然为我们带来了很多好处。不仅为我们提供了新的能源而且促进了各国的经济的发展,所以在我们发展基因工程的同时应该尽力避免一些危害,而让有利的方面尽可能应用。 参考文献: [1]陈宏.2004.基因工程原理与应用.北京:中国农业 出版社 [2]胡银岗.2006.植物基因工程.杨凌.西北农林科技大学出版社 [3]刘祥林.聂刘旺.2005.基因工程.北京:科学出版社 [4]陆德如.陈永青.2002.基因工程.北京:化学工业出版社 [5]王关林.方宏筠.2002.植物基因工程.北京:科学出版社 基因工程学术论文篇二 基因工程蛋白药物发展概况 【摘要】近些年,随着生物技术的发展,基因工程制药产业突飞猛进,本文就一些相关的重要蛋白药物的市场概况和研究进展作一概述。 【关键词】基因工程 蛋白药物 发展概况 中图分类号:R97 文献标识码:B 文章编号:1005-0515(2011)6-255-03 基因工程制药是随着生物技术革命而发展起来的。1980 年,美国通过Bayh-Dole 法案,授予科学家 Herbert Boyer 和 Stanley Cohen 基因克隆专利,这是现代生物制药产业发展的里程碑。1982 年,第一个生物医药产品在美国上市销售,标志着生物制药业从此走入市场[1]。 生物制药业有不同于传统制药业的特点:首先,生物制药具有“靶向治疗”作用;其次,生物制药有利于突破传统医药的专利保护到期等困境;再次,生物制药具有高技术、高投入、高风险、高收益特性;此外,生物制药具有较长的产业链[1]。生物制药业这一系列的特点决定了其在21世纪国民经济中的重要地位,历版中国药典收录的生物药物品种也是逐渐增多[2](图一)。 当前生物制药业的发展趋势在于不断地改进、完善和创新生物技术,在基因工程药物研发投入逐年增加的基础上,我国生物制药的产值及利润增长迅猛, 2006-2008年三年就实现了利润翻番[2](表一)。随着研究的深入,当前生物药的热点逐渐聚焦到通过新技术大量生产一些对医疗有重要意义且成分确定的蛋白上。研究表明,在我国的基因工程药物中,蛋白质类药物超过50%[3]。而这些源自基因工程菌表达的蛋白,如疫苗、激素、诊断工具、细胞因子等在生物医学领域的应用主要包括4个方面:即疾病或感染的预防;临床疾病的治疗;抗体存在的诊断和新疗法的发现。利用基因工程技术(重组DNA技术)生产蛋白主要有三方面的理由:1.需求性,天然蛋白的供应受限制,随需求的不断增加,数量上难以满足,使它得不到广泛应用;2.安全性,一些天然蛋白质的原料可能受到致病性病毒的污染,且难以消除或钝化;3.特异性,来自天然原料的蛋白往往残留污染,会引起诊断试验所不应有的背景[4]。 以下将介绍一些基因工程产物的市场概况和研究发展。 1 促红细胞生成素 是细胞因子的一种,在骨髓造血微环境下促进红细胞的生成。1985年科学家应用基因重组技术,在实验室获得重组人EPO(rhEPO),1989年安进(Amgen)公司的第一个基因重组药物Epogen获得FDA的批准,适应症为慢性肾功能衰竭导致的贫血、恶性肿瘤或化疗导致的贫血、失血后贫血等[5,6]。 2001年,EPO的全球销售额达亿美元,2002年达亿美元,2003年全世界EPO的年销售额超过50亿美元。创下生物工程药品单个品种之最,是当今最成功的基因工程药物。用过EPO的大多数病人感觉良好,在治疗期间无明显毒副作用或功能失调。重组体CHO细胞可以放大到生产规模以满足对EPO的需求。 2 胰岛素 自1921 年胰岛素被Banting 等人成功提取并应用于临床以来,已经挽救了无数糖尿病患者的生命。仅2000年,胰岛素在全球范围内就大约延长了5100万名I型糖尿病病人的寿命。20世纪80年代初,人胰岛素又成为了商业现实;80 年代末利用基因重组技术成功生物合成人胰岛素,大肠杆菌和酵母都被用作胰岛素表达的寄主细胞[7]。 国内外可工业化生产人胰岛素的企业只有美国的礼来公司、丹麦的诺和诺德公司、法国的安万特公司和中国北京甘李生物技术有限公司等,胰岛素类似物也仅在上述4个国家生产,且每个公司只能生产艮效或速效类似物巾的个品种,主要原因是要达到生物合成人胰岛素产业化的技术难度特别大,若无高精尖的高密度发酵技术、纯化技术和工业化生产经验是无法实现的[8]。 3 疫苗 在人类历史上,曾经出现过多种造成巨大生命和财产所示的疫症,而在预防和消除这些疫症的过程中疫苗发挥了十分关键的作用。所以疫苗被评为人类历史上最重大的发现之一。 疫苗可分为传统疫苗(t raditional vaccine) 和新型疫苗(new generation vaccine)或高技术疫苗( high2tech vaccine)两类,传统疫苗主要包括减毒活疫苗、灭活疫苗和亚单位疫苗,新型疫苗主要是基因工程疫苗。疫苗的作用也从单纯的预防传染病发展到预防或治疗疾病(包括传染病) 以及防、治兼具[2]。 随着科技的发展,对付艾滋病、癌症、肝炎等多种严重威胁人类生命安全的疫苗开发取得巨大进展,这其中也孕育着巨大的商业机会[9], 2007年全球疫苗销售额就已达到163亿美元,据美林证券公布的一份研究报告显示,全球疫苗市场正以超过13%的符合增长率增长。而我国是疫苗的新兴市场,国内疫苗市场发展潜力巨大,年增长率超过15%。 在以细胞培养为基础的疫苗、抗体药物生产中,Vero细胞、BHK21细胞、CHO细胞和Marc145细胞是最常用的细胞,这些细胞的反应器大规模培养技术支撑着行业的技术水平[4]。建立细胞培养和蛋白表达技术平台,进一步完善生物反应器背景下的疫苗生产支撑技术是当前国际疫苗产业研究的重点。 4 抗体 从功能上划分,抗体可分为治疗性抗体和诊断性抗体;从结构特点上划分,抗体可分为单克隆抗体和多克隆抗体。抗体可有效地治疗各种疾病,比如自身免疫性疾病、心血管病、传染病、癌症和炎症等[10,11]。抗体药物的一大特点在于其较低甚至几乎可以忽略的毒性。另外一个优势是,抗体本身也许既可被当作一种治疗武器,也可被用作传递药物的一种工具。除了全人源化抗体以外,与小分子药物、毒素或放射性有效载荷有关的结合性抗体也已经在理论上显示出了强大的潜力,尤其是在癌症治疗方面[12]。 治疗性抗体是世界销售额最高的一类生物技术药物,2008 年治疗性抗体销售额超过了300 亿美元,占了整个生物制药市场40%。在美国批准的99 种生物技术药物中,抗体类药物就占了30 种;在633 种处于临床研究的生物技术药物中, 有192 种为抗体药物,而在抗癌及自身免疫性疾病的治疗研究中,治疗性抗体占了一半[2]。截止2007年,美国FDA批准上市的抗体药物见表二[13]。 参考文献 [1] 章江益, 孙瑜, 王康力. 美国生物制药产业发展及启示[J]. 江苏科技信息. 2011, 1(5): 11-14. [2] 王友同, 吴梧桐, 吴文俊. 我国生物制药产业的过去、现在和将来. 药物生物技术[J]. 2010, 17(1): 1-14. [3] 吴梧桐, 王友同, 吴文俊. 21世纪生物工程药物的发展与展望[J]. 药物生物技术. 2000, 7(2): 65-70. [4] 储炬, 李友荣. 现代工业发酵调控学(第二版)[M]. 化学工业出版社. [5] Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cell[J]. Cell Physiol, 1988, 137(1):65. [6] Cuzzole M, Mercurial F, Brugnara C. Use of recombinant human Erthro-poietin outside the setting of uremia[J]. Blood, 1997, 89(12): 4248-4267. [7] 李萍, 刘国良. 最新胰岛素制剂的研究进展概述[J]. 中国实用内科杂志. 2003, 23(1): 19-20. [8] 张石革, 梁建华. 胰岛素及胰岛素类似物的进展与应用[J]. 药学专论. 2005, 14(11): 21-23. [9] 徐卫良. 生物制品供应链优化与供货提前期缩短问题研究――基于葛兰素史克(中国)疫苗部的实例分析(硕士学位论文). 上海交通大学, 2005. [10] Presta LG. Molecular engineering and design of therapentic antilodies[J]. Curr Opin Immunol, 2008, 20(4): 460. [11] Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies[J]. Immunol Rev, 2008, 222: 9. [12] 陈志南. 基于抗体的中国生物制药产业化前景. 中国医药生物技术[J]. 2007, 1(1): 2. [13] 于建荣, 陈大明, 江洪波. 抗体药物研发现状与发展态势[J]. 生物产业技术. 2009, 1(3): 49.看了"基因工程学术论文"的人还看: 1. 高中生物选修三基因工程知识点总结 2. 高二生物基因工程知识点梳理 3. 浅谈基因工程在农业生产中的应用 4. 植物叶绿体基因工程发展探析 5. 关于蔬菜种植的学术论文
基因工程技术的现状和前景发展 【摘要】从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。【关键词】基因工程技术;前景;现状一、基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,大大提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。二、基因工程应用于医药方面目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。三、基因工程应用于环保方面工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术可提高微生物净化环境的能力。美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因链接,转移到某一菌体中构建出可同时降解4种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3烃类降解完,而天然菌株需1年之久。也有人把Bt蛋白基因、球形芽孢杆菌、且表达成功。它能钉死蚊虫与害虫,而对人畜无害,不污染环境。现已开发出的基因工程菌有净化农药的DDT的细菌、降解水中的染料、环境中有机氯苯类和氯酚类、多氯联苯的工程菌、降解土壤中的TNT炸药的工程菌及用于吸附无机有毒化合物(铅、汞、镉等)的基因工程菌及植物等。90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。四、前景展望由于基因工程运用DNA分子重组技术,能够按照人们预先的设计创造出许多新的遗传结合体,具有新奇遗传性状的新型产物,增强了人们改造动植物的主观能动性、预见性。而且在人类疾病的诊断、治疗等方面具有革命性的推动作用,对人口素质、环境保护等作出具大贡献。所以,各国政府及一些大公司都十分重视基因工程技术的研究与开发应用,抢夺这一高科技制高点。其应用前景十分广阔。我国基因工程技术尚落后于发达国家,更应当加速发展,切不可坐失良机。但是,任何科学技术都是一把“双刃剑”,在给人类带来利益的同时,也会给人类带来一定的灾难。比如基因药物,它不仅能根治遗传性疾病、恶性肿瘤、心脑血管疾病等,甚至人的智力、体魄、性格、外表等亦可随意加以改造;还有,克隆技术如果不加限制,任其自由发展,最终有可能导致人类的毁灭。还有,尽管目前的转基因动植物还未发现对人类有什么危害,但不等于说转基因动植物就是十分安全的,毕竟这些东西还是新生事物,需要实践慢慢地检验。转基因生物和常规繁殖生长的品种一样,是在原有品种的基础上对其部分性状进行修饰或增加新性状,或消除原来的不利性状,但常规育种是通过自然选择,而且是近缘杂交,适者生存下来,不适者被淘汰掉。而转基因生物远远超出了近缘的范围,人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确地预测。所以,我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因生物的安全性。【参考文献】[1]楼士林,杨盛昌,龙敏南,等.基因工程[M].北京:科学出版社,2002.[2]李庆军,董艳桐,施冰.植物抗虫基因的研究进展[J].林业科技,2002,27(2):22 26. 这还有一篇
基因工程技术的现状和前景发展 【摘要】从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。【关键词】基因工程技术;前景;现状一、基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,大大提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。二、基因工程应用于医药方面目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。三、基因工程应用于环保方面工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术可提高微生物净化环境的能力。美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因链接,转移到某一菌体中构建出可同时降解4种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3烃类降解完,而天然菌株需1年之久。也有人把Bt蛋白基因、球形芽孢杆菌、且表达成功。它能钉死蚊虫与害虫,而对人畜无害,不污染环境。现已开发出的基因工程菌有净化农药的DDT的细菌、降解水中的染料、环境中有机氯苯类和氯酚类、多氯联苯的工程菌、降解土壤中的TNT炸药的工程菌及用于吸附无机有毒化合物(铅、汞、镉等)的基因工程菌及植物等。90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。四、前景展望由于基因工程运用DNA分子重组技术,能够按照人们预先的设计创造出许多新的遗传结合体,具有新奇遗传性状的新型产物,增强了人们改造动植物的主观能动性、预见性。而且在人类疾病的诊断、治疗等方面具有革命性的推动作用,对人口素质、环境保护等作出具大贡献。所以,各国政府及一些大公司都十分重视基因工程技术的研究与开发应用,抢夺这一高科技制高点。其应用前景十分广阔。我国基因工程技术尚落后于发达国家,更应当加速发展,切不可坐失良机。但是,任何科学技术都是一把“双刃剑”,在给人类带来利益的同时,也会给人类带来一定的灾难。比如基因药物,它不仅能根治遗传性疾病、恶性肿瘤、心脑血管疾病等,甚至人的智力、体魄、性格、外表等亦可随意加以改造;还有,克隆技术如果不加限制,任其自由发展,最终有可能导致人类的毁灭。还有,尽管目前的转基因动植物还未发现对人类有什么危害,但不等于说转基因动植物就是十分安全的,毕竟这些东西还是新生事物,需要实践慢慢地检验。转基因生物和常规繁殖生长的品种一样,是在原有品种的基础上对其部分性状进行修饰或增加新性状,或消除原来的不利性状,但常规育种是通过自然选择,而且是近缘杂交,适者生存下来,不适者被淘汰掉。而转基因生物远远超出了近缘的范围,人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确地预测。所以,我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因生物的安全性。【参考文献】[1]楼士林,杨盛昌,龙敏南,等.基因工程[M].北京:科学出版社,2002.[2]李庆军,董艳桐,施冰.植物抗虫基因的研究进展[J].林业科技,2002,27(2):22 26. 这还有一篇
晕,怎么都是关于这样的文章,我都回答4道了。内容:基因工程是指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。 基因工程是利用重组技术,在体外通过人工“剪切”和“拼接”等方法,对各种生物的核酸(基因)进行改造和重新组合,然后导入微生物或真核细胞内进行无性繁殖,使重组基因在细胞内表达,产生出人类需要的基因产物,或者改造、创造新的生物类型。 从实质上讲,基因工程的定义强调了外源DNA分子的新组合被引入到一种新的寄主生物中进行繁殖。这种DNA分子的新组合是按工程学的方法进行设计和操作的,这就赋予基因工程跨越天然物种屏障的能力,克服了固有的生物种间限制,扩大和带来了定向创造生物的可能性,这是基因工程的最大特点。 基因工程包括把来自不同生物的基因同有自主复制能力的载体DNA在体外人工连接,构成新的重组的DNA,然后送到受体生物中去表达,从而产生遗传物质和状态的转移和重新组合。 基因工程要素:包括外源DNA,载体分子,工具酶和受体细胞等。 一个完整的、用于生产目的的基因工程技术程序包括的基本内容有:(1)外源目标基因的分离、克隆以及目标基因的结构与功能研究。这一部分的工作是整个基因工程的基础,因此又称为基因工程的上游部分;(2)适合转移、表达载体的构建或目标基因的表达调控结构重组;(3)外源基因的导入;(4)外源基因在宿主基因组上的整合、表达及检测与转基因生物的筛选;(5)外源基因表达产物的生理功能的核实;(6)转基因新品系的选育和建立,以及转基因新品系的效益分析;(7)生态与进化安全保障机制的建立;(8)消费安全评价。目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。这是基因工程的第四步工作。 以上步骤完成后,在全部的受体细胞中,真正能够摄入重组DNA分子的受体细胞是很少的。因此,必须通过一定的手段对受体细胞中是否导入了目的基因进行检测。检测的方法有很多种,例如,大肠杆菌的某种质粒具有青霉素抗性基因,当这种质粒与外源DNA组合在一起形成重组质粒,并被转入受体细胞后,就可以根据受体细胞是否具有青霉素抗性来判断受体细胞是否获得了目的基因。重组DNA分子进入受体细胞后,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程。忘了问一下,是多少字的论文。(希望能采纳,一个字一个字打进去的,没有功劳也有苦劳)
基因工程的利弊基因工程的利与弊说【摘要与前言】基因工程技术,在医药及农业上应用广泛。这项尖端科技加上最近突破性的生殖科技,却引发人们极大的隐忧及争论。生物学家在一百多年前就知道,生物的表征遗传自其亲代。生物细胞的细胞核,含有染色体,组成分为DNA。DNA含有四种碱基(简称A、T、C、G)。这些碱基在DNA中看似杂乱无章,但它们的排列顺序,正代表遗传讯息。每三个碱基代表一种胺基酸的密码。基因就是这些遗传密码的组合,亦即代表蛋白质的胺基酸序列。每个基因含有启动控制区,以调控基因的表达。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。基因工程对于人类的利弊一直是个争议的问题,主要是这项技术创造出原本自然界不存在的重组基因。但它为医药界带来新希望,在农业上提高产量改良作物,也可对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。但它亦引起很大的忧虑与关切。当此科技由严谨的实验室转移至大规模医药应用或商业生产时,我们如何评估它的安全性?此项技术是否可能因为人为失控,反而危害人类健康并破坏大自然生态平衡?【正文】观点:辨证的看待基因工程的利与弊一.基因工程可用来筛检及治疗遗传疾病。遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。但是广泛的基因筛检将会引起一连串的社会问题。如果有人接受基因筛检,发现在某个年龄将因某种病死亡,势必将会极度改变他的人生观。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。譬如人寿保险公司将会要求客户提供家族健康数据,如心脏病、糖尿病、乳癌等,而针对高危险群家族成员设定较高的保费。保险公司可由基因筛检资料预知客户的预估寿命。这些人可能因而得不到保险的照顾,也可能使这些人被公司老板提早解聘。二.基因工程配合生殖科技——全人类的震撼基因筛检并不改变人的遗传组成,但基因治疗则会。科学家正努力改变遗传病人的错误基因,把好的基因送入其中以纠正错误。因为这是在操作生命的基本问题,必须格外小心。首先须划分医疗及非医疗的行为。医疗行为目的在治病,非医疗者如想提高孩子的身高、智慧等。选择胎儿性别也是非医疗行为,不能被接受,但是遇到某些性连遗传的疾病,选择胎儿的性别就是可被接受的医疗行为。另一项须区分的,就是体细胞(somatic cell)或生殖细胞(germ-line cell)的基因操作。体细胞的基因操作只影响身体的体细胞,不影响后代。但卵子、精子等生殖细胞之基因操作,会直接影响后代,目前基因工程禁止直接用在生殖细胞上。三.基因治疗法——遗传病人的福音目前医学界正在临床试验多种遗传病的基因治疗法。最早采用基因治疗的是一种先天免疫缺乏症,又称气泡男孩症(bubble-boy disease),患病婴幼童因为腺脱胺(adenosine deaminase)基因有缺陷,骨髓不能制造正常白血球发挥免疫功能,必须生活在与外界完全隔离的空气罩内。最新的治疗法是由病人骨髓分离出白血球的干细胞,把正常的酵素基因接在经过改造不具毒性的反录病毒(retrovirus),藉此病毒送入白血球干细胞,再将干细胞送回病人体内,则病人可产生健康的白血球获得免疫功能。这项临床试验,在美国的女病童证明很成功。另一种较便捷的治疗法亦在实验中,纤维性囊肿(cystic fibrosis)在英国平均每两千人中就有一人罹患此症。病人无法制造形成细胞膜氯离子通道的蛋白。此蛋白分布于分泌性细胞的胞膜上,控制氯离子的运输,使黏液畅通。病人体内因缺乏此蛋白,体内浓黏液堆积阻塞肺部通道,甚至发炎死亡。为了治疗此病,目前正在发展新方法,将正常基因加入雾状喷剂中,病人可借着吸入喷剂,使基因进入肺细胞产生蛋白,达到治疗目的。四.农林渔牧的应用——生态环保的顾虑目前全世界正重视发展永续性农业(sustainable agriculture),希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。英国爱丁堡科学家已经可以使绵羊分泌含有人类抗胰蛋白(α-1-antitryspin)的羊奶。抗胰蛋白可以治疗遗传性肺气肿,价格很昂贵。若以后能由羊奶大量制造,将变得很便宜。但是目前以基因工程开发培育基因转殖绵羊的过程,仍是很费时费钱的。基因转殖的细菌用处也很大,如改造细菌可以消化垃圾废纸,而这些细菌又可成为一种蛋白质的营养来源。基因转殖的细菌可带有人类基因,以生产医疗用的胰岛素及生长激素等。其实基因工程在农业上的应用,在某些方面而言并不稀奇。自古以来,人们即努力而有计划地进行育种,譬如一个新种小麦,乃是经过上千代重复杂交育成的。目前的小麦含有许多源自野生黑麦的基因。农人早在基因工程技术发明以前,就知道将基因由一种生物转移至另一生物。传统的育种也可大量提高产量。但是传统的育种过程缓慢,结果常常难以预料。基因工程可选择特定基因送入生物体内,大大提高育种效率,更可把基因送入分类上相差很远的生物,这是传统的育种做不到的。不久,在美国即将有基因工程培育出来的西红柿要上市了。这种西红柿含有反意基因(antisense gene),能使西红柿成熟时不会变软易烂。基因工程也生产抗病抗虫作物,使作物本身制造出“杀虫剂”。如此农夫就不需费力喷洒农药,使我们有健康的生活环境。也可培育出抗旱耐盐作物以适合生长在恶劣的环境下,如此可克服第三世界的粮食短缺问题。但是,会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。在高盐的沼泽地种植基因工程育成的作物,可能会干扰了生态系统。假如热带作物改造得可以于温带地区生长,可能会严重伤害开发中国家的经济,因为农作物水果的输出是他们的主要收入。最近更逐渐发现危害作物的害虫,已经慢慢地演化,以抵抗基因转殖作物所产生的「杀虫剂」了。基因工程培育的鱼,也引起一连串的问题。目前已送两个基因到鲤鱼中,一是生长激素,一是抗冻蛋白(antifreeze protein)。若有人不小心或刻意地把这些鱼放入自然环境的河、湖中,将会严重影响自然界的鱼群生态。五.基因转殖动物——爱护动物人士的关切基因转殖动物对于生物医学研究,真是一大恩赐。科学家现在可将基因送入实验室的老鼠,以研究基因的表达调控功能。也可以把实验动物的某个基因刻意破坏,培育出患有类似人类遗传疾病的动物,以利治疗方法的探讨。美国一家公司已经培育出一种基因转殖老鼠,它在数个月大时会长出癌瘤,此项发明正在申请专利。但是爱护动物人士已表示严重关切,他们认为应该限制基因工程技术如此折磨虐待实验动物。(注:基因工程的应用并不只有以上部分,我只对以上部分发表个人观点。)【结语】不久的将来,基因工程技术仍只限于转殖少数的基因,如此培育出来的生物仍将是我们熟悉的生物。但是有很多疾病及生物特征是由多数基因决定的,而且基因常常不是独立行使功能,它们会受环境的影响。譬如一组基因会造成某人罹患气喘,但症状受生活的环境影响很大。一个人罹患糖尿病的机率,也与环境因子(饮食条件)息息相关。一个天才钢琴家的音乐天赋包括听力及灵敏的双手巧妙地配合,这跟他的遗传基因、童年音乐的启发、生活环境等都有关连。所以我们在还未了解基因与环境因子的互动关系前,还不能奢望创造出具有超高智商的人,或是利用基因筛检法筛选出具有特殊天赋的孩子。21世纪是基因工程技术蓬勃发展的时代,基因工程的兴起是生物革命的必然结果,尽管基因工程的隐忧及争论众说纷纭,但其给人带来的好处是显而易见的。希望随着生物界的不断发展,使基因工程的安全性得到保证,让人们在生活的各个方面都能感受基因工程给人类带来的利益。
基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。下面是由我整理的基因工程学术论文,谢谢你的阅读。 基因工程学术论文篇一 摘 要:基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。这项工程创造出原本自然界不存在的重组基因。它不仅为医药界带来新希望,在农业上提高产量改良作物,并且对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。基因工程的发展现状和前景是怎么样呢,而又有哪些利弊? 关键词:基因工程;发展现状;发展前景;基因工程利弊 一、基因工程 (一)基因工程的概念及发展 1.概念 基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 2.发展 生物学家于20 世纪50 年代发现了DNA 的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。60 年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。 (二)基因工程的发展现状及前景 1.发展现状 (1)基因工程应用于农业方面。运用基因工程方法,把负责特定的基因转入农作物中去,构建转基因植物,有抗病虫害,抗逆,保鲜,高产,高质的优点。 下面列举几个代表性方法。 ①增加农作物产品营养价值如:增加种子、块茎蛋白质含量,改变植物蛋白必需氨基酸比例等。 ②提高农作物抗逆性能如:抗病虫害、抗旱、抗涝、抗除草剂等性能。 ③生物固氮的基因工程。若能把禾谷等非豆科植物转变为能同根瘤菌共生,或具固氮能力,将代替无数个氮肥厂。④增加植物次生代谢产物产率。植物次生代谢产物构成全世界药物原料的 25% ,如治疗疟疾的奎宁、治疗白血病的长春新碱、治疗高血压的东莨菪碱、作为麻醉剂的吗啡等。 ⑤运用转基因动物技术,可培育畜牧业新品种。 二、基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快产业之一,前景广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。对预防人类肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 并且应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。 三、基因工程应用于环保方面 工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,基因工程技术可提高微生物净化环境的能力。美国利用DNA 重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4 种菌体基因链接,转移到某一菌体中构建出可同时降解4 种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3 烃类降解完,而天然菌株需 1 年之久。90 年代后期问世的DNA 改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR 技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。 (一)发展前景 基因工程应用重组DNA 技术培育具有改良性状的粮食作物的工作已初见成效。重组DNA 技术的一个显著特点是,它注往可以使一个生物获得与之固有性状完全无关的新功能,从而引起生物技术学发生革命性的变革,使人们可以在大量扩增的细胞中生产哺乳动物的蛋白质,其意义无疑是相当重大的。将控制这些药物合成的目的基因克隆出来,转移到大肠杆菌或其它生物体内进行有效的表达,于是就可以方便地提取到大量的有用药物。目前在这个领域中已经取得了许多成功的事例,其中最突出的要数重组胰岛素的生产。 重组DNA 技术还有力地促进了医学科学研究的发展。它的影响所及有疾病的临床诊断、遗传病的基因治疗、新型疫苗的研制以及癌症和艾滋病的研究等诸多科学,并且均已取得了相当的成就。 (二)基因工程的利与弊 1.基因工程的利 遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。 基因筛检并不改变人的遗传组成,但基因治疗则会。目前全世界正重视发展永续性农业,希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。 2.基因工程的弊 广泛的基因筛检将会引起一连串的社会问题。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。基因工程会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。转基因食品不同于相同生物来源之传统食品,遗传性状的改变,将可能影响细胞内之蛋白质组成,进而造成成份浓度变化或新的代谢物生成,其结果可能导致有毒物质产生或引起人的过敏症状,甚至有人怀疑基因会在人体内发生转移,造成难以想象的后果。转基因食品潜在危害包括:食物内所产生的新毒素和过敏原;不自然食物所引起其它损害健康的影响;应用在农作物上的化学药品增加水和食物的污染;抗除草剂的杂草会产生;疾病的散播跨越物种障碍;农作物的生物多样化的损失;生态平衡的干扰。 四、结束语 随着社会科技的进步,基因工程的发展将成为必然。尽管它会给我们带来一些危害但是仍然为我们带来了很多好处。不仅为我们提供了新的能源而且促进了各国的经济的发展,所以在我们发展基因工程的同时应该尽力避免一些危害,而让有利的方面尽可能应用。 参考文献: [1]陈宏.2004.基因工程原理与应用.北京:中国农业 出版社 [2]胡银岗.2006.植物基因工程.杨凌.西北农林科技大学出版社 [3]刘祥林.聂刘旺.2005.基因工程.北京:科学出版社 [4]陆德如.陈永青.2002.基因工程.北京:化学工业出版社 [5]王关林.方宏筠.2002.植物基因工程.北京:科学出版社 基因工程学术论文篇二 基因工程蛋白药物发展概况 【摘要】近些年,随着生物技术的发展,基因工程制药产业突飞猛进,本文就一些相关的重要蛋白药物的市场概况和研究进展作一概述。 【关键词】基因工程 蛋白药物 发展概况 中图分类号:R97 文献标识码:B 文章编号:1005-0515(2011)6-255-03 基因工程制药是随着生物技术革命而发展起来的。1980 年,美国通过Bayh-Dole 法案,授予科学家 Herbert Boyer 和 Stanley Cohen 基因克隆专利,这是现代生物制药产业发展的里程碑。1982 年,第一个生物医药产品在美国上市销售,标志着生物制药业从此走入市场[1]。 生物制药业有不同于传统制药业的特点:首先,生物制药具有“靶向治疗”作用;其次,生物制药有利于突破传统医药的专利保护到期等困境;再次,生物制药具有高技术、高投入、高风险、高收益特性;此外,生物制药具有较长的产业链[1]。生物制药业这一系列的特点决定了其在21世纪国民经济中的重要地位,历版中国药典收录的生物药物品种也是逐渐增多[2](图一)。 当前生物制药业的发展趋势在于不断地改进、完善和创新生物技术,在基因工程药物研发投入逐年增加的基础上,我国生物制药的产值及利润增长迅猛, 2006-2008年三年就实现了利润翻番[2](表一)。随着研究的深入,当前生物药的热点逐渐聚焦到通过新技术大量生产一些对医疗有重要意义且成分确定的蛋白上。研究表明,在我国的基因工程药物中,蛋白质类药物超过50%[3]。而这些源自基因工程菌表达的蛋白,如疫苗、激素、诊断工具、细胞因子等在生物医学领域的应用主要包括4个方面:即疾病或感染的预防;临床疾病的治疗;抗体存在的诊断和新疗法的发现。利用基因工程技术(重组DNA技术)生产蛋白主要有三方面的理由:1.需求性,天然蛋白的供应受限制,随需求的不断增加,数量上难以满足,使它得不到广泛应用;2.安全性,一些天然蛋白质的原料可能受到致病性病毒的污染,且难以消除或钝化;3.特异性,来自天然原料的蛋白往往残留污染,会引起诊断试验所不应有的背景[4]。 以下将介绍一些基因工程产物的市场概况和研究发展。 1 促红细胞生成素 是细胞因子的一种,在骨髓造血微环境下促进红细胞的生成。1985年科学家应用基因重组技术,在实验室获得重组人EPO(rhEPO),1989年安进(Amgen)公司的第一个基因重组药物Epogen获得FDA的批准,适应症为慢性肾功能衰竭导致的贫血、恶性肿瘤或化疗导致的贫血、失血后贫血等[5,6]。 2001年,EPO的全球销售额达亿美元,2002年达亿美元,2003年全世界EPO的年销售额超过50亿美元。创下生物工程药品单个品种之最,是当今最成功的基因工程药物。用过EPO的大多数病人感觉良好,在治疗期间无明显毒副作用或功能失调。重组体CHO细胞可以放大到生产规模以满足对EPO的需求。 2 胰岛素 自1921 年胰岛素被Banting 等人成功提取并应用于临床以来,已经挽救了无数糖尿病患者的生命。仅2000年,胰岛素在全球范围内就大约延长了5100万名I型糖尿病病人的寿命。20世纪80年代初,人胰岛素又成为了商业现实;80 年代末利用基因重组技术成功生物合成人胰岛素,大肠杆菌和酵母都被用作胰岛素表达的寄主细胞[7]。 国内外可工业化生产人胰岛素的企业只有美国的礼来公司、丹麦的诺和诺德公司、法国的安万特公司和中国北京甘李生物技术有限公司等,胰岛素类似物也仅在上述4个国家生产,且每个公司只能生产艮效或速效类似物巾的个品种,主要原因是要达到生物合成人胰岛素产业化的技术难度特别大,若无高精尖的高密度发酵技术、纯化技术和工业化生产经验是无法实现的[8]。 3 疫苗 在人类历史上,曾经出现过多种造成巨大生命和财产所示的疫症,而在预防和消除这些疫症的过程中疫苗发挥了十分关键的作用。所以疫苗被评为人类历史上最重大的发现之一。 疫苗可分为传统疫苗(t raditional vaccine) 和新型疫苗(new generation vaccine)或高技术疫苗( high2tech vaccine)两类,传统疫苗主要包括减毒活疫苗、灭活疫苗和亚单位疫苗,新型疫苗主要是基因工程疫苗。疫苗的作用也从单纯的预防传染病发展到预防或治疗疾病(包括传染病) 以及防、治兼具[2]。 随着科技的发展,对付艾滋病、癌症、肝炎等多种严重威胁人类生命安全的疫苗开发取得巨大进展,这其中也孕育着巨大的商业机会[9], 2007年全球疫苗销售额就已达到163亿美元,据美林证券公布的一份研究报告显示,全球疫苗市场正以超过13%的符合增长率增长。而我国是疫苗的新兴市场,国内疫苗市场发展潜力巨大,年增长率超过15%。 在以细胞培养为基础的疫苗、抗体药物生产中,Vero细胞、BHK21细胞、CHO细胞和Marc145细胞是最常用的细胞,这些细胞的反应器大规模培养技术支撑着行业的技术水平[4]。建立细胞培养和蛋白表达技术平台,进一步完善生物反应器背景下的疫苗生产支撑技术是当前国际疫苗产业研究的重点。 4 抗体 从功能上划分,抗体可分为治疗性抗体和诊断性抗体;从结构特点上划分,抗体可分为单克隆抗体和多克隆抗体。抗体可有效地治疗各种疾病,比如自身免疫性疾病、心血管病、传染病、癌症和炎症等[10,11]。抗体药物的一大特点在于其较低甚至几乎可以忽略的毒性。另外一个优势是,抗体本身也许既可被当作一种治疗武器,也可被用作传递药物的一种工具。除了全人源化抗体以外,与小分子药物、毒素或放射性有效载荷有关的结合性抗体也已经在理论上显示出了强大的潜力,尤其是在癌症治疗方面[12]。 治疗性抗体是世界销售额最高的一类生物技术药物,2008 年治疗性抗体销售额超过了300 亿美元,占了整个生物制药市场40%。在美国批准的99 种生物技术药物中,抗体类药物就占了30 种;在633 种处于临床研究的生物技术药物中, 有192 种为抗体药物,而在抗癌及自身免疫性疾病的治疗研究中,治疗性抗体占了一半[2]。截止2007年,美国FDA批准上市的抗体药物见表二[13]。 参考文献 [1] 章江益, 孙瑜, 王康力. 美国生物制药产业发展及启示[J]. 江苏科技信息. 2011, 1(5): 11-14. [2] 王友同, 吴梧桐, 吴文俊. 我国生物制药产业的过去、现在和将来. 药物生物技术[J]. 2010, 17(1): 1-14. [3] 吴梧桐, 王友同, 吴文俊. 21世纪生物工程药物的发展与展望[J]. 药物生物技术. 2000, 7(2): 65-70. [4] 储炬, 李友荣. 现代工业发酵调控学(第二版)[M]. 化学工业出版社. [5] Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cell[J]. Cell Physiol, 1988, 137(1):65. [6] Cuzzole M, Mercurial F, Brugnara C. Use of recombinant human Erthro-poietin outside the setting of uremia[J]. Blood, 1997, 89(12): 4248-4267. [7] 李萍, 刘国良. 最新胰岛素制剂的研究进展概述[J]. 中国实用内科杂志. 2003, 23(1): 19-20. [8] 张石革, 梁建华. 胰岛素及胰岛素类似物的进展与应用[J]. 药学专论. 2005, 14(11): 21-23. [9] 徐卫良. 生物制品供应链优化与供货提前期缩短问题研究――基于葛兰素史克(中国)疫苗部的实例分析(硕士学位论文). 上海交通大学, 2005. [10] Presta LG. Molecular engineering and design of therapentic antilodies[J]. Curr Opin Immunol, 2008, 20(4): 460. [11] Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies[J]. Immunol Rev, 2008, 222: 9. [12] 陈志南. 基于抗体的中国生物制药产业化前景. 中国医药生物技术[J]. 2007, 1(1): 2. [13] 于建荣, 陈大明, 江洪波. 抗体药物研发现状与发展态势[J]. 生物产业技术. 2009, 1(3): 49.看了"基因工程学术论文"的人还看: 1. 高中生物选修三基因工程知识点总结 2. 高二生物基因工程知识点梳理 3. 浅谈基因工程在农业生产中的应用 4. 植物叶绿体基因工程发展探析 5. 关于蔬菜种植的学术论文
基因支持着生命的基本构造和性能。下面是我为大家精心推荐的关于基因的生物科技论文 范文 ,希望能够对您有所帮助。
基因研究
引起人们大惊小怪的,就是让父母能够有意识选择孩子遗传特性的技术。在可预见的未来,除了用基因方式医治少数遗传疾病,如囊肿性纤维化外,改变基因的成人还不可能出现。改变成人的基因还不是人们敢于轻易尝试的技术,要恢复或加强成人的功能,还有许多更简单、更安全、也更有效的 方法 。
胚胎选择技术是指父母在怀孕时影响孩子基因组合的一系列技术的总称。最简单的干预方法就是修改基因。这不是一种大刀阔斧的变更,因为它要获得的效果就像筛选各种胚胎、选择具有所需基因的胚胎的效果一样。事实上,这种胚胎筛选程序已经在胚胎植入前的基因诊断中 应用了。这种技术已经用了十几年,但还在试验,在未来5到10年将臻于成熟。随着这些技术的成熟,可供父母选择的方案会大大增多。
再进一步将出现对生殖系统的干预――即选择卵子、精子、或更可能的是选择胚胎的第一细胞。这些程序已经在动物身上应用,不过使用的方式对于人类还缺乏安全性和可靠性。
对人类比较可靠的一种方法也许是使用人造染色体。这项技术听起来像是不可置信的科幻电影,但已经用在动物身上了。人造染色体植入老鼠身上,连续几代被传了下去。人造染色体也用在人体细胞培养中,在数百次细胞分裂中都能保持稳定。因此,它们可以充当插入基因模块的稳定“平台”。这些被插入的基因模块包括在适当时候让基因兴奋或休息的必要控制机制,就像在我们46个染色体中的正常基因的激活或休息,取决于它们所处的生理 组织类型,或取决于它们遇到的 环境状况一样。
当然,为安全起见,需要早期介入才能使焦点集中。你不能去修改一个在胎儿发育过程中生理组织不断变化时被激活的基因,因为我们对这一过程所知甚少,有可能发生不想要的或灾难性的副作用。所以,在人体内使用人造染色体的首次尝试,多半要让被植入的基因处在“休息”状态,到成人阶段才在适当的生理组织中被“激活”。
执行这种控制的机制已经用在动物实验中,实验的目的是观察特定基因在发育成熟的有机体中的作用。当然,在体内存在着始终控制基因的机制。不同类的基因在不同的生理组织内的不同地点和时间被激活或休息,这对未来的基因工程师来说是幸运的,因为与我们现有的基因相 联系的已证实的调节结构可以复制下来,用以执行对植入基因的控制。胚胎选择的目标
预防疾病可能是胚胎选择的最初目标。这类可能性也许不久就会远远超出纠正异常基因的范围。例如,最近的研究显示,患有唐氏综合症的孩子,癌症的发病率降低了近90%。很可能是三体性21(即染色体21的第三个复制品,具有增强基因表达水平的作用,导致智力迟钝和其他唐氏综合症的症状)对癌症有预防作用。假如我们能鉴别出染色体上的哪些基因对癌症有预防作用,会怎么样呢?基因学家也许会把这类基因放在人造染色体上,然后植入胚胎,使癌症发病率降低到唐氏综合症患者的水平,又可以避免复制染色体21上其他基因所引起的所有问题。许多其他类似的可能性无疑都会出现,有些可能性几乎肯定是有好处的。
人造染色体的使用可能会进行得很顺利,尤其因为染色体本身在用于人体前可在实验室环境中进行试验。它们可以在动物身上试验,成功后在基本相同的条件下用于人体。如今,每一种基因疗法都是重新开始的,所以不可能获得绝对的可靠性。
如果有明确的基因修改案例显示这样做是有意义的,似乎是安全的,不可能更简便更安全了,那么人们就会对它们表示欢迎。尽管如此,目前还没有足够的证据说明值得这样做。未来基因治疗专家会产生各种各样的想法,他们会进行试验,观察这种疗法是否可行。如果可行的话,我们就不应该拒绝。例如,降低癌症和心脏病的发病率,延缓衰老,是每个人都非常需要的增进健康的手段。
用基因延长寿命
防止衰老是个非常有意义的科研领域,因为这件事似乎很有可能做到,而且是绝大多数人所强烈需要的。如果能通过揭开衰老过程的基本程序,发现某种手段能使我们开发药物或其他对成人有效的干预手段,那么人人都会需要。
胚胎工程可能比对成人的基因疗法更简单,更有成效。因为胚胎中的基因会被复制进身体的每一个细胞,能获得具体组织的控制机制。所以很可能对胚胎的干预 措施 对成人是行不通的。这样一来,父母很可能把怀孕看作赋予孩子健康条件的机会――一次不可错失的机会。
如对衰老生物学的研究投入资金,会极大地加速“衰老治疗”。如今,这个领域资金非常缺乏。许多资金都用于研究治疗老年病的方法上,没有用来搞清楚衰老的基本过程,而许多老年性疾病(如癌症、心脏病、早老性痴呆症、关节炎和糖尿病)都是由这一过程引起的。能加速衰老防止研究进程的另一件事,就是提高这个领域的形象。这个 工作已经开始了,但非常缓慢。吸引年轻的科研人员和严肃的科学家进入这个领域是至关重要的。抗衰老(即延长孩子的寿命)可能将是生殖干预的重要目标,但不是唯一的目标。为孩子谋最大福利是人类的天职。事实上,全球民意测验已经显示,在被测的每一个
国家都有可观的人数对增强孩子的身体和脑力健康感兴趣。他们考虑的不是如何避免某些疾病,而是用干预手段改善孩子的容貌、智力、力量、助人为乐精神和其他品质的状况。一旦技术达到可靠程度,许多人都需要这类干预手段。甚至那些没有这方面压力的人也会这么做,目的是不让孩子处于劣势。当然,人们会很小心,因为他们并不想伤害孩子。总之,如果干预手段失败,他们就得忍受其结果,承受犯罪的感觉。是一个不受欢迎的选择吗?
社会也许并不欢迎某些父母的选择。在美国性别选择是合法的,但在英国和其他许多国家就是非法的。不少人认为,尽管西方国家并没有出现严重的性别失衡,很难说父母的选择伤害了谁,但这个程序在美国也应该是非法的。另一个即将来临的决定是父母是否因为大量基因疾病而进行筛选。父母们不久就能够选择孩子的身高和智商,或选择性情气质的其他特点――容易患病的机制也许不久就会在基因解读中表现得清清楚楚。
胚胎选择技术的第一批希望所在是基因测试和筛选,即选择某种胚胎而不是另一种。一开始,让许多人接受这个技术是困难的,但要控制它几乎是不可能的,因为这种胚胎本来就可能是完全自然形成的。这样选择也许是令人苦恼的,但不会发生危险,我猜想它们给我们带来的好处比问题多。有些人担心这样一来会失去多样性,但我认为更大的问题在于父母所选择的胚胎可能会产生一个有严重健康问题的婴儿。那么是否应该允许父母做这样的选择呢?例如,失聪群体掀起了一个极力反对耳蜗移植的运动,因为耳蜗移植伤害了聋哑 文化 ,把聋哑视作残疾。大多数非聋哑人正是这样看待他们的。有的聋哑父母表示,他们要使用胚胎选择技术来确保他们的孩子继续聋哑。这并不是说他们拿出一个胚胎来毁坏它,而是选择一个能造成一个聋哑婴儿的胚胎。
这造成了真正的社会问题,因为社会必须承担这类健康问题所需的医疗费用。如果认为父母的确有权作这样的选择,我们根本没有理由去重视健康儿的出生而轻视有严重疾患的婴儿,那么我们将无法控制这类选择。但如果我们认为存在问题,并极力想与之进行斗争的话,我们会发现这种斗争是很有前途的。
放开手脚,取消禁令
关于由人体克隆产生的第一例怀孕事件见报后不久,美国总统乔治?W?布什就表示支持参议院的一份提案,该提案宣布所有形式的人体克隆皆为非法,包括旨在创造移植时不会被排斥的胚胎干细胞,即治疗性克隆。我认为这种禁令下得为时过早,也不会有效果,而且会产生严重的误导。就是说,这个禁令无疑是错误的。它根本无法实质性推延再生性克隆的问世,我认为这种类型的克隆将在10年内出现。这个禁令把 政治、宗教和 哲学因素注入了基础研究,这将是个危险的案例。这个禁令的立法理念把更多的关注赋予了微乎其微的小小细胞,而对那些身患疾病、惨遭折磨的人却视而不顾。这个禁令用严厉的刑事惩罚(10年监禁)来威胁胚胎科研人员,这在一个妇女在妊娠头三个月不管什么理由都有权堕胎的国家里,简直是不可思议的。
美国对胚胎研究的限制,已经对旨在创建再生 医学的生物技术的 发展产生了影响。这些限制延缓了美国在这个领域的前进步伐,而美国在生物医学的科研力量是全球首屈一指的。如今这类科研已转移到英国和其他国家去了,例如新加坡,正在为一项研究胚胎干细胞的庞大 计划提供资金。这种延误之所以非常不幸,是因为本应发生的好事如今却没有发生。对多数人来说,10年或20年的延误不是个大问题,但对于演员迈克尔?J?福克斯(Michael )以及其他帕金森氏病和早老性痴呆症患者来说,却是生与死的问题。
对各种再生可能性的无知,往往会引起人们的恐惧。但这种无知却不能成为公众政策的基础,因为公众的态度会迅速改变。25年前,体外受精着实让人们猛吃一惊,体外受精的孩子被称作试管婴儿。现在我们看到这些孩子与他小孩没什么区别,这个方法也已成为许多没有孩子的父母的明确选择。
不管是出于意识形态还是宗教原因,把新技术加以神秘化,把它当作某种象征来加以反对,都不会有效推迟即使是最有争议的 应用。这种反对态度只会扼杀本可以转化为人人支持的生物医学新成果的主流科研。
人类克隆会在某个国家实现:很可能是以暧昧隐秘的方式实现,而且甚至在确认安全之前就实现。抗议和禁止也许会稍稍推迟第一个克隆人的诞生,但这是否值得花费严肃的人类立法成本呢?
不管我们多么为之担心,人类胚胎选择是无法避免的。胚胎选择已经存在,克隆也正在进行,甚至直接的人类生殖工程也将出现。这样的技术是阻挡不了的,因为许多人认为它能造福于人类,因为它将在全球数以千计的实验室里切实进行,最重要的是,因为它只是解除生物学的主流生物医学科研的一个副产品。
对于迅速发展的技术,我们要做的重要的事,不是预先为它设立条条框框。务必要牢记,同原子武器相比,这样的技术是没有危险性的。在原子武器中,稍有不慎,众多的无辜旁观者即刻就会灰心烟灭。这些技术仅对那些决定挺身而出使用
他们的人才具有危险性。如果我们把关于这些技术的现在的希望和恐惧带进将来,并以此为基础进行预先控制,从而扼杀它们的潜力的话,我们就只能制定出非常拙劣的法律。今天,我们并没有足够的知识来预测这些技术未来会出现什么问题。
比较明智的方法是让这项技术进入早期 应用,并从中学些东西。性别选择就是现实世界的 经验 能告诉我们一些事情的极好例子。许多人想要控制性别选择,但与不发达国家不同,在发达国家,自由选择性别并没有导致性别的巨大不平衡。在美国,父母的选择基本上男女平衡的,女孩占微弱优势。以前有人认为,如果给了父母这种选择权,会出现严重问题,因为男孩会过剩。但事实并非如此。这种危险是我们想象出来的。有些人认为,父母不应该对孩子拥有这种权力,但他们究竟担心什么,往往非常模糊。在我看来,如果父母由于某种原因的的确确需要一个女孩或男孩,让他们了却心愿怎么会伤害孩子呢?相反的情况倒的确值得担心的:如果父母极想要一个男孩,结果却生了个女孩,这个“性别错误”的孩子可能就不会过上好日子。我相信,让父母拥有这种选择权,只有好处没有坏处。
我们还可以想象出有关性别选择的各种麻烦事件,编出一系列可能发生的危险 故事 。但如果将来事情发生了变化,性别不平衡现象真的出现了,我们再制定政策处理这类特殊问题也不迟。这要比现在就对模糊的恐惧感和认为是在戏弄上帝的思想观念作出反应,无疑要明智得多。这是民主化的技术吗?
阻止再生技术的行为使这些技术造成 社会的极端分裂,因为阻止行为仅仅使这些技术为那些富裕的人所用,他们可以非常容易地绕过种种限制,或者到国外去,或者花大钱寻求黑市服务。
其核心是胚胎选择技术,如果处理恰当,它可以成为非常民主化的技术,因为早期采取的各项治疗措施可以面向各种残缺者。把智商在70到100(群体平均数值)的人向上提高,要比把智商从150(群体百分比最高值)提高到160容易得多。要让本已才智卓绝的人再上一层楼,那非常困难,因为这必须改善无数微小因素的复杂的混合配备状况,正是这些因素合在一起,才能创造出一个超人来。而改善退化的功能则要容易得多。我们并无超人的案例,但我们却有无数普通人为佐证,他们可以充当范例,引导我们如何去修改一个系统,使之至少达到正常的功能。
我觉得,人们以为我们是平等的创造物,在法律面前人人平等,于是就认为我们大家都是一样的。其实不然。基因抽奖可能是非常非常残酷的。你去问问行动迟钝的人,或问问有这样那样基因疾病的人,他们是不会相信什么基因抽奖是多么美妙公平这种抽象言论的。他们就希望自己能更健康些,或者获得某些方面的能力。这些技术的广泛应用,就在许多方面创造了一个平等的竞技场,因为那些本来由于基因原因处于劣势的人也有了竞争的机会。
另一个问题是,这些技术就像其他技术一样, 发展很快。在同代人之间,富人和穷人的应用差距不会很大,而在两代人之间的应用差距却会很大。如今,甚至比尔?盖茨也无法为他的孩子获得某种在25年后中产阶级也认为是很原始的基因增强技术。
所谓明智的一个重要因素,就是要懂得什么我们有权控制,什么无权控制。我们务必不要自欺欺人,以为我们有权对是否让这些技术进入我们的生活进行选择。它肯定会进入我们的生活。形势的发展必然要求我们去使用这些技术。
但在我们如何应用它们、它们会如何分裂我们的社会,以及它们对我们的价值观会产生什么影响等问题上,我们的确有某种选择余地。这些问题我们应该讨论。我本人对这些技术是满怀希望的。它们可能产生的好处会大大超过可能出现的问题,我想,未来的人类在回顾这些技术时,会觉得奇怪:我们在这么原始的时代是如何生活的,我们只活到75就死了,这么年轻,而且死得这么痛苦难过。
政府和决策者不应该对这些研究领域横加阻挠,因为由于误用或意外所造成的伤害,并不是仅有的风险。能够挽救许多人的技术因为延误而使他们继续遭受痛苦,也是一种风险。
当务之急是倾全力获得足够的安全性,防止意外的发生,而要做到这点,协调者看来要牺牲许多间受影响的人的安全。疫苗的例子就是这样。疫苗有许多年没有进展,因为引起诉讼的可能性很大。如果那个孩子受了伤害,会产生巨大的后果。然而很明显,对接受疫苗接种的全体人而言,是非常安全的。
我认为人们对于克隆也是同样的问题。它在近期可能会影响最多一小部份人。在我看来,拒绝会改变数以百万患者命运的非常有可能的 医学进步,振振有词地宣称这是对人类生命的尊重,这是一种奇怪的逻辑。
失去人性还是控制人性?
另一种祁人之忧,认为任意篡改生物机制有可能使我们失去人性。但是,“人性”究竟是与某些非常狭隘的生物结构有关,还是与我们接触世界的整个过程、与我们之间的相互作用有关呢?例如,假如我们的寿命增加一倍,会不会使我们在某种意义上“失去人性”呢?寿命延长必然会改变我们的生活轨迹,改变我们的互动方式,改变我们的 组织制度、家庭观和对 教育 的态度。但我们还是人类,我敢断言我们会迅速适应这些变化,并会对以往没有这些变化的生活觉得不解。
如果原始的狩猎者想象自己生活在纽约城,他们会说在那样的地方他们可能不再是人了,他们认为那不是人的生活方式。可是今天我们大多数人不仅把纽约的生活看作是人的生活,而且是大大优于狩猎生活。我想,我们改变生物机制所发生的变化也是如此。
目前人类还处在进化的早期阶段,至多是青少年期。几千年后,未来的人类来看我们这个时代,会认为是原始的、艰难的同时充满希望的时代。他们也会把我们这个时代看作是人类发展的特殊的光荣的时刻,因为我们为他们的生活打下了基础。我们很难想象即使一千年后的生活会是什么样子,但我猜想我们现在的生物重组会大大影响未来的人类。
点击下页还有更多>>>关于基因的生物科技论文范文
生物基因工程论文参考文献汇总 生物基因工程论文参考文献怎么写?有哪些格式要求,下面我就为大家推荐一些优秀的范例,希望大家喜欢![1] Brackett B G, Baranska W, Sawicki W,et al. Uptake of heterologous genome by mammalianspermatozoa and its transfer to ova through fertilization. Proc Natl Acad Sci USA,1971,68(2):353-357. [2] Jaenisch R, Mintz B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived frompreimp antation blastocysts injected with viral DNA. Proc Natl Acad Sci USA, 1974,71 (4): 1250-1254. [3] Palmiter R D, Brinster R L, Hammer R E, et al. Dramatic growth of mice that develop from eggsmicroinjected with metallothionein-growth hormone fusion genes. Nature, 1982,300(5893):611-615. [4] 李宁.动物克隆与基因组编辑.中国农业大学出版社,2012. [5] Hammer R E, Pursel V G, Rexroad C J, et al. Production of transgenic rabbits, sheep and pigs bymicroinjection. Nature, 1985,315(6021):680-683 [6] 杜伟,崔海信,王 琰 ,等.精子载体法制备转基因动物的'研究进展.生物技术通报,2012(12):13-18. [7] Maione B,Lavitrano M, Spadafora C, et al. Sperm-mediated gene transfer in mice. Mol ReprodDev, 1998,50(4):406-409. [8] Lavitrano M, Bacci M L, Forni M, et al. Efficient production by sperm-mediated gene transfer ofhuman decay accelerating factor (hDAF) transgenic pigs for xenotransplantation. Proc Matl Acad SciUSA, 2002,99(22):14230-14235. [9] Sperandio S, Lulli V,Bacci M L, et al. Sperm - mediated DNA transfer in bovine and swinespecies. Animal biotechnology, 1996,7(1):59-77. [10] 武坚,刘明军,李文蓉,等.精子载体介导法生产转基因绵羊的研究.草食家畜,2001(S2):186-190. [11] Pfeifer A, Kessler T, Yang M, et al. Transduction of liver cells by lentiviral vectors: analysis inliving animals by fluorescence imaging. Mol Ther,2001,3(3):319-322. [12] Lois C, Hong E J, Pease S, et al. Germline transmission and tissue-specific expression oftransgenes delivered by lentiviral vectors. Science, 2002,295(5556):868-872. [13] Hofmann A, Kessler B, Ewerling S,et al. Efficient transgenesis in farm animals by lentiviralvectors. EMBO Rep, 2003,4( 11): 1054-1060. [14] Hofmann A, Zakhartchenko V, Weppert M, et al. Generation of transgenic cattle by lentiviral genetransfer into oocytes’ Biol Reprod, 2004,71 (2):405-409 [15] Lillico S G, Sherman A, McGrew M J,et al. Oviduct-specific expression of two therapeuticproteins in transgenic hens. Proc Natl Acad Sci USA,2007,104(6): 1771-1776. [16] Lyall J,Irvine R M, Sherman A, et al. Suppression of avian influenza transmission in geneticallymodified chickens. Science,2011,331(6014):223-226. [17] Golding M C, Long C R,Carmell M A, et al. Suppression of prion protein in livestock by RNAinterference. Proc Natl Acad Sci USA, 2006,103(14):5285-5290. [18] 杨春荣,窦忠英.利用干细胞生产转基因动物研究进展.西北农林科技大学学报(自然科学版),2006(07):37-40. [19] Hai T, Teng F,Guo R, et al. One-step generation of knockout pigs by zygote injection ofCRISPR/Cas system. Cell Res, 2014,24(3):372-375. [20] Hongbing H, Yonghe M A, Tao W, et al. One-step generation of myostatin gene knockout sheepvia the CRISPR/Cas9 system. Frontiers of Agricultural Science and Engineering, 2014,1(1):2-5. [21] Swanson M E,Martin M J, O'Donnell J K, et al. Production of functional human hemoglobin intransgenic swine. Biotechnology (N Y),1992,10(5):557-559. [22] Zbikowska H M,Soukhareva N, Behnam R, et al. Uromodulin promoter directs high-levelexpression of biologically active human alpha 1-antitrypsin into mouse urine. Biochem J, 2002,365(Pt1):7-11. [23] Golovan S P,Hayes M A, Phillips J P,et al. Transgenic mice expressing bacterial phytase as amodel for phosphorus pollution control. Nat Biotechnol, 2001,19(5):429-433. [24] Rapp J C, Harvey A J, Speksnijder G L, et al. Biologically active human interferon alpha-2bproduced in the egg white of transgenic hens. Transgenic Res, 2003,12(5):569-575. [25] Wright G, Carver A, Cottom D, et al. High level expression of active human alpha-1 -antitrypsin inthe milk of transgenic sheep. Biotechnology (N Y), 1991,9(9):830-834. [26] Li S, Ip D T, Lin H Q, et al. High-level expression of functional recombinant humanbutyrylcholinesterase in silkworm larvae by Bac-to-Bac system. Chem Biol Interact,2010,187(1-3):101-105. [27] 刘英,张瑞君,伍志伟,等.转基因疾病动物模型的研究进展.动物医学进展,2006(12):44-49. [28] Kragh P M, Nielsen A L, Li J, et al. Hemizygous minipigs produced by random gene insertion andhandmade cloning express the Alzheimer's disease-causing dominant mutation APPsw. Transgenic Res,2009,18(4):545-558. [29] Lee M K, Stirling W, Xu Y, et al. Human alpha-synuclein-harboring familial Parkinson'sdisease-linked Ala-53 Thr mutation causes neurodegenerative disease with alpha-synucleinaggregation in transgenic mice. Proc Natl Acad Sci USA, 2002,99(13):8968-8973. ;
summary:With the current molecular technology rapid development, the technology used in our life has more and more. For this kind of magical technology, people hei mixed, this debate. Especially in recently, American shows that by gene engineering technology has developed artificial blood and is scheduled to 2013 after artificial blood for human trials, but also aroused people's controversial, and this paper is mainly to the use of genetic engineering to create artificial blood to a shallow prohibited.
Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoateby Escherichia coli transformant cells coexpressingthe carbonyl reductase and glucose dehydrogenase genes由共表达碳酰还原酶和葡萄糖脱氢酶的大肠杆菌转化细胞合成纯光学(S)-4-氯-3-羟基丁酸乙酯Abstract The asymmetric reduction of ethyl 4-chloro-3-oxobutanoate (COBE) to ethyl (S)-4-chloro-3-hydroxybutanoate((S)-CHBE) was investigated. Escherichia coli cells expressing both the carbonyl reductase (S1) gene from Candida magnoliae and the glucose dehydrogenase (GDH) gene from Bacillus megaterium were used as thecatalyst. In an organic-solvent-water two-phase system,(S)-CHBE formed in the organic phase amounted to M (430 g/l), the molar yield being 85%. E. coli transformant cells coproducing S1 and GDH accumulated M (208 g/l) (S)-CHBE in an aqueous monophase system by continuously feeding on COBE, which is unstable in an aqueous solution. In this case, the calculated turnover of NADP+ (the oxidized form of nicotinamide adenine dinucleotide phosphate) to CHBE was 21,600 mol/mol. The optical purity of the (S)-CHBE formed was 100% enantiomeric excess in both systems. The aqueous system used for the reduction reaction involving E. coli HB101 cells carrying a plasmid containing the S1 and GDH genes as a catalyst is simple. Furthermore, the system does not require the addition of commercially available GDH or an organic solvent. Therefore this system is highly advantageous for the practical synthesis of optically pure (S)-CHBE.本本篇文献研究了利用COBE不对称合成(S)-4-氯-3-羟基丁酸乙酯(CHBE)。大肠杆菌细胞作为催化剂同时表达了来自念珠菌属magnoliae的碳酰还原酶和来自巨大芽孢杆菌的葡萄糖脱氢酶基因。在水/有机溶剂两相体系中,(S)-CHBE在有机相中的浓度可以达到(430g/l),摩尔产率达到85%。大肠杆菌的副产物S1和GDH也达到了(208g/l),COBE在水相中不稳定,所以(S)-CHBE可以在水单相中不停的生成。在这种情况下,适当的从NADP+到CHBE的转变达到了21,600 mol/mol。所形成的CHBE的旋光度在这种体系中100%对映体过量。在水相中用携带含有S1和GDH基因质粒的E. coli HB101作为催化剂不对称还原是比较简单的。并且,这种体系并不额外需要商业GDH或者有机溶剂。因此,这种体系对于实际合成纯光学活性的(S)-CHBE是非常方便的。Optically active 4-chloro-3-hydroxybutanoic acid esters are useful chiral building blocks for the synthesis of pharmaceuticals. The (R)-enantiomer is a precursor of L-carnitine (Zhou et al. 1983), and (S)-enantiomer is an important starting material for hydroxymethylglutaryl- CoA (HMG-CoA) reductase inhibitors (Karanewsky et al. 1990). Many studies have described the microbial or enzymatic asymmetric reduction of 4-chloro-3-oxobutanoic acid esters (Aragozzini and Valenti 1992; Bare et ; Hallinan et al. 1995; Patel et al. 1992; Shimizu et al. 1990; Wong et al. 1985) based on the reduction by baker’s yeast (Zhou et al. 1983).We have previously showed that Candida magnoliae AKU4643 cells reduced ethyl 4-chloro-3-oxobutanoate (COBE) to (S)-CHBE with an optical purity of 96% enantiomeric excess (.) (Yasohara et al. 1999). As this yeast has at least three different stereoselective reductases (Wada et al. 1998, 1999a, b), the (S)-CHBE produced by this yeast was not optically pure. From among these three enzymes, an NADPH-dependent carbonyl reductase, designated as S1, was purified and characterized in some detail (Wada et al. 1998). We cloned and sequenced the gene encoding S1 and overexpressed it in Escherichia coli cells. This E. coli transformant reduced COBE to optically pure (S)-CHBE in the presence of glucose, NADP+, and commercially available glucose dehydrogenase (GDH) as a cofactor generator (Yasoharaet al. 2000). Here, we describe the construction of three E. coli transformants coexpressing the S1 from C. magnoliae and GDH from Bacillus megaterium genes and analyze the reduction of COBE catalyzed by these strains. Previous reports on the enzymatic reduction of COBE to (R)-CHBE with an optical purity of 92% . (Kataoka et al. 1999; Shimizu et al. 1990) recommended an organic- solvent two-phase system reaction for an enzymatic or microbial reduction, because the substrate (COBE) is unstable in an aqueous solvent and inactivates enzymes. We examined the reduction of COBE to optically pure (S)-CHBE by E. coli transformants in a water monophase system reaction and discuss the possible use of this type of reaction system in industrial applications。具有旋光性的(S)-4-氯-3-羟基丁酸乙酯在药物制剂的合成中是重要的手性化合物。其右旋体是L-卡尼汀的前体,其左旋体是羟甲基戊二酰辅酶A还原酶抑制剂的起始材料。许多研究描述了以面包酵母为基础微生物或者酶的COBE的不对称还原。我们先前已经知道利用来自念珠菌属magnoliae AKU4643 细胞催化COBE生成光学纯度96%的CHBE。这种酵母至少有三种立体选择性的还原酶,这种酵母产生的CHBE并非纯光学的,在这三种酶之中,NADPH-依赖碳酰还原酶,我们克隆并测序编码S1的基因,并在大肠杆菌中过表达。大肠杆菌转化细胞在葡萄糖,NADP+和商业化的葡萄糖脱氢酶作为辅酶因子的启动子催化COBE生成纯光学的CHBE。我们构建这三种大肠杆菌转化细胞共表达来自的S1和来自巨大芽孢杆菌的GDH,并分析COBE被这几种菌株催化还原的反应机理。先前的报道表明,利用酶催化还原COBE生成CHBE光学纯度可达92%,也提到了因为底物(COBE)在水相中不稳定,并且酶容易钝化,所以利用酶或者微生物在有机溶剂/水两相体系中催化反应。我们研究了在水单相体系中由COBE还原生成纯光学的CHBE,还讨论了这种反应体系在工业应用中可能的用途。Materials and methodsBacterial strain and plasmids The E. coli strains used in this study were JM109 and pGDA2, in which the GDH gene from B. megaterium is inserted into pKK223-3, was kindly provided by Professor I. Urabe, Osaka University (Makino et al. 1989). Plasmids pSL301 and pTrc99A were purchased from Invitrogen (USA), and Amersham Pharmacia Biotech (UK), respectively. Plasmids pUC19 and pSTV28 (Homma et al. 1995; Takahashi et al. 1995) were purchased from Takara Shuzo (Japan).材料和方法菌株和质粒本次实验中使用的大肠杆菌是JM109 and HB101。来自B. megaterium的GDH基因插入到Pkk233-3质粒中,而带有GDH基因片段的pGDA2质粒由到由大阪大学的urabe教授提供。质粒pSL301和 pTrc99A是由美国的Invitrogen公司和英国的公司分别购买的。质粒pUC19和pST28是由日本takara公司购买的。The recombinant plasmid used in this study was constructed as follows (Fig. 1): Plasmid pGDA2 was double-digested with EcoRI and PstI to isolate a DNA fragment of about kilobase pairs (kb) including the GDH gene. This fragment was inserted into the EcoRI-PstI site of plasmid pSL301 to construct plasmid pSLG. Plasmid pSLG was double-digested with EcoRI and XhoI to isolate a DNA fragment of about kb including the GDH gene.这次实验使用的重组质粒构建如下:质粒pGDA2 被EcoRI 和 PstI双酶切从而分离出一个大小约为的包含有GDH基因的DNA片段。这个片段被插入到质粒Psl301的EcoRI-PstI酶切位点从而构建出质粒pSLG。质粒pSLG被EcoRI和XhoI To construct plasmid pNTS1G, this fragment was inserted into the EcoRI-SalI site of pNTS1, which was constructed to overproduce S1 as described previously (Yasohara et al. 2000). To construct plasmid pNTGS1, plasmid pNTG was first generated. Two synthetic primers (primer 1, TAGTCCATATGTATAAAGATTTAG,and primer 2 TCTGAGAATTCTTATCCGCGTCCT) were prepared for polymerase chain reaction (PCR) using pGDA2 as the template. The PCR-generated fragment was double- digested with NdeI and EcoRI and then inserted into the NdeI EcoRI site of plasmid pUCNT, which was constructed from pUC19 and pTrc99A, as reported (Nanba et al. 1999), to obtain pNTG. To construct plasmid pNTGS1, two synthetic primers (primer 3, GCCGAATTCTAAGGAGGTTAATAATGGCTAAGAACTTCTCCAACG, and primer 4, GCGGTCGACTTAGGGAAGCGTGTAGCCACCGTC) were prepared using pUCHE, which contains the S1 gene as the template. The PCR-generated fragment was double-digested with EcoRI and SalI and then inserted into the EcoRI-SalI site of pNTG to obtain pNTGS1. Plasmid pNTS1G, pNTGS1 or pNTG was transformed into E. coli HB101.构建pNTS1是为了过表达前文所提到的S1,这个大小的片段被插入到pNTS1的EcoRI-SalI酶切位点从而构建pNTS1G。为了构建质粒pNTGS1,首先需要构建pNTG。两个合成引物(引物1,TAGTCCATATGTATAAAGATTTAG和引物2,TCTGAGAATTCTTATCCGCGTCCT)和作为模板的pGDA2是PCR反应需要的。PCR得到的片段是由NdeI 和EcoRI双酶切和并插入到质粒pUCNT的NdeI EcoRI酶切位点来得到pNTG。根据报道,pUCNT是由pUC19和 pTrc99A构建而来。为了构建质粒pNTGS1,两个合成引物(引物 3, GCCGAATTCTAAGGAGGTTAATAATGGCTAAGAACTTCTCCAACG, and 引物 4, GCGGTCGACTTAGGGAAGCGTGTAGCCACCGTC),包括了S1基因作为模板。Pcr产物片段被EcoRI和SalI双酶切然后被插入到pntg的EcoRI-SalI酶切位点得到pntg1.质粒pNTS1G, pNTGS1或者 pNTG都是导入大肠杆菌 pGDA2 was double-digested with EcoRI and PstI to isolate a DNA fragment of about kb including the GDH gene. To construct plasmid pSTVG, this fragment was inserted into the EcoRI-PstI site of plasmid pSTV28. Plasmid pSTVG was transformed into E. coli HB101. 质粒pGDA2被EcoRI 和 PstI双酶切得到包含GDH基因的大小的DNA片段。为了构建pSTVG质粒,这个片段被插入到pSTV28质粒的EcoRI-PstI的酶切位点。pSTVG质粒被导入到E. coli HB101。Medium and cultivationThe 2×YT medium comprised Bacto-tryptone, yeastextract, and NaCl, pH . E. coli HB 101 carrying pNTS1,pNTG, pNTS1G, or pNTGS1 was inoculated into a test tube containing2 ml 2×YT medium supplemented with mg/ml ampicillin,followed by incubation at 37 °C for 15 h with reciprocal preculture ( ml) was transferred to a 500-ml shakingflask containing 100 ml 2×YT medium. The cells were cultivatedat 37 °C for 13 h with reciprocal shaking. E. coli HB101 carryingpNTS1 and pSTVG was similarly cultivated in 2×YT mediumsupplemented with mg/ml ampicillin and mg/ml chloramphenicol.培养基和培菌2*YT培养基 包含有细菌用胰蛋白胨,酵母提取物, NaCl,.携带有pNTS1,pNTG, pNTS1G, 或 pNTGS1的大肠杆菌HB101被接种到有氨苄青霉素的2ml的2*YT培养基,37°C摇床15小时。将菌液接种到100ml2*YT培养基的500ml烧瓶中。在37°C摇床培养13小时。携带有pNTS1 和 pSTVG质粒的大肠杆菌HB101在2*YT培养基中培养方法相似,只是培养基中要加入 mg/ml的氨苄青霉素和 mg/ml的氯霉素。Preparation of cell-free extracts and the enzyme assay Cells were harvested from 100 ml of culture broth by centrifugation, suspended in 50 ml of 100 mM potassium phosphate buffer (pH ), and then disrupted by ultrasonication. The cell debris was removed by centrifugation; the supernatant was recovered as the cell-free extract. Carbonyl reductase S1 activity (COBE-reducing activity) was determined spectrophotometically as follows: The assay mixture consisted of 100 mM potassium phosphate buffer (pH ), mM NADPH, and 1 mM COBE. The reactions were incubated at 30 °C and monitored for the decrease in absorbance at 340 nm. The assay mixture for GDH activity consisted of 1 M Tris-HCl buffer (pH ), 100 mM glucose, and 2 mM NADP+. The reactions were incubated at 25 °C and monitored for the increase in absorbance at 340 nm. One unit of S1 or GDH was defined as the amount catalyzing the reduction of 1 μmol NADP+ or oxidation of 1 μmol NADPH per minute, respectively. Protein concentrations were measured with a proteinassay kit containing Coomassie brilliant blue (Nacalai Tesque, Japan),using bovine serum albumin as the standard (Bradford 1976).无细胞抽提液和酶鉴定将100ml培养液离心收获菌体,用为的磷酸缓冲液悬浮,然后超声粉碎。细胞碎片通过离心可以去除,收集上层清液就是无细胞抽提物。碳酰还原酶S1的活性由分光光度计测量如下:测定的混合物包括:的磷酸二氢钾缓冲液,和1mMCOBE。反应在30°C条件下反应,并且随时监测其在340nm处的吸光值。测GDH混合物包括:1M pH 的Tris-HCl的缓冲液,100mM的葡萄糖,2mM的NADP+。反应在25°C下进行,监测其在340nm处的吸光值。一个单位S1或GDH被定义为每分钟催化还原1μmol NADP+或氧化1 μmol NADPH的量。蛋白质的测定通过含有考马斯亮蓝的蛋白质测定试剂利用牛血清白蛋白作为标准进行测定。Study of enzyme stabilityOne milliliter of 100 mM potassium phosphate buffer (pH ) containing the cell-free extracts of E. coli HB101 carrying pNTS1 (S1: 20 U/ml) was mixed with an equal volume of each test organic solvent in a closed vessel. After the mixture was shaken at 30 °C for 48 h, the remaining enzyme activities in an aqueous phase were assayed as described above. The mixture, containing 100 mM potassium phosphate buffer (pH ), S1 (20 U/ml), and various concentrations of CHBE, was incubated at 30 °C for 24 h in order to study the enzyme’s stability in the presence of remaining enzyme activities were assayed as described above.酶稳定性的研究一毫升含有含有pNTS1质粒的E. coli HB101的无细胞抽提液的100mM磷酸氢二钾缓冲液()与等体积的有机溶剂混合。混合物在30 °C震摇48小时后,水相中残留的酶活力即是上述的酶活力。COBE reduction with E. coli cells expressing the S1 gene and E. coli cells expressing GDH genes in a two-phase system reaction The reaction mixture comprised 15 ml culture broth of E. coli HB101 carrying pNTG, 17 ml culture broth of E. coli HB101 carrying pNTS1, mg NADP+, 4 g glucose, g COBE, 25 ml n-butyl acetate, and about 25 mg Triton X-100. The pH of the reaction mixture was controlled at with 5 M sodium hydroxide. At 2 h, g COBE and g glucose were added to the reaction mixture. To compare the reaction by E. coli transformant coexpressing the GDH and S1 genes, 30 ml culture broth of E. coliHB101 carrying pNTS1G was used instead of culture broth of E. coli HB101 carrying pNTG and E. coli HB101 carrying pNTS1. Other components and the procedure were the same as described above.表达S1基因和GDH基因的大肠杆菌细胞在两相反应体系中的还原反应混合物包含有带有pNTG质粒的大肠杆菌HB101的菌液15ml,pNTS1质粒的大肠杆菌HB101的菌液17ml, mg NADP+,4 g葡萄糖,的COBE,25ml的n-butyl acetate丁酰醋酸盐和大约25mg的聚乙二醇辛基苯基醚Triton X-100。用5M的NaOH溶液将pH控制在。在反应两小时后,加入和葡萄糖到该混合物中。比较大肠杆菌转化细胞共表达GDH和S1基因,携带有pNTS1G质粒的大肠杆菌HB10130ml菌液取代了携带有pNTG和pNTS1质粒的大肠杆菌HB101菌液。其他的成分和步骤和上述的方法相似。 COBE reduction to (S)-CHBE in a two-phase system reaction The reaction mixture contained 50 ml of culture broth of an E. coli HB101 transformant, mg NADP+, 11 g glucose, 10 g COBE, 50 ml n-butyl acetate, and about 50 mg Triton X-100. The reaction mixture was stirred at 30 °C, and the pH was controlled at with 5 M sodium hydroxide. Five grams of COBE/ g glucose and 10 g COBE/11 g glucose were added to the reaction mixture at 3 h and 7 h, respectively; mg NADP+ was added at 26 在两相系统中还原生成(S)-CHBE反应混合物包含50ml E. coli HB101转化细胞的培养液,葡萄糖,10gCOBE,50ml丁酰醋酸,和大概50mg聚乙二醇辛基苯基醚Triton X-100.在30°C温度下将其混合均匀,并用5M的NaOH溶液将pH控制在。在第3小时加入5gCOBE和葡萄糖或者在第7小时加入10gCOBE和11g葡萄糖,分别在第26小时加入。 COBE reduction to (S)-CHBE in an aqueous system reaction The reaction mixture was made up of 50 ml of culture broth of an E. coli HB101 transformant, mg NADP+, 11 g glucose, and about 50 mg Triton X-100. The reaction mixture was stirred at 30 °C. Fifteen grams of COBE was fed continuously by means of a micro-feeding machine at a rate of about g/min for about 12 h. The pH of the reaction mixture was controlled at with 5 M sodium hydroxide. The reaction mixture was extracted with 100 ml ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and then evaporated in vacuo. COBE在水相中还原成(S)-CHBE的反应反应的体系是由50ml大肠杆菌HB101转化细胞的菌液,,11g葡萄糖和大约50mg聚乙二醇辛基苯基醚Triton X-100。反应混合物在30°C15mg的COBE通过微量添加机器以 g/min的速率连续12小时恒定的加入到体系中。用5M的NaOH溶液将pH控制在。反应混合物用100ml乙酸乙酯萃取。有机层用无水硫酸钠吸干,并在真空中脱水。Analysis The organic layer was obtained on centrifugation of the reaction mixture and was assayed for CHBE and COBE by gas chromatography. Optical purity of CHBE was analyzed by high-performance liquid chromatography (HPLC), as described previously (Yasohara et al. 1999).Enzymes and chemicals Restriction enzymes and DNA polymerase were purchased fromTakara Shuzo (Japan). COBE (molecular weight: ) was purchasedfrom Tokyo Kasei Kogyo (Japan). Racemic CHBE (molecularweight: ) was synthesized by reduction of COBE withNaBH4. All other chemicals used were of analytical grade andcommercially available.分析离心反应混合物得到的有机层通过气相色谱法测定其CHBE和COBE。COBE的光学纯度如前所述通过高效液相色谱法进行分析。酶和化学试剂限制性内切酶和DNA聚合酶由takara公司购得,COBE(分子量:)由东京Tokyo Kasei Kogyo公司购得,消旋体CHBE(分子量)通过COBE及NaBH4合成。所有其他化学试剂都是分析等级和商业化的试剂。Construction of E. coli transformants overproducing S1 and GDHTo express the carbonyl reductase S1 and GDH genes in the same E. coli cells, four expression vectors were constructed (Fig. 1). Plasmids pNTS1G and pNTGS1 contain the S1 gene from C. magnoliae, the GDH gene from B. megaterium, the lac promoter derived from pUC19, and the terminator derived from pTrc99A. Plasmid pNTS1 contains the S1 gene, the lac promoter derived from pUC19, and the terminator derived from pTrc99A. The enzyme activities in cell-free extracts of the E. coli transformants are shown in Table 1. E. coli HB101 cells carrying the vector plasmid pUCNT had no detectable S1 or GDH activity. E. coli HB101 carrying either pNTS1G or pNTGS1 showed S1 and GDH activity without isopropyl-β-D-thiogalactopyranoside (IPTG) induction. The S1 activities of these two transformants were lower than the GDH activities. To obtain a transformant whose S1 activity was equal to or greater than the level of GDH activity, we used a lower copy vector, pSTV28 (Homma et al. 1995; Takahashi et al. 1995), to express the GDH gene. It may be possible to raise the S1 activity by lowering the GDH activity. Plasmid pSTVG contains the GDH gene, the lac promoter, the chloramphenicol resistance gene, and the replicative origin derived from pACYC184 for compatibility with the plasmid pNTS1. In E. coli HB101 carrying pNTS1 and pSTVG, the S1 activity was higher than the GDH activity, but this GDHlevel may be too low to regenerate in a COBE reduction reaction as described below.过产生S1和GDH的大肠杆菌转化细胞的构建为了在同一大肠杆菌细胞中表达碳酰还原酶S1和GDH基因,要构建四个表达型载体。质粒pNTS1G 和 pNTGS1包含有来自C. magnoliae的S1基因,来自B. megaterium的GDH基因,来自pUC19的LAC启动子,从pTrc99A的来的终止子,质粒pNTS1包含有S1基因,来自pUC19的LAC启动子,从pTrc99A的来的终止子。在大肠杆菌转化细胞的无细胞抽提物的酶活力如表一所示。携带有运输质粒pUCNT的大肠杆菌细胞无法检测到其S1和GDH活性。携带有pNTS1G 或 pNTGS1质粒在没有IPTG的诱导下有S1和GDH的活性。在这两个转化菌种中,S1的活力小于GDH的活力。为了得到S1活性等于或者大于GDH的大肠杆菌转化菌株,我们使用低拷贝的载体pSTV28,来表达GDH基因。它可能可以通过降低GDH的活性从而提高S1的活性。质粒pSTVG包含有GDH基因,lac启动子,和氯霉素抗性基因,以及与pNTS1具有相容性的从pACYC184得来的复制起始位点。在携带有pNTS1和pSTVG的大肠杆菌转化细胞中,S1的活性要高于GDH的活性,但是GDH的活性可能会太低而在COBE还原反应中不能再生。 太长了,字数有限制,所以不能发完。分数我无所谓啦,我很少登录的。这应该算是基因工程的吧,是我以前自己翻的,不是很好。如果你要的话可以联系我的邮箱。
Abstract: As the accelerating development of the molecule technology, it has been increasingly used in many grounds of human life. Along with the excited and confused feeling among people, there are definitely a large number of controversial issues on this magical technology. Especially at the Present, America attempt to prove that creating the artificial blood by genetic technology and tended to body experiment for artificial blood after 2013 has brought many arguments. This paper mainly studies the artificial blood made through the genetic technology.