首页

> 论文发表知识库

首页 论文发表知识库 问题

高等几何小论文格式

发布时间:

高等几何小论文格式

小论文格式要求(2010年版)一、学生要严格按照论文题目、作者及学号、单位、指导教师、摘要、关键词、正文、主要参考文献。二、字体、字号规定如下:题目(黑体小2号居中);作者、单位(宋体4号);指导教师及其姓名(楷体4号间隔3空);摘要、关键词(黑体5号);摘要内容、关键词内容(楷体5号);参考文献(黑体5号)、参考文献内容(宋体5号);正文内容(宋体小4号),一级标题(黑体小4号),二级标题(小标宋小4号)。三、论文的标题层次采用阿拉伯数字分级编号。如:一级标题1,2级标题,三级标题。编号左起顶格书写。四、中文摘要150字左右,关键词3-7个。五、参考文献只列文中引用的公开发表的文献(未公开出版的用脚注说明),按文中出现的先后次序列出。其排列格式如下:专著:作者名(包括前三位)、书名、出版社、出版年。论文集:作者名(包括前三位)、文题、编著者、书名、出版社、出版年。刊物:作者名(包括前三位)、文名、刊物名称、期(卷)。如:[1] 盛宝怀. Ba空间中Kantorovich算子的饱和性. 数学杂志,1992,12(2):146-154.[2] Wu Garidi. The Jackson theorem in Ba spaces. Approx. theory & Appl.,1996,12(2):60-69.[3] 孟伯秦. 内插空间理论及其应用.内蒙古人民出版社, 2001, 183-192.六、用蒙文撰写的论文的题目、单位、作者、指导教师、摘要、关键词必须用蒙文汉两种语言表达。七、毕业设计(创作)要求录入作品名称(题目)、单位、姓名、指导教师、毕业设计报告书。数学科学学院2010-7-1范文:内蒙古自治区科技人才地域分布差异分析××× 学号数学科学学院 数学与应用数学专业 2004级汉班指导教师 ×××摘 要 科技人才是经济发展、社会进步、文化繁荣的先决条件和制约因素,本文根据内蒙古自治区1994年科技人才调查统计的数据,对内蒙古地区人才分布现状、差异及形成差异的原因和今后发展对策等方面进行了初步探讨.关键词 内蒙古自治区、科技人才、地域差异、人才优势内蒙古自治区位于祖国的北疆,地文人稀,交通不便,自然条件和自然资源复杂多样,在这片土地上设有十二个盟市级行政单位,其中含有四个市八个盟,首府是呼和浩特[1].1内蒙古科技人才地域分布差异 内蒙古各盟(市)科技人才地域分布差异 人才数量差异内蒙古自治区自然资源丰富,但缺乏与之相适应的人才资源. 因此人才资源急需解决[2]. 解决的办法就是引进人才的同时,切实加强本地区的人才开发培养工作. 人才地域结构差异(正文部分略)2内蒙古科技人才发展战略一方面要适当增加物质力量对科技事业的支持,加强教育投资,发送办学条件,抓好师资队伍建设,提高教师待遇,减少教育人才外流;另一方面要深化教育体制改革,提高教育质量.本文在写作过程中得到了XXX老师多次精心指导,在此表示感谢.(本行可以不写)参考文献:[1] 盛宝怀. Ba空间中Kantorovich算子的饱和性. 数学杂志, 1992, 12(2): 146-154.[2] Wu Garidi. The Jackson theorem in Ba spaces. Approx. theory & Appl.,1996,12(2):60-69.[3] 孟伯秦. 内插空间理论及其应用.呼和浩特:内蒙古人民出版社, 2001, 183-192.

小论文,简单的说,就是「简短的论文」。而论文指的是用来论述自己主张的有理论性的文章,包括「学位论文」「学术论文」「小论文」等等各种种类。小论文格式要求一、基本要求●统一使用A4普通白纸,页码统一打在右下角.●页码采用A4纸型纵向排列,页边距上、下均为3cm,左右均为。二、打印格式:●论文标题(统一使用小二号加粗黑体)●摘要(暂只要求中文部分)不超过200字。摘要标题使用小四号楷体_GB2312,加粗摘要内容使用五号黑体,出现在首页标题下面。●关键字(三至五个)。关键字标题使用小四号楷体_GB2312,加粗关键字内容使用五号黑体,出现在首页标题下面●正文中文均采用仿宋_GB2312,西文采用Times New Roman字体。正文段落之间不空行。●参考文献(统一使用五号宋体)参考文献:[1] 作者1[,作者2,作者3][,等]. 期刊论文题名[J]. 刊名,出版年份,卷(期):起止页码.[2] 作者. 书名[M]. 版本,出版地:出版者,出版年. 起止页码.

论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献、附录和致谢。

论文格式就是指进行论文写作时的样式要求,以及写作标准。直观地说,论文格式就是论文达到可公之于众的标准样式和内容要求。论文常用来进行科学研究和描述科研成果文章。

它既是探讨问题进行科学研究的一种手段,又是描述科研成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等,总称为论文。

英文题名方法

1、英文题名以短语为主要形式,尤以名词短语最常见,即题名基本上由一个或几个名词加上其前置和(或)后置定语构成;短语型题名要确定好中心词,再进行前后修饰。各个词的顺序很重要,词序不当,会导致表达不准。

2、不要用陈述句,因为题名主要起标示作用,而陈述句容易使题名具有判断式的语义,且不够精炼和醒目。少数情况(评述性、综述性和驳斥性)下可以用疑问句做题名,因为疑问句有探讨性语气,易引起读者兴趣。

3、同一篇论文的英文题名与中文题名内容上应一致,但不等于说词语要一一对应。在许多情况下,个别非实质性的词可以省略或变动。

楼上说的似乎都太小儿科了,楼主想必是要发表的那种,当然要正式一点.这里的一篇是偏向交作业的下面一个是正式发表的双语版本张彧典人工证明四色猜想 山西盂县党校数学高级讲师用25年业余时间研究四色猜想的人工证明。在借鉴肯普链法和郝伍德范例正反两方面做法的基础上,独创了郝——张染色程序和色链的数量组合、位置(相交)组合理论,确立了仅包含九大构形的不可免集合,从而弥补了肯普证明中的漏洞。现贴出全文(中——英文对照)及参考文献的英译汉全文。欢迎各位同仁批评指正。最后特别感谢英国兰开斯特大学、兰州交大张忠辅、清华大学林翠琴、上海师大吴望名四位教授的无私帮助。附:论文用“H·Z—CP“求解赫伍德构形张彧典 (山西省盂县县委党校 045100)摘要:本文根据色链的数量和位置组合理论,用赫伍德染色程序(简称H—CP)和张彧典染色程序(简称Z—CP)找到一个赫伍德构形的不可避免集。关键词:H—CP Z—CP H·Z—CP《已知的赫伍德范例》〔1〕对求解赫伍德构形有两大贡献。其一,提供了H—CP,使我们用它找到了赫伍德染色非周期转化的赫伍德构形组合;其二,范例2提供了赫伍德染色周期转化的赫伍德构形,使我们发现了Z—CP,解决了这种构形的正确染色。为下面讨论方便,先给出〔1〕文中赫伍德构形的最简单模型。如图1所示:四色用A、B、C、D表示,待染色区V用小圆表示,其五个邻点染色用A1、B1、B2、C1、D1表示,形成的五边形区域叫双B夹A型中心区。中心区外有A1—C1链、A1—D1链(因它们的首尾分别被V连成环,故叫环,以便与开放链区分),其中还有B1—D2链、B2—C2链,A1、A2被C2—D2链隔开。其余赫伍德构形类同。在我们所设的模型中,再添加一些不同的色链后就构成许多不同的标准三角剖分图(记为G′)。当借助H—CP对它们求解时发现,其中色链的不同数量组合和相交组合直接影响解法上的差异。现在具体确立赫伍德构形的不可避免集。在后面图解中,画小横线者表示环,画粗线者表示两点以上染色互换的链,B(D)等表示一个点的染色互换。如图2: 设图1中有B1-A2链、D1-C2链(也可以是B2-A2链)存在时。其解法是:在A1—C1环内作B、D互换,生成新的A—D环(生不成情形归于下一种构形),再作A—D环外的C、B互换,可给V染C色。如图3:设图1中有C1-D2链、D1-C2链存在时。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。如图4:设图1中有C1-D2链、B2-A2链存在时。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。如图5:设图4中B1-D2链与A1-D1环相交,这时有B1-A3、C1-A3生成。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成新的B—D环(生不成情形归于下一种构形);再作B—D环外的A、C互换,可给V染A色。如图6:设图5中C1-D2链与A1-C1环相交,为简单起见,将C1-D2链在A1-C1环外的D色点均改染B色,见图中B(带圈子的)。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成新的A—D环(生不成情形归于下一种构形);再作A—D环内的C、B互换,可给V染C色。如图7:设图6中B1-D2链再与B1-A3链相交,为简单起见,将B1-A3链在B1-D2链内侧的A色点均改染C色,见图中C(带圈子的)。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。如图8:设图7中有B1-D2链与C1-D2链在A1-C1环内相交。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。图9:设图8中有B2-A2链与A1-D1环相交。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成A—D环;作A—D环内的C、B互换,生成新的B—D环;(生不成情形归于下一种构形)再作B—D环内的A、C互换,可给V染A色。如图10:这是一个十折对称的赫伍德构形。即在图3中,按图6的相交组合方式设C1—D2链与A1—C1环相交,D1—C2链与A1—D1环相交,C1—D2链在A1—C1环外的D色点与D1—C2链在A1—D1环外的C色点均改染B色,见图中B(带圈子的)。;再设改染成的C—B链、D—B链对称相交。这个赫伍德构形就是〔1〕文中范例2的拓扑变换形式。对于图10如果沿用图2—9的求解方法,就会产生四个周期转化的赫伍德构形,无法得解。但是,四个连续转化的赫伍德构形有一个共同的染色特征,即都包含A—B环,于是产生了如下特殊的Z—CP:若已知的是第一(或三)图时,先作A—B环外的C,D互换,生成新的A—C,A—D(或B—C、B—D)环,再作B(D)、B(C)[或A(D)、A(C)]互换,使五边形五个顶点染色数减少到3。解如图10(1)和图10(3)。若已知的是第二(或四)图时,先作A—B环外的C,D互换,生成了新的B—C(或A—D)链,再作B—C(或A—D)链一侧的A(D)[或A(C)〕互换,使五边形五个顶点染色数减少到3。解如图10(2)和10(4)。下面从理论上证明图2—10组成的不可避免集的完备性。在已四染色的G’中,由A、B、C、D四色中任意二色组成的不同色链共C42(=6) 种。反映在赫伍德构形中,有始点终点均在中心区且相交的A1-C1环、A1-D1环,还有始点在中心区,终点在A1-C1、A1-D1二环交集区域边缘上的B1-D2、B1-A2(B2-A2)、B2-C2、C1-D2(D1-C2)四种链。这四种链在赫伍德构形中的不同数量组合共四组:B1-A2、B1-D2、B2-C2、B2-A2B1-A2、B1-D2、B2-C2、D1-C2C1-D2、B1-D2、B2-C2、B2-A2C1-D2、B1-D2、B2-C2、D1-C2而六种色链中任意两种色链的不同位置组合共C62(=15)组。其中有三组不可相交组合:A-B与C-D、A-C与B-D、A-D与B-C;还有12组可相交组合:A-B与A-C、A-D、B-C、B-D;A-C与A-D、B-C、C-D ;A-D与B-D、C-D;B-C与B-D、C-D;B-D与C-D。我们把上述六种色链的不同数量组合(4组)及不同位置组合(12组可相交的)作为两大变量,一共可得到16种不同组合的赫伍德构形;然后在“结构最简”和“解法相同”的约束条件下逐一检验,具体归纳为:图2——4体现四种不同数量组合,其中图2体现前两种组合;图5——9体现依次增多的相交组合,其中图9已包含了12种相交组合;图10体现特殊的数量组合和相交组合。到此,我们用“H·Z—CP”成功地解决了赫伍德构形的正确染色,从而弥补了肯普证明中的漏洞。参考文献:〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71附英文版Using H·Z-CP Solves Heawood ConfigurationZhang Yu-dianYu Xian Party School, Yu Xian 045100, Shanxi, ChinaAbstract: In this text, One Heawood configuration’s inevitable sets is found by using Heawoods-clouring procedure (abbreviated as H-CP) and Zhang Yu-dian clouring procedure (abbreviated as Z-CP), based on quantity and poison combination theory of coloring chain. And, one new procedure is found, which is named as H· words: H-CP Z-CP H·Z-CPIntroduceThesis [1] made two main contributions to solving Heawood configuration. One is H-CP, by using it Heawood-coloring aperiodic transform’s Heawood configuration sets was found. The other one, in example II[1], provided Heawood-coloring periodic transform’s Heawood configuration. With it, Z-CP was found, and solved correct coloring for this the convenience of discuss, the simplest Heawood configuration model is given in [1] as shown in Fig. 1, A, B,C ,D denote four colors, one roundlet denotes section V to be dyed, A1, B1, B2,C1 ,D1, denote five adjacent points border upon V, the pentagon area that forms is defined as pairs of B & A embedded area. Outside of V is A1-C1 chain and A1-D1 chain (because the head and trail is looped by V separately, so called loop, in order to distinguish with others). And there are B1-D2 chain and B 2-C2 chain also. A1, A2 is separated by C2-D2 chain. The other Heawood configuration is this model, if add another coloring chain, many distinct normal triangle section map is formed(is G′). When to find the solution of map, it is found that distinct quantity combination and intersectant combination have effect on solution’s follows, the detailed Heawood configuration’s inevitable sets is is defined in latter figure as: a small transverse thread denotes a loop, a thick thread denotes a chain in which two or more coloring changed. B(D) etc. denotes that one point’s coloring is shown in Fig. 2, if there are B1-A2 chain and D1-C2 chain in Fig. 1(can also be B2-A2 chain):Its solution is: in A1-C1 loop, B and D is interchanged, a new A-D loop is formed (if it can’t be formed, belongs to another configuration). Then, C and B outside A-D loop is interchanged, and then V can be dyed with C shown in Fig. 3, if there are C1-D2 chain and D1-C2 chain in Fig. 1:Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new A-C loop is formed (if it can’t be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B shown in , if there are C1-D2 chain and B2-A2 chain in Fig. 1:Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed , in B-D loop, A and C is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D shown in , if B1-D2 chain and A1-D1 loop is intersectant in Fig. 4, new B1-A 3 loop and C1-A 3 loop are solution is:in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, A and C outside B-D loop is interchanged, and then V can be dyed with A shown in , if C1-D2 chain and A1-C1 loop is intersectant in Fig. 5, for simplicity, D can be dyed with B color in C1-D2 chain outside A1-C1 loop. See ○B in solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new A-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-D loop, C and B is interchanged, and then V can be dyed with C shown in , if B1-D2 chain and B1-A3 loop is intersectant in Fig. 6, for simplicity, A can be dyed with C color in B1-A3 chain inside B1-D2 chain. See ○C in Fig. solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new A-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B shown in , if B1-D2 chain and C1-D2 chain is intersectant inside A1-C1 loop in Fig. solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D shown in , if B2-A2 chain and A1-D2 loop is intersectant in Fig. solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new A-D loop is formed, in A-D loop, C and B is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-D loop, A and C is interchanged, and then V can be dyed with A Fig. 10, it is a ten-fold symmetrical Heawood configuration. Namely in Fig. 3, according intersectant combination method in Fig. 6,if C1-D2 chain and A1-C1 loop intersects, D1-C2 chain and A1-D1 loop intersects, D color point at C1-D2 chain outside A1-C1 loop and C color point at D1-C2 chain outside A1-D1 loop are both exchanged with B coloring, see ○B in Fig. 10. And then presume the exchanged C-B chain and D-B chain are symmetrically intersectant. This Heawood configuration is the topology transform form in example II [1].For Fig. 10, if using the solution way in Fig. 9, 4 periodic transform’s Heawood configurations will come into being, and will be no result. But there is a common coloring character for the 4 sequence transform Heawood configurations, namely, they all contain A-B loop. And then, as follows Z-CP comes into Fig. 10(1) or 10(3) is known, firstly, C and D outside A-B loop interchanged, the new A-C loop and A-D loop(or B-C loop and B-D loop) come into B(D) & B(C) (or A(D) & A(C)) interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(1) and Fig. 10(3).If Fig. 10(2) or 10(4) is known, firstly, C and D outside A-B loop is interchanged, the new B-C (or A-D) chain come into being, then A(D) (or A(C)) at the side of B-C (or A-D) is interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(2) and Fig. 10(4).The self-contained inevitable sets composed of Fig 2 to 10 will be proved as the 4 color dyed G’, the quantity of distinct coloring chain formed by two colors in A, B,C ,D four colors have C42(=6) kinds totally. It is reflected in Heawood configuration, there are intersectant A1-C1 loop and A1-D1 loop whose start-point and end-point are all in center area. And there are B1-D2, B1-A2(B2-A2), B2-C2, C1-D2(D1-C2) 4 chains , whose start-point is in center area, and end-point is on the verge of the intersection area of A1-C1 loop and A1-D1 loop. There are 4 groups in total for the 4 kinds of chain’s distinct quantity combination in Heawood configuration:B 1-A2、B 1-A2、B2-C2、B2-A2B 1-A2、B 1-D2、B2-C2、D1-C2C 1-D2、B 1-D2、B2-C2、B2-A2C 1-D2、B 1-D2、B2-C2、D1-C2There are C62(=15) kinds of two different situation’s combination in 6 kinds of chains, among them ,there are 3 kinds of not intersectant combinations:A-B and C-D、A-C and B-D、A-D and B-C;Otherwise there are 12 kinds of intersectant combinations:A-B and A-C、A-D、B-C、B-D;A-C and A-D、B-C、C-D ;A-D and B-D、C-D;B-C and B-D、C-D;B-D and C-D。Above 6 kinds of chain’s different quantity combinations(4 groups) and different situation combinations (intersectant 12 groups ) are two major variables, 16 kinds of Heawood configurations in different combination can be found totally. Then, on the “simplest structure” and “same solution” restrictive condition, verifiyed one by one, detailed conclusion is: Fig. 2 to Fig. 4 indicate 4 kinds of different quantity combinations. Among them, Fig. 2 indicates the former 2 groups. Fig. 5 to Fig. 9 indicate intersectant combination increased in turn. Among them, Fig. 9 contains12 kinds of intersectant combinations. Fig. 10 indicates specific quantity combinations sand intersectant this time, correct coloring for Heawood configuration is solved. The procedure which solve the problem, we name it H·Z-CP. The conclusion renovate the leak of kengpu :〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71

高等几何博士论文格式要求

楼上说的似乎都太小儿科了,楼主想必是要发表的那种,当然要正式一点.这里的一篇是偏向交作业的下面一个是正式发表的双语版本张彧典人工证明四色猜想 山西盂县党校数学高级讲师用25年业余时间研究四色猜想的人工证明。在借鉴肯普链法和郝伍德范例正反两方面做法的基础上,独创了郝——张染色程序和色链的数量组合、位置(相交)组合理论,确立了仅包含九大构形的不可免集合,从而弥补了肯普证明中的漏洞。现贴出全文(中——英文对照)及参考文献的英译汉全文。欢迎各位同仁批评指正。最后特别感谢英国兰开斯特大学、兰州交大张忠辅、清华大学林翠琴、上海师大吴望名四位教授的无私帮助。附:论文用“H·Z—CP“求解赫伍德构形张彧典 (山西省盂县县委党校 045100)摘要:本文根据色链的数量和位置组合理论,用赫伍德染色程序(简称H—CP)和张彧典染色程序(简称Z—CP)找到一个赫伍德构形的不可避免集。关键词:H—CP Z—CP H·Z—CP《已知的赫伍德范例》〔1〕对求解赫伍德构形有两大贡献。其一,提供了H—CP,使我们用它找到了赫伍德染色非周期转化的赫伍德构形组合;其二,范例2提供了赫伍德染色周期转化的赫伍德构形,使我们发现了Z—CP,解决了这种构形的正确染色。为下面讨论方便,先给出〔1〕文中赫伍德构形的最简单模型。如图1所示:四色用A、B、C、D表示,待染色区V用小圆表示,其五个邻点染色用A1、B1、B2、C1、D1表示,形成的五边形区域叫双B夹A型中心区。中心区外有A1—C1链、A1—D1链(因它们的首尾分别被V连成环,故叫环,以便与开放链区分),其中还有B1—D2链、B2—C2链,A1、A2被C2—D2链隔开。其余赫伍德构形类同。在我们所设的模型中,再添加一些不同的色链后就构成许多不同的标准三角剖分图(记为G′)。当借助H—CP对它们求解时发现,其中色链的不同数量组合和相交组合直接影响解法上的差异。现在具体确立赫伍德构形的不可避免集。在后面图解中,画小横线者表示环,画粗线者表示两点以上染色互换的链,B(D)等表示一个点的染色互换。如图2: 设图1中有B1-A2链、D1-C2链(也可以是B2-A2链)存在时。其解法是:在A1—C1环内作B、D互换,生成新的A—D环(生不成情形归于下一种构形),再作A—D环外的C、B互换,可给V染C色。如图3:设图1中有C1-D2链、D1-C2链存在时。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。如图4:设图1中有C1-D2链、B2-A2链存在时。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。如图5:设图4中B1-D2链与A1-D1环相交,这时有B1-A3、C1-A3生成。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成新的B—D环(生不成情形归于下一种构形);再作B—D环外的A、C互换,可给V染A色。如图6:设图5中C1-D2链与A1-C1环相交,为简单起见,将C1-D2链在A1-C1环外的D色点均改染B色,见图中B(带圈子的)。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成新的A—D环(生不成情形归于下一种构形);再作A—D环内的C、B互换,可给V染C色。如图7:设图6中B1-D2链再与B1-A3链相交,为简单起见,将B1-A3链在B1-D2链内侧的A色点均改染C色,见图中C(带圈子的)。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。如图8:设图7中有B1-D2链与C1-D2链在A1-C1环内相交。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。图9:设图8中有B2-A2链与A1-D1环相交。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成A—D环;作A—D环内的C、B互换,生成新的B—D环;(生不成情形归于下一种构形)再作B—D环内的A、C互换,可给V染A色。如图10:这是一个十折对称的赫伍德构形。即在图3中,按图6的相交组合方式设C1—D2链与A1—C1环相交,D1—C2链与A1—D1环相交,C1—D2链在A1—C1环外的D色点与D1—C2链在A1—D1环外的C色点均改染B色,见图中B(带圈子的)。;再设改染成的C—B链、D—B链对称相交。这个赫伍德构形就是〔1〕文中范例2的拓扑变换形式。对于图10如果沿用图2—9的求解方法,就会产生四个周期转化的赫伍德构形,无法得解。但是,四个连续转化的赫伍德构形有一个共同的染色特征,即都包含A—B环,于是产生了如下特殊的Z—CP:若已知的是第一(或三)图时,先作A—B环外的C,D互换,生成新的A—C,A—D(或B—C、B—D)环,再作B(D)、B(C)[或A(D)、A(C)]互换,使五边形五个顶点染色数减少到3。解如图10(1)和图10(3)。若已知的是第二(或四)图时,先作A—B环外的C,D互换,生成了新的B—C(或A—D)链,再作B—C(或A—D)链一侧的A(D)[或A(C)〕互换,使五边形五个顶点染色数减少到3。解如图10(2)和10(4)。下面从理论上证明图2—10组成的不可避免集的完备性。在已四染色的G’中,由A、B、C、D四色中任意二色组成的不同色链共C42(=6) 种。反映在赫伍德构形中,有始点终点均在中心区且相交的A1-C1环、A1-D1环,还有始点在中心区,终点在A1-C1、A1-D1二环交集区域边缘上的B1-D2、B1-A2(B2-A2)、B2-C2、C1-D2(D1-C2)四种链。这四种链在赫伍德构形中的不同数量组合共四组:B1-A2、B1-D2、B2-C2、B2-A2B1-A2、B1-D2、B2-C2、D1-C2C1-D2、B1-D2、B2-C2、B2-A2C1-D2、B1-D2、B2-C2、D1-C2而六种色链中任意两种色链的不同位置组合共C62(=15)组。其中有三组不可相交组合:A-B与C-D、A-C与B-D、A-D与B-C;还有12组可相交组合:A-B与A-C、A-D、B-C、B-D;A-C与A-D、B-C、C-D ;A-D与B-D、C-D;B-C与B-D、C-D;B-D与C-D。我们把上述六种色链的不同数量组合(4组)及不同位置组合(12组可相交的)作为两大变量,一共可得到16种不同组合的赫伍德构形;然后在“结构最简”和“解法相同”的约束条件下逐一检验,具体归纳为:图2——4体现四种不同数量组合,其中图2体现前两种组合;图5——9体现依次增多的相交组合,其中图9已包含了12种相交组合;图10体现特殊的数量组合和相交组合。到此,我们用“H·Z—CP”成功地解决了赫伍德构形的正确染色,从而弥补了肯普证明中的漏洞。参考文献:〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71附英文版Using H·Z-CP Solves Heawood ConfigurationZhang Yu-dianYu Xian Party School, Yu Xian 045100, Shanxi, ChinaAbstract: In this text, One Heawood configuration’s inevitable sets is found by using Heawoods-clouring procedure (abbreviated as H-CP) and Zhang Yu-dian clouring procedure (abbreviated as Z-CP), based on quantity and poison combination theory of coloring chain. And, one new procedure is found, which is named as H· words: H-CP Z-CP H·Z-CPIntroduceThesis [1] made two main contributions to solving Heawood configuration. One is H-CP, by using it Heawood-coloring aperiodic transform’s Heawood configuration sets was found. The other one, in example II[1], provided Heawood-coloring periodic transform’s Heawood configuration. With it, Z-CP was found, and solved correct coloring for this the convenience of discuss, the simplest Heawood configuration model is given in [1] as shown in Fig. 1, A, B,C ,D denote four colors, one roundlet denotes section V to be dyed, A1, B1, B2,C1 ,D1, denote five adjacent points border upon V, the pentagon area that forms is defined as pairs of B & A embedded area. Outside of V is A1-C1 chain and A1-D1 chain (because the head and trail is looped by V separately, so called loop, in order to distinguish with others). And there are B1-D2 chain and B 2-C2 chain also. A1, A2 is separated by C2-D2 chain. The other Heawood configuration is this model, if add another coloring chain, many distinct normal triangle section map is formed(is G′). When to find the solution of map, it is found that distinct quantity combination and intersectant combination have effect on solution’s follows, the detailed Heawood configuration’s inevitable sets is is defined in latter figure as: a small transverse thread denotes a loop, a thick thread denotes a chain in which two or more coloring changed. B(D) etc. denotes that one point’s coloring is shown in Fig. 2, if there are B1-A2 chain and D1-C2 chain in Fig. 1(can also be B2-A2 chain):Its solution is: in A1-C1 loop, B and D is interchanged, a new A-D loop is formed (if it can’t be formed, belongs to another configuration). Then, C and B outside A-D loop is interchanged, and then V can be dyed with C shown in Fig. 3, if there are C1-D2 chain and D1-C2 chain in Fig. 1:Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new A-C loop is formed (if it can’t be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B shown in , if there are C1-D2 chain and B2-A2 chain in Fig. 1:Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed , in B-D loop, A and C is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D shown in , if B1-D2 chain and A1-D1 loop is intersectant in Fig. 4, new B1-A 3 loop and C1-A 3 loop are solution is:in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, A and C outside B-D loop is interchanged, and then V can be dyed with A shown in , if C1-D2 chain and A1-C1 loop is intersectant in Fig. 5, for simplicity, D can be dyed with B color in C1-D2 chain outside A1-C1 loop. See ○B in solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new A-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-D loop, C and B is interchanged, and then V can be dyed with C shown in , if B1-D2 chain and B1-A3 loop is intersectant in Fig. 6, for simplicity, A can be dyed with C color in B1-A3 chain inside B1-D2 chain. See ○C in Fig. solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new A-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B shown in , if B1-D2 chain and C1-D2 chain is intersectant inside A1-C1 loop in Fig. solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D shown in , if B2-A2 chain and A1-D2 loop is intersectant in Fig. solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new A-D loop is formed, in A-D loop, C and B is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-D loop, A and C is interchanged, and then V can be dyed with A Fig. 10, it is a ten-fold symmetrical Heawood configuration. Namely in Fig. 3, according intersectant combination method in Fig. 6,if C1-D2 chain and A1-C1 loop intersects, D1-C2 chain and A1-D1 loop intersects, D color point at C1-D2 chain outside A1-C1 loop and C color point at D1-C2 chain outside A1-D1 loop are both exchanged with B coloring, see ○B in Fig. 10. And then presume the exchanged C-B chain and D-B chain are symmetrically intersectant. This Heawood configuration is the topology transform form in example II [1].For Fig. 10, if using the solution way in Fig. 9, 4 periodic transform’s Heawood configurations will come into being, and will be no result. But there is a common coloring character for the 4 sequence transform Heawood configurations, namely, they all contain A-B loop. And then, as follows Z-CP comes into Fig. 10(1) or 10(3) is known, firstly, C and D outside A-B loop interchanged, the new A-C loop and A-D loop(or B-C loop and B-D loop) come into B(D) & B(C) (or A(D) & A(C)) interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(1) and Fig. 10(3).If Fig. 10(2) or 10(4) is known, firstly, C and D outside A-B loop is interchanged, the new B-C (or A-D) chain come into being, then A(D) (or A(C)) at the side of B-C (or A-D) is interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(2) and Fig. 10(4).The self-contained inevitable sets composed of Fig 2 to 10 will be proved as the 4 color dyed G’, the quantity of distinct coloring chain formed by two colors in A, B,C ,D four colors have C42(=6) kinds totally. It is reflected in Heawood configuration, there are intersectant A1-C1 loop and A1-D1 loop whose start-point and end-point are all in center area. And there are B1-D2, B1-A2(B2-A2), B2-C2, C1-D2(D1-C2) 4 chains , whose start-point is in center area, and end-point is on the verge of the intersection area of A1-C1 loop and A1-D1 loop. There are 4 groups in total for the 4 kinds of chain’s distinct quantity combination in Heawood configuration:B 1-A2、B 1-A2、B2-C2、B2-A2B 1-A2、B 1-D2、B2-C2、D1-C2C 1-D2、B 1-D2、B2-C2、B2-A2C 1-D2、B 1-D2、B2-C2、D1-C2There are C62(=15) kinds of two different situation’s combination in 6 kinds of chains, among them ,there are 3 kinds of not intersectant combinations:A-B and C-D、A-C and B-D、A-D and B-C;Otherwise there are 12 kinds of intersectant combinations:A-B and A-C、A-D、B-C、B-D;A-C and A-D、B-C、C-D ;A-D and B-D、C-D;B-C and B-D、C-D;B-D and C-D。Above 6 kinds of chain’s different quantity combinations(4 groups) and different situation combinations (intersectant 12 groups ) are two major variables, 16 kinds of Heawood configurations in different combination can be found totally. Then, on the “simplest structure” and “same solution” restrictive condition, verifiyed one by one, detailed conclusion is: Fig. 2 to Fig. 4 indicate 4 kinds of different quantity combinations. Among them, Fig. 2 indicates the former 2 groups. Fig. 5 to Fig. 9 indicate intersectant combination increased in turn. Among them, Fig. 9 contains12 kinds of intersectant combinations. Fig. 10 indicates specific quantity combinations sand intersectant this time, correct coloring for Heawood configuration is solved. The procedure which solve the problem, we name it H·Z-CP. The conclusion renovate the leak of kengpu :〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71

学术论文写作步骤

一、材料准备

利用图书馆网站资源查阅有关的报刊目录索引、专题目录索引与年鉴等工具书以及制作文献目录卡片。卡片内容包含:

对于单行本,要包含出版单位,报纸包含发行的年月日。

二、确定文章结构

编写提纲的主要作用:

三、写作初稿

初稿的写作是论文形成过程中最艰苦阶段。初稿的目的是要把所有想写的内容全部表达出来,对全部数据和资料进行详细的分析、归类。从初稿的写作过程中还可及时发现前期文献研究工作有无不足或错误。

四、修改

修改是对论文初稿所写的内容不断加深认识,对论文表达形式不断优化,选择直至定稿的过程。 论文的修改不只是在语言修辞等枝节上自找毛病,对全文论点及论据进行再次锤炼和推敲也很重要。最后一步才是定稿。经过不断修改,确保论文达到一个基本满意的状态。

引言(introduction一级标题黑体小四号)引言又称前言,属于整篇论文的引论部分。其写作内容包括:研究的理由、目的、背景、前人的工作和知识空白,理论依据和实验基础,预期的结果及其在相关领域里的地位、作用和意义。引言的文字不可冗长,内容选择不必过于分散、琐碎,措词要精炼,要吸引读者读下去。引言的篇幅大小,并无硬性的统一规定,需视整篇论文篇幅的大小及论文内容的需要来确定,长的可达700~800字或1000字左右,短的可不到100字。1、题名(title,topic一级标题黑体小四号)题名又称题目或标题。题名是以最恰当、最简明的词语反映论文中最重要的特定内容的逻辑组合。论文题目是一篇论文给出的涉及论文范围与水平的第一个重要信息,也是必须考虑到有助于选定关键词不达意和编制题录、索引等二次文献可以提供检索的特定实用信息。主标题(quot二级标题宋体五号字)论文的主标题十分重要,必须用心斟酌选定。有人描述其重要性,用了下面的一句话:“论文题目是文章的一半”。对论文题目的要求是:准确得体,简短精炼;外延和内涵恰如其分,醒目。对这两方面的要求分述如下。准确得体,简短精炼(三级标题宋体五号)要求论文题目能准确表达论文内容,恰当反映所研究的范围和深度。常见毛病是:过于笼统,题不扣文。如:“不等式的应用”过于笼统,若改为针对研究的具体对象来命题。效果会好得多,例如“贝塞耳不等式的应用”,这样的题名就要贴切得多。再如:“中值定理在证明一类不等式中的应用”这样的论文题目不准确,题名中值定理是哪一个?,令人费解,何类不等式?请教不得而知,这就叫题目含混不清,解决的办法就是要站在读者的角度,清晰地点示出论文研究的内容。假如上面的题目中,指的是微分中值定理,何类不等式可放在内文中说明,不必写在标题中,标题中只需反映运用微分中值定理这一事实即可。可参考的修改方案为:“巧用微分中值定理”。关键问题在于题目要紧扣论文内容,或论文内容与论文题目要互相匹配、紧扣,即题要扣文,文也要扣题。这是撰写论文的基本准则。力求题目的字数要少,用词需要精选。至于多少字才算是合乎要求,并无统一的硬性规定,一般希望一篇论文题目不要超出20个字,不过,不能由于一味追求字数少而影响题目对内容的恰当反映,在遇到两者确有矛盾时,宁可多用几个字也要力求表达明确。外延和内涵恰如其分,醒目(三级标题宋体五号)“外延”和“内涵”属于形式逻辑中的概念。所谓外延,是指一个概念所反映的每一个对象;而所谓内涵,则是指对每一个概念对象特有属性的反映。命题时,若不考虑逻辑上有关外延和内涵的恰当运用,则有可能出现谬误,至少是不当。如:对农村合理的人、畜、机动力的组合设计这一标题即存在逻辑上的错误。题名中的人,其外延可能是青壮年,也可以是指婴儿、幼儿或老人,因为后者也是主标题“人”,然而却不是具有劳动能力的人,显然不属于命题所指,所以泛用“人”,其外延不当。同理,“畜”可以指牛,但也可以指羊和猪,试问,哪里见到过用羊和猪来犁田拉磨的呢?所以也属于外延不当的错误。若使用“劳力”与“畜力”,就不会分别误解成那些不具有劳动能力和不能使役的对象。论文题目虽然居于首先映入读者眼帘的醒目位置,但仍然存在题目是否醒目的问题,因为题目所用字句及其所表现的内容是否醒目,其产生的效果是相距甚远的副标题(二级标题宋体五号字)若简短题名不足以显示论文内容或反映出属于系列研究的性质,则可利用正、副标题的方法解决,以加副标题来补充说明特定的实验材料,方法及内容等信息,使标题成为既充实准确又不流于笼统和一般化。如?(主标题)一类几何曲线特性--(副标题)用数学软件模拟几何曲线的滑移特性。2、摘要(abstract一级标题黑体小四号)论文一般应有摘要,有些为了国际交流,还有外文(多用英文)摘要。它是论文内容不加注释和评论的简短陈述。其他用是不阅读论文全文即能获得必要的信息。摘要应包含以下内容:①从事这一研究的目的和重要性;②研究的主要内容,指明完成了哪些工作;③获得的基本结论和研究成果,突出论文的新见解;④结论或结果的意义。论文摘要虽然要反映以上内容,但文字必须十分简炼,内容亦需充分概括,篇幅大小一般限制其字数不超过论文字数的5%。例如,对于6000字的一篇论文,其摘要一般不超出300字。论文摘要不要列举例证,不讲研究过程,不用图表,不用夸张,也不要作自我评价。撰写论文摘要的常见毛病,一是照搬论文正文中的小标题(目录)或论文结论部分的文字;二是内容不浓缩、不概括,文字篇幅过长。3、关键词(key words一级标题黑体小四号)关键词属于主题词中的一类。主题词除关键词外,还包含有单元词、标题词的叙词。主题词是用来描述文献资料主题和给出检索文献资料的一种新型的情报检索语言词汇,正是由于它的出现和发展,才使得情报检索计算机化(计算机检索)成为可能。主题词是指以概念的特性关系来区分事物,用自然语言来表达,并且具有组配功能,用以准确显示词与词之间的语义概念关系的动态性的词或词组。例如:主题词之一“微积分应用”。它具有概念的特性,说明它不是别的,而是微积分的应用,采用的是自然语言词汇。关键词是标示文献关建主题内容,但未经规范处理的主题词。如,“最值”(其规范的主题词可是“最大值”)。关键词是为了文献标引工作,从论文中选取出来,用以表示全文主要内容信息款目的单词或术语。一篇论文可选取3~8个词作为关键词关键词或主题词的一般选择方法是:由作者在完成论文写作后,纵观全文,先出能表示论文主要内容的信息或词汇,这些住处或词江,可以从论文标题中去找和选,也可以从论文内容中去找和选。例如上例,关键词选用了6个,其中前三个就是从论文标题中选出的,而后三个却是从论文内容中选取出来的。后三个关键词的选取,补充了论文标题所未能表示出的主要内容信息,也提高了所涉及的概念深度。关键词与主题词的运用,主要是为了适应计算机检索的需要,以及适应国际计算机联机检索的需要。一个刊物增加“关键词”这一项,就为该刊物提高“引用率”、增加“知名度”开辟了一个新的途径。4、正文格式(main body一级标题黑体小四号)论文正文宽为18cm,高为23cm。可将页面设置a4即21cm×,页边距:上、下、左、右。排版采用双栏。正文是一篇论文的本论,属于论文的主体,它占据论文的最大篇幅。论文所体现的创造性成果或新的研究结果,都将在这一部分得到充分的反映。因此,要求这一部分内容充实,论据充分、可靠,论证有力,主题明确。为了满足这一系列要求,同时也为了做到层次分明、脉络清晰,常常将正文部分人成几个大的段落。这些段落即所谓逻辑段,一个逻辑段可包含几个自然段。每一逻辑段落可冠以适当标题(分标题或小标题)。段落和划分,应视论文性质与内容而定。一般常见的划分方式有:①问题提出/问题分析。②解决方法/主要结果定理/结果比较与分析。根据论文内容的需要,还可以灵活地采用其它的段落划分方案,但就一般性情况而言,大体上应包含问题部分和理论分析部分的内容。“主要结果论证”这一部分是论文的关键部分。有人曾说:“没有论证结果的论文必脏”,这并不为过,论文的新意主要在这里体现。如果标题定为结果和讨论,对于讨论(或分析)这一部分与其它部分相比,则更难以确定所应写的内容,通常也是最难写的一部分。写得好的讨论(或分析)具有以下几个主要特征:①要设法提出结果一节中证明的原理、相互关系以及归纳性的解释,但只对结果进行论述,而不应进行重述。②要能指出你的结果和解释与以前发表的著作相一致或不一致的地方。③要论述你的研究工作的理论含义以及实际应用的各种可能性。④要能指出任何的例外情况或相互关系中有问题的地方,并且应明确提出尚未解决的问题及解决的方向。由于学术论文的选题和内容性质差别较大,其分段及其写法均不能作硬性的统一规定,但必须实事求是,客观直切,准确完备,合乎逻辑,层次分明,简练可读。5、参考文献说明(reference一级标题黑体小四号)在学术论文后一般应列出参考文献(表),其目的有三,即:①为了能反映出真实的科学依据;②为了体现严肃的科学态度,分清是自己的观点或成果还是别人的观点或成果;③为了对前人的科学成果表示尊重,同时也是为了指明引用资料出处,便于检索。撰写学术论文过程中,可能引用了很多篇文献,是否需要全部列出?回答是否定的。事实上,只需要将引用的最重要和最关键的那些文献资料列出即可。若以上论文格式不能满足您写作论文的需求,可以到上学吧论文查重网站上找找看,那里的论文格式多些。

论文格式要求 一篇完整的论文应包括如下四部分: 第一部分:正文之前 (1)题目 (2)作者 (3)数学系 级 专业 班 (4) 指导教师 名字 空一行 (5)摘要(中文)200字以内; (6)关键词3—5个 空一行 第二部分:正文 (1)引言; (2)主要结论和必要的论证.(可分成若干节讨论) 第三部分:参考文献:应依引用次序编号,注意书写的规范性. 例1:[1]陈世明.一类半线性双调和方程的整体解,应用数学[J],1994,7(1):85—92 说明:其中,[1]是文献出现的序号,陈世明是作者名,"一类半线性双调和方程的整体解"是论文的题目,"应用数学"是杂志的名称,[J]表示杂志,"1994,7:85—92"表示发表的年份,卷,期,页(起止)码. 例2:[3]华罗庚.数论导引[M].北京:科学出版社,1985 说明:其中,[3]是文献出现的序号,华罗庚是作者名,"数论导引"书的题目,其后加[M]表示这是一本书,"北京:科学出版社"表示出版地点和出版社,"1985"表示出版的年份. 第四部分:英文部分 (1)英文题目 (2)作者姓名(拼音字母) (3)数学系 级 专业 班 (4)指导教师 名字 (3)英文摘要; (4)英文关键词. 二,文字字体要求: 用A4纸打印,其中 (1)题目用2号宋体(粗); (2)小标题用4号黑体; (3)其他用5号宋体(中文)(英文用5号Times New Roman); (4)其他未说明的问题(如脚码,脚注等)按一般科技论文格式要求 三,其他 论文一律采用Word文档或Latex文档形式打印编排(尤其是符号,字母要用数学形态);要用统一的封面;在左侧装订.

初等几何研究小论文

你自己写吧,抄袭可不好

证法1作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上。过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即 ∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°, BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 A2+B2=C2 证法2作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形。把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点 F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC = 90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°, ∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠QBM = ∠ABC, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即A2+B2=C2证法3作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c, ∠CJB = ∠CFD = 90°, ∴RtΔCJB ≌ RtΔCFD , 同理,RtΔABG ≌ RtΔADE, ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE ∴∠ABG = ∠BCJ, ∵∠BCJ +∠CBJ= 90°, ∴∠ABG +∠CBJ= 90°, ∵∠ABC= 90°, ∴G,B,I,J在同一直线上, A2+B2=C2。证法4作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结 BF、CD. 过C作CL⊥DE, 交AB于点M,交DE于点L. ∵ AF = AC,AB = AD, ∠FAB = ∠GAD, ∴ ΔFAB ≌ ΔGAD, ∵ ΔFAB的面积等于, ΔGAD的面积等于矩形ADLM 的面积的一半, ∴ 矩形ADLM的面积 =. 同理可证,矩形MLEB的面积 =. ∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积 ∴ 即A2+B2=C2证法5(欧几里得的证法)《几何原本》中的证明 在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。 在正式的证明中,我们需要四个辅助定理如下: 如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。任意一个正方形的面积等于其二边长的乘积。任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。 其证明如下: 设△ABC为一直角三角形,其直角为CAB。其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。分别连接CF、AD,形成两个三角形BCF、BDA。∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。因此四边形 BDLK 必须有相同的面积 BAGF = AB²;。同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC2;。把这两个结果相加, AB2;+ AC2;; = BD×BK + KL×KC。由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB2;+ AC2;= BC2;。此证明是于欧几里得《几何原本》一书第节所提出的证法6(欧几里德(Euclid)射影定理证法)如图1,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高 通过证明三角形相似则有射影定理如下: (1)(BD)2;=AD·DC, (2)(AB)2;=AD·AC , (3)(BC)2;=CD·AC。 由公式(2)+(3)得:(AB)2;+(BC)2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)2;, 图1即 (AB)2;+(BC)2;=(AC)2,这就是勾股定理的结论。 图1证法七(赵爽弦图)在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子: 4×(ab/2)+(b-a)2 =c2; 化简后便可得:a2 +b2 =c2; 亦即:c=(a2 +b2 )1/2 勾股定理的别名 勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。 中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。 在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。 在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”. 前任美国第二十届总统伽菲尔德证明了勾股定理(1876年4月1日)。 1 周髀算经, 文物出版社,1980年3月, 据宋代嘉定六年本影印,1-5页。 2. 陈良佐:周髀算经勾股定理的证明与出入相补原理的关系。刊於《汉学研究》, 1989年第7卷第1期,255-281页。 3. 李国伟: 论「周髀算经」“商高曰数之法出于圆方”章。刊於《第二届科学史研讨会汇刊》, 台湾,1991年7月, 227-234页。 4. 李继闵:商高定理辨证。刊於《自然科学史研究》,1993年第12卷第1期,29-41页。 5. 曲安京: 商高、赵爽与刘徽关於勾股定理的证明。刊於《数学传播》20卷, 台湾,1996年9月第3期, 20-27页证法8(达芬奇的证法) 达芬奇的证法三张纸片其实是同一张纸,把它撕开重新拼凑之后,中间那个“洞”的面积前后仍然是一样的,但是面积的表达式却不再相同,让这两个形式不同的表达式相等,就能得出一个新的关系式——勾股定理,所有勾股定理的证明方法都有这么个共同点。观察纸片一,因为要证的事勾股定理,那么容易知道EB⊥CF,又因为纸片的两边是对称的,所以能够知道四边形ABOF和CDEO都是正方形。然后需要知道的是角A'和角D'都是直角,原因嘛,可以看纸片一,连结AD,因为对称的缘故,所以∠BAD=∠FAD=∠CDA=∠EDA=45°,那么很明显,图三中角A'和角D'都是直角。 证明: 第一张中多边形ABCDEF的面积S1=S正方形ABOF+S正方形CDEO+2S△BCO=OF2+OE2+OF·OE 第三张中多边形A'B'C'D'E'F'的面积S2=S正方形B'C'E'F'+2△C'D'E'=E'F'2+C'D'·D'E' 因为S1=S2 所以OF2+OE2+OF·OE=E'F'2+C'D'·D'E' 又因为C'D'=CD=OE,D'E'=AF=OF 所以OF2+OE2=E'F'2 因为E'F'=EF 所以OF2+OE2=EF2 勾股定理得证。证法9从这张图可以得到一个矩形和三个三角形,推导公式如下: b ( a + b )= 1/2c2 + ab + 1/2(b + a)(b - a) 矩形面积 =(中间三角形)+(下方)2个直角三角形+(上方)1个直 角三角形。 (简化) 2ab + 2b2;= c2; + b2;- a2;+ 2ab 2b2 - b2 + a2 = c2; a2 + b2 = c2; 注:根据加菲尔德图进一步得到的图形。证法10在Rt三角形ABC中,角C=90度,作CH垂直于AB于H。 令a/sinA=b/sinB=c/sinC=d 1=sin90=sinC=c/d=AH/d+BH/d=cosA×b/d+cosB×a/d=cosA×sinB+cosB×sinA=a/c·a/c+b/c·b/c =(a^2+b^2)/c^2=1 所以a^2+b^2=c^2 得证。编辑本段习题及答案将直角三角形ABC绕直角顶点C旋转,使点A落在BC边上的A',利用阴影部分面积完成勾股定理的证明。∠ACB=90°,BC=a,AC=b,AB=c;求证:a2+b2=c2. 答案 证明:作△A'B'C'≌△ABC使点A的对应点A'在BC上,连接AA' 、BB', 延长B'A'交AB于点M。 ∵△A'B'C是由△ABC旋转所得 ∴Rt△ABC≌Rt△A'B'C ∴∠A'B'C=∠ABC 延长B'A'交AB于点M 则∠A'B'C+∠B'A'C=90° 而∠B'A'C=∠MA'B(对顶角相等) ∴∠MBA'+MA'B=90° ∴B'M⊥AB ∴Rt△ABC∽Rt△A'BM ∴A'B/AB=A'M/AC 即(a-b)/c=A'M/b ∴A'M=(a-b)·b/c ∴S△ABB'=(1/2)AB·B'M=(1/2)AB·[B'A'+A'M] =(1/2)·c·[c+(a-b)·b/c] =(1/2)c2+(1/2)(a-b)·b =(1/2)[c2+ab-b2] S△B'A'B=(1/2)A'B·B'C=(1/2)(a-b)a=(1/2)(a^2-ab) 而S△ABB=2·S△ABC+S△B'A'B ∴(1/2)[c2+ab-b2]=2·[(1/2)ab]+(1/2)(a2-ab) 则c2+ab-b2=2ab+a2-ab ∴a2+b2=c2. 勾股数

某网友写的:本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。供参考。

兔子问题,或是图形问题

初等数学研究几何小论文

让学生学习生活中的数学 ——我校开展数学实践活动的做法及体会 自主、合作、探究是新课程学习方式的三个基本维度,适时有效地开展数学实践活动,让学生在实践中自主、自悟、自得,从而将书本知识内化为自己的知识、技能,有利于培养学生学习数学的兴趣,促进学生个性、特长和谐发展,从而全面提高学生的综合素质。下面谈谈我校开展数学实践活动的做法及体会。 (一)一 选取内容要符合学生年龄特点,可操作性强。 数学实践活动是一项实践性较强的活动,是教师结合学生生活经验和知识背景。引导学生自主探索和合作交流的学习活动。这个活动必须建立在学生原有知识的基础上,是其年龄段感兴趣,做得了的。只有这样,学生才能在活动中更好地积累经验,感悟、理解数学知识的内涵。发展解决问题的策略,体会学习与现实生活的联系,调动学习情感,为今后更有效地学习打好基础。 本学期我们在一年级学生中开展了“问题银行”活动,提供探究性学习场所,让学生敢问、会问、善问,并以各自不同的方式理解和解答问题。学生通过同学间的合作、问爸爸妈妈、爷爷奶奶、找课外书等途径,让学生从以往什么都是“老师说”的怪圈中跳出来,从小养成积极思考,敢于探索的良好品质。活动中,同学共提出不同问题100多条,一年四班黄悦同学一人提出八个问题,表现出了良好的问题意识和求异思维能力。二年级开展了“我家的数字”活动,同学们通过度一度,量一量,对书本上介绍的长度单位的认识由抽象到直观。并通过电脑合成、手抄报等形式展示了各自的才能三年级“寻找家中的周长”;四年级“生日派对方案”;五年级“我的设计”;六年级“走出课堂、走进银行”等,这些活动,符合学生的年龄特点,是课堂学习的延伸和拓展。反过来又给课堂教学带来了主动、生动、互动的效果,使课堂教学从“掌握型”走向“创新型”,为同学的自主学习探究学习开辟了广阔天地。二活动过程中,及时交流,互相启发,逐步完善。 数学实践活动是一项综合性很强的活动过程。再小的活动都不可能一下子完成。要经历确定活动目标、内容——拟定活动计划——组织具体实施——交流反馈评价等程序。在活动过程中,既要放手让学生去体验,去创造,又要及时反馈、及时指导,还要有一定的时间保证。例如,在学完《圆的认识》后,为使学生能灵活、正确使用圆规画圆,进一步了解圆心、直径、半径等名词,鼓励学生画一幅以圆为主流的平面图。学生作业交上来后,有简笔画、水彩画、想象画、漫画等,种类繁多,色彩鲜艳。但构思比较简单,主题欠鲜明,只是大大小小圆的组合,寓意欠深刻。遇到这种情况,老师并不急于品头论足,而是适时组织同学在小组、全班范围交流创作的意念、创作过程及创作体会。从而感受别人思维的不同。互向启发,逐步完善自己的作品。最后,一批主题鲜明,构思新颖,时代感强的作品脱颖而出。这样,活动让学生经历了失败、尝试了方法、体验了过程,这就是收获!更重要的是,一次又一次的实践活动给学生带来了学习方式的变革以及知识、能力方面的提高与发展。三关注过程与方法、情感与态度而不仅仅是结果。 综合实践活动是教师指导下的学生自己进行的合作学习活动。实践活动的开展,是让学生通过自己的亲身经历来了解、关注,并试着去分析解决自己所关注的问题。这些问题在我们看来可能是幼稚的,没有意义的,而有些问题是他们根本无法解决的。但我们更明白,综合实践活动的根本目的不是只为了让学生真正解决某个实际问题,更不是要一个完美的解决办法。而是注重在关注并试图解决这个问题的过程中,学生是怎样发现问题的,是怎样思考并试图解决问题的,在关注这个问题的过程中有所体验,有所感悟,学生的身心、情感、思维、态度都有了哪些变化。通过实践活动来认识自己,关爱生活、发展自己,这才是开展实践活动的目标所在。《数学课程标准》中指出:“教师应该充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现时生活中的应用价值。”在学习《统计表、统计图的整理和复习》时,我们组织学生,以小组为单位,通过网络、调查访问、翻阅书报、杂志、课外书获得信息,巧妙地制成统计图或统计表。在这一活动中,数学知识不再是脱离生活的各种练习,而是充分体现实践活动的再创造。情感体验伴随着活动的始终。因此,他们敏锐的新闻触觉,扎实的数学基础知识、良好的审美观念等,展现了现代孩子超人的想象力和创造力,体现了学生的创新意识和创新品质。另外,在每次活动中,我们都十分关注学生的个体差异。注意保护每一个孩子的自尊心和自信心,让学生在活动中互相交流,在评价中点燃思维的火花,拓展知识的视野,了解斑斓的世界,共享成功的喜悦。(二)一 师生互动,有助于教师观念更新 在综合实践活动中,居高临下的师道尊严受到冲击。综合实践活动毕竟是一个崭新的课题,它面向的不仅仅是学生,而是更广阔的生活世界,在纷杂的世界里,学生是学生,教师也是学生。而在某些方面,学生比老师更富有想象,创新能力更强。这就意味着老师要向学生学习,让师生关系真正走向平等。使老师对自己的教学认真反思,调整自己,以适应新的形势。六年级同学的《环市中路行车情况统计表》、《我国搜寻飞行员王伟派出舰船、飞机数量统计图》等,表现了现代孩子对社会的关注。他们已不再只是向老师学习加、减、乘、除运算的小不点,而是关注社会大家庭的一分子。在综合实践活动中,老师作用的最大发挥,是为学生在自由空间的自由展现创设良好的氛围,提供广阔的空间。给学生信心,相信学生自己有能力,能做好。老师自己要虚心,不先入为主,不存偏见,设身处地,为学生着想,为学生的终身发展着想。尊重学生个性,尊重人与人的差异,使每个学生在自己原有的基础上,有所提高,有所发展,而不能强求一律,厚此薄彼,建立真正平等的师生关系。二 学身边的数学,学生有浓厚的兴趣 数学实践活动是数学活动的教学,是师生之间,生生之间互动与共同发展的过程。在这个过程中,要重视学生参与的情感体验,让学生在活动中感受数学,体验数学的作用,培养学生自觉地把数学应用于实际的意识和态度,使数学真正成为学生手中的工具,体会到数学巨大的应用价值。二年级学过长度单位厘米、分米、米后,通过量一量家人的身高,家用电器的长、宽等,培养了学生的数感,提高了学生应用知识的能力。三年级“寻找家中的周长”,五年级的“我的设计”等把现实生活中的实际问题转化为数学问题,使学生的实践应用能力得到提高。这样学生不仅可以把书本上的知识与实际联系,体会到数学的社会价值,还可以学到书本上学不到的知识,在实践中使知识得到升 华。学生觉得,他们今天的学习与生活密切相关,真正实现了愿学、乐学、会学。三 综合利用知识,有助于学生综合能力的提高 《数学课程标准》指出:“有效的数学活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”学生通过数学实践活动了解数学与生活的广泛联系,学会综合运用所学的知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。综合起来。能培养学生这几方面的能力:一是收集信息、整理信息的能力;二是与他人合作交流的能力;三是利用所学知识解决实际问题的能力等。更重要的是,在数学实践活动中,学生经历观察、操作、实验、调查、推理等活动,在合作与交流的过程中,获得了良好的情感体验,感受数学知识间的相互联系,体会数学的作用。促进学生全面、持续和谐地发展。这是21世纪拔尖人才所必须的素质,也是《数学课程标准》所倡导的新的学习方式。学科实践活动作为一种新的学习内容及方式,对于我们来说是一个崭新的课题。在实践和探索中我们认识到,学生的学习不仅是知识的积累,更应在知识应用中强调灵活应用的意识;不仅要让学生主动地获取知识,还要让学生去发现和研究问题;不仅要让学生运用知识解决实际问题,更要在寻求问题解决的过程中激发学生的创新潜能,感悟学习思想和方法。

数学发展史 此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味百科读物。数的出现一、数的概念出现 人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。数字与符号的起源与发展一、数的出现 很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。它们告诉了我们:简洁的,就是最好的。 而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。二、符号的出现 加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简单,直到17世纪中叶才全部形成。 法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。1、加号(+)和减号(-) 加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。2、乘号(×、·) 乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。3、除号(÷) 除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。 至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。4、等号(=) 等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。分数一、分数的产生与定义 人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。 一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。 分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.分数一般包括:真分数,假分数,带分数. 真分数小于1. 假分数大于1,或者等于1. 带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。 注意 :①分母和分子中不能有0,否则无意义。 ②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数。 ③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)二、分数的历史与演变 分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。 在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数。 在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。 公元前1850年左右的埃及算学文献中,也开始使用分数。200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是3/7 米.像3/7 就是一种新的数,我们把它叫做分数. 为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征.例如,一只西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要——除法运算的需要而产生的. 最早使用分数的国家是中国.我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。 《九章算术》是我国1800多年前的一本数学专著,其中第一章《方田》里就讲了分数四则算法. 在古代,中国使用分数比其他国家要早出一千多年.所以说中国有着悠久的历史,灿烂的文化 。几何一、公式1、平面图形正方形: S=a² C=4a三角形: S=ah/2 a=2S/h h=2S/a平行四边形:S=ah a=S/h h=S/a梯形: S=(a+b)h/2 h=2S/(a+b) a=2S/h-b b=2S/h-a圆形: S=∏r² C=2r∏=∏d r=d/2=C/∏/2r²=S/∏ d=C/∏半圆: S=∏r²/2 C=∏r+d= 顶点数+面数-块数=12、立体图形正方体: V=a³=S底·a S表=6a² S底=a² S侧=4a² 棱长和=12a长方体: V=abh=S底·h S表=2(ab+ac+bc) S侧=2(a+b)h 棱长和=4(a+b+h)圆柱: V=∏r²h S表=2∏r²+∏r²h=S底(h+2) S侧=∏r²h S底=∏r² 其它柱体:V=S底h锥体: V=V柱体/3球: V=4/3∏r³ S表=4∏r²顶点数+面数-棱数=2数论一、数论概述 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们合起来叫做整数。(现在,自然数的概念有了改变,包括正整数和0) 对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。 人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。 数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。 二、数论的发展简况 自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。 自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。 在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。 到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。 在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。 由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。三、数论的分类初等数论 意指使用不超过高中程度的初等代数处理的数论问题,最主要的工具包括整数的整除性与同余。重要的结论包括中国剩余定理、费马小定理、二次互逆律等等。解析数论 借助微积分及复分析的技术来研究关于整数的问题,主要又可以分为积性数论与加性数论两类。积性数论藉由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。此外例如筛法、圆法等等都是属于这个范畴的重要议题。我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法。 代数数论 是把整数的概念推广到代数整数的一个分支。关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间的关联尤其紧密。建立了素整数、可除性等概念。 几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。主要在于透过几何观点研究整数(在此即格子点)的分布情形。几何数论研究的基本对象是“空间格网”。在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。最著名的定理为Minkowski 定理。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。 计算数论 借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题。 超越数论 研究数的超越性,其中对于欧拉常数与特定的 Zeta 函数值之研究尤其令人感到兴趣。 组合数论 利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由艾狄胥开创的思路。四、皇冠上的明珠 数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。 简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、角谷猜想、圆内整点问题、完全数问题…… 五、中国人的成绩 在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。 特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。名著录《几何原本》 欧几里得 约公元前300年 《周髀算经》 作者不详 时间早于公元前一世纪 《九章算术》 作者不详 约公元一世纪 《孙子算经》 作者不详 南北朝时期 《几何学》 笛卡儿 1637年 《自然哲学之数学原理》 牛顿 1687年 《无穷分析引论》 欧拉 1748年 《微分学》 欧拉 1755年 《积分学》(共三卷) 欧拉 1768-1770年 《算术探究》 高斯 1801年 《堆垒素数论》 华罗庚 1940年左右 任意选一段吧!!!

古时候,埃及人用记号“┌”表示平方根。印度人在开平方时,在被开方数的前面写上ka。1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”表示立方根,比如,.3、..3、...3就分别表示3的平方根、4次方根、立方根。到十六世纪初,可能是书写快的缘故,小点上带了一条细长的尾巴。1525年,路多尔夫在他的代数著作中,首先采用了根号,比如他写 4是2, 9是3,并用 8, 8表示 , 。但是这种写法未得到普遍的认可与采纳。 与此同时,有人采用“根”字的拉丁文radix中第一个字母的大写R来表示开方运算,并且后面跟着拉丁文“平方”一字的第一个字母q,或“立方”的第一个字母c,来表示开的是多少次方。例如,现在的 ,当时有人写成。现在的 ,用数学家邦别利(1526—1572年)的符号可以写成╜,其中“?╜”相当于今天用的括号,P相当于今天用的加号(那时候,连加减号“+”“-”还没有通用)。 直到十七世纪,法国数学家笛卡尔(1596—1650年)第一个使用了现今用的根号“ ”。在一本书中,笛卡尔写道:“如果想求某数的平方根,就写作 ,如果想求某数的立方根,则写作 。” 这是出于什么考虑呢?有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√(不过,它比路多尔夫的根号多了一个小钩)就为现在的根号形式。 现在的立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号3^√的使用,比如25的立方根用“3^√”表示。以后,诸如“3^√”等等形式的根号渐渐使用开来。 由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数家们集体智慧的结晶,而不是某一个人凭空臆造出来的,也不是从天上掉下来的。 平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为(√x),其中属于非负实数的平方根称算术平方根。(正数a的正的平方根,叫做a的算术平方根。)有时我们说的平方根指算术平方根。一个正数如果有平方根,那么必定有两个,它们互为相反数。如果我们知道了这两个平方根中的一个,那么立即可以得到它的另一个平方根。正数a的平方根可以记作“±√a”,a称为被开方数。正整数的平方根通常是无理数。 负数有平方根吗?其实,没有一个数的平方根是小于零的,所以负数没有平方根(没有意义)。 如果一个数x的立方等于a,即x的三次方等于a(x^3=a),那么这个数x就叫做a的立方根,也叫做三次方根。立方根,类似于平方根的表示方法,读作“三次根号a”其中,a叫做被开方数,3叫做根指数。(a不等于0) 求一个数a的立方根的运算叫做开立方。 所有实数都有且只有一个立方根。 正数的立方根是正数,负数的立方根是负数,0的立方根是0。 在现实生活中,我们可以通过平方(立方)运算来寻求平方根(立方根),并可以用来验证开平方(开立方)的正确性。 呢篇我同学噶.. 数学是生活中的一分子,它是在“生活”这个集体中生存的,离开了生活这个集体,数学将是一片死海,没有生活的数学是没有魅力的数学,同样,人类也离不开数学,离开了数学人类将无法生存。 我认为老师要相信学生,敢于放手。学生是学习的主体,他们有自己的思维方式,有一定的知识积累。我觉得每一位老师都应相信学生,一般的知识学生独立或通过合作是能够解决的。如果不相信学生的这种能力,课堂中是无法放手的,学生的主动学习也就无法落实。作为老师要相信学生,敢于放手,为全体学生创设一个主动探索的空间。在教学中,让学生唱戏展示自己,这个"台"搭得要大,四周不能有"框框",老师应该像听众那样仔细倾听,抓住关键进行点拨,为学生的表演"加油喝彩"! 著名数学家华罗庚说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学。”特别是二十一世纪的今天,数学的应用更是无所不在。那么,我们如何从小打下坚实的数学基础,究竟什么样的课堂教学才适合我们这些新一代的学生呢?我认为,在课堂中,由学生去担任学习的主角,才是我们的心愿。那么,数学活动课就是让我们充分体现自主学习的一种教学方式。 活动课上,在老师的指导下,我们可以分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,不仅培养了我们的动手能力,而且提高了我们的思维能力,又让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。例如,我们上《平行四边形面积的计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴、拼凑变成一个我们已经会计算面积的图形呢?大家七嘴八舌的讨论开了,有的同学发现可以用剪刀沿着平行四边形的高,把它剪成一个直角三角形和一个直角梯形,然后可以把它们拼成一个长方形;一些同学又发现还可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形。同学们通过观察、思考,认识到拼成的长方形的“长”和“宽”,分别就是原来平行四边形的“底边”和“高”。由此,大家终于可以通过自己的动手能力而找到了平行四边形面积公式为:S=ah。 在数学的世界里,我们还可以使用图象法解数学习题。图象法解数学习题的特点是把繁琐的演算及逻辑推理过程,在函数图象的辅助下加以简化和形象直观,解题思路清淅、直观、明了、可靠.然而,怎样才能在图象法解题过程中做到顺手沾来、得心应手、准确无误呢?我认为关键是要有丰富的初等函数图象知识。而要达到这一点,就得掌握初等函数在复合过程中引起的图象变换规律,以规律求拓宽,为图象法解题创造良好的基础条件。 在教学中老师若能恰当地把握传授知识与增减能力的关系,动用灵活的教学方法,充分发挥课本的功能,就可以事半功倍,提高课堂教学效果.笔者在教学实践中,始终抓住课本这个“纲”,在课本教学上狠下功夫,减少复习资料,不搞题海战术,既减轻学生负担,又培养了学生的多种能力. 我还认为老师要重视课本概念的阅读,培养学生的学习能力。 中学生往往缺乏阅读数学课本的习惯,这除了数学难以读懂以外,另外一个原因是我们许多数学教师在讲课时,也很少阅读课本,喜欢滔滔不绝的讲,满满黑板的写,使学生产生了依赖性.数学课本是数学基础知识的载体,课堂上指导学生阅读数学课本,不仅可以正确理解书中的基础知识,同时,可以从书中字里行间挖掘更丰富的内容.此外,还可以发挥课本使用文字的垂范作用,潜移默化培养和提高学生准确说练的文字表达能力和学习能力. 重视阅读数学课本,首先要老师引导,特别在讲授新课时,应当纠正那种“学生闭着书,光听老师讲”的教学方法,在讲解概念时,应让学生翻开课本,老师按课本原文逐字,逐句,逐节的阅读.在阅读中,让学生反复琢磨,认真思考,对书中的叙述的概念,定理,定义中有本质特征的关键词句要仔细品味,深刻理解其语意,并不时地提出一些反问:如,换成其它词语行吗?省略某某字行吗?加上某某字行吗?等等.要读出书中的要点,难点和疑点,读出字里行间所蕴藏的内容,读出从课文中提炼的数学思想,观点和方法.教师在课堂上阅读数学课本,不仅可以节省不必要的板书时间,而且可以防止因口误,笔误所产生的概念错误,从而使学生能准确地掌握。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 人人学有价值的数学;人人都能获得必要的数学;不同的人在数学上得到不同的发展。基于这个目的,对我们初中数学来说,老师们必须要改变原来“应试”教育的教学方法,让同学们亲自体验和经历,让他们自己去探索知识的来源。 我认为老师也要换个角度来教学,为每个学生着想 ,我不时会听到同学们反映:“书本儿上我看懂了的老师讲,而且不厌其烦的讲,不懂的老师一带而过,结果还是不懂”。这种讲课就是只备教材不备学生,没有为学生着想。比如讲一个概念,不要把定义直接抄在黑板上,接着就开始做题。而要讲如何去理解、体会它,从正面、反面、侧面去讲,并指出如何去理解它,运用它,提醒同学们理解中容易出现的误区,以及它与有关概念的差别和联系,把学生易犯的错误讲在前面。再如讲解一个结论的证明或一道题的解法时,重要的不是一步步按逻辑叙述,而是要指明其思考过程。一个班级里学生的知识水平,能力水平都有所差异,总有些思维水平较低的学生,老师要在备课时换个角度来教,效果就会有所提高。 总之,老师要引导学同学们善于思考生活中的数学,加强知识与实际联系,课堂上同学们通过活动获取知识,突出了知识的形成过程,掌握学习方法,训练学生思维。生活化课堂教学,能以课本为主源,又不受课本知识的禁锢,使同学们灵活掌握知识,培养同学们实践操作能力和思维能力,既能落实减轻学生负担,又能提高教学质量。

感悟数学 曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r²,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r²=9²∏+6²∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r²=15²∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

高等学校论文格式

给你推荐我的网站,期刊云,论坛是专做论文格式解析的,有论文格式的相关指导,有兴趣的话可以去看下。

论文就是用来进行科学研究和描述科研成果的 文章 ,写作论文是要按照一定的格式来规范自己的论文的。下面是我带来的关于论文写作格式模板的内容,欢迎阅读参考!论文写作格式模板 1、题目。应能概括整个论文最重要的内容,言简意赅,引人注目,一般不宜超过20个字。 2、论文摘要和关键词。 论文摘要应阐述学位论文的主要观点。说明本论文的目的、研究 方法 、成果和结论。尽可能保留原论文的基本信息,突出论文的创造性成果和新见解。而不应是各章节标题的简单罗列。摘要以500字左右为宜。有时还需附上英文的论文摘要。 关键词 是能反映论文主旨最关键的词句,一般3-5个。 3、目录。既是论文的提纲,也是论文组成部分的小标题,应标注相应页码。 4、引言(或序言)。内容应包括本研究领域的国内外现状,本论文所要解决的问题及这项研究工作在经济建设、科技进步和社会发展等方面的理论意义与实用价值。 5、正文。是 毕业 论文的主体。 6、结论。论文结论要求明确、精炼、完整,应阐明自己的创造性成果或新见解,以及在本领域的意义。 7、参考文献和注释。按论文中所引用文献或注释编号的顺序列在论文正文之后,参考文献之前。图表或数据必须注明来源和出处。 而参考文献是人们长忽略的一部分: 参考文献是期刊时,书写格式为:[编号]、作者、文章题目、期刊名(外文可缩写)、年份、卷号、期数、页码。 参考文献是图书时,书写格式为:[编号]、作者、书名、出版单位、年份、版次、页码。 8、附录。包括放在正文内过份冗长的公式推导,以备他人阅读方便所需的辅助性数学工具、重复性数据图表、论文使用的符号意义、单位缩写、程序全文及有关说明等。 论文写作格式模板:格式及排版 1、论文份数:一式三份。一律要求打印。论文的封面由学校统一提供。纸张型号:A4纸。A4 210×297毫米。页边距:天头(上)20mm,地角(下)15mm,订口(左)25mm,翻口(右)20mm。统一使用汉语:小五号宋体。分割线为3磅双线。 2、论文格式的字体:各类标题(包括“参考文献”标题)用粗宋体;作者姓名、指导教师姓名、摘要、关键词、图表名、参考文献内容用楷体;正文、图表、页眉、页脚中的文字用宋体;英文用Times New Roman字体。 3、字体要求: (1)论文标题2号黑体加粗、居中。 (2)论文副标题小2号字,紧挨正标题下居中,文字前加破折号。 (3)填写姓名、专业、学号等项目时用3号楷体。 (4)内容提要3号黑体,居中上下各空一行,内容为小4号楷体。 (5)关键词4号黑体,内容为小4号黑体。 (6)目录另起页,3号黑体,内容为小4号仿宋,并列出页码。 (7)正文文字另起页,论文标题用3号黑体,正文文字一般用小4 号宋体,每段首起空两个格,单倍行距。 (8)正文文中标题 一级标题:标题序号为“一、”, 4号黑体,独占行,末尾不加标点符号。 二级标题:标题序号为“(一)”与正文字号相同,独占行,末尾不加标点符号。 三级标题:标题序号为“ 1. ”与正文字号、字体相同。 四级标题:标题序号为“(1)”与正文字号、字体相同。 五级标题:标题序号为“ ① ”与正文字号、字体相同。 (9)注释:4号黑体,内容为5号宋体。 (10)附录: 4号黑体,内容为5号宋体。 (11)参考文献:另起页,4号黑体,内容为5号宋体。 (12)页眉用小五号字体打印“XX大学XX学院XX级XX专业学年论文”字样,并左对齐。 论文写作格式 范文 :《试谈 人力资源管理 》 【摘 要】 人力资源管理是企业发展动力的源泉,是企业可持续发展的根本保障。在竞争日益激烈的社会,在这个人才紧缺的社会,企业要想生存下去,必须严把人力资源的各个环节与关卡,让人力资源管理真正助飞企业的成长。 【关键词】 人力资源 5P 工作分析 人力资源规划 招聘 要了解人力资源的管理内容,就必须知道什么是人力资源。人力资源的一种定义是“在社会或企业里,能推动社会或企业进步的所有体力和脑力劳动者”,根据这个定义,再结合中国的现状,企业的人力资源就分两种情况了:一是企业所有的员工,另一个是企业里真正为公司做出贡献的人。第一种情况下,企业所有的员工,都是企业价值的创造者,所以人力资源管理要覆盖到整个企业。第二种情况下,有人是走关系进入企业的,在日常工作中并不为企业创造价值,这些人不在企业人力资源管理范围之内。 人力资源管理在 企业管理 中的地位是仅次于 企业战略 管理的。管理范围主要是:人与事的匹配;人的需求与工作报酬的匹配;人与人的合作与协调;工作与工作的协调。 企业人力资源管理的目的可以归纳为“5P”:Perceive(识人),人力资源管理的前提,为实现企业目标而寻找满足企业要求的优秀人才;Pick(选人),人力资源的起点,寻找和开辟人力资源 渠道 ,吸引优秀人才进入企业,为企业甄选出合适的人员并配置到对应的岗位上;Profession(育人),企业人力资源管理的动力手段,不断培训员工、开发员工潜质,使员工掌握在本企业现在及将来工作所需的知识、能力和技能;Placement(用人),乃是人力资源管理的核心,使员工在本职工作岗位上人尽其用,通过科学、合理的员工绩效考评与素质评估等工作对员工实施合理、公平的动态管理过程,如晋升、调动、奖惩、 离职 、解雇等,是企业人力资源管理的重头戏;Preservation(留人),企业人力资源管理的目的,留住人才,为员工创造一个良好的工作环境,保持员工积极性,使现有员工满意并且安心在本企业工作。 在企业人力资源管理中,工作分析是重头戏。工作分析,是通过对某种岗位工作活动的调查研究和分析,确定组织内部某一岗位的性质、内容、责任、工作方法以及该职务的任职者应该具备的必要条件。 工作分析分为工作描述和工作规范。工作描述,也即工作说明,是以书面描述的方式来说明工作中需要从事的活动以及工作中所使用的设备和工作条件等信息的文件。工作规范是用来说明承担某项工作的员工所必须具备的特定技能、工作知识、能力及其他个人特征等的最低要求的文件。由此可见,工作分析主要说明岗位的两方面,一是对工作本身作出规定;二是明确对工作承担者的行为和资格进行要求。 工作分析主要有三方面:岗位分析、环境分析、人员素质分析。岗位分析主要分析岗位名称、工作任务、权利责任、工作关系和工作量。环境分析不外乎分析企业所在的自然环境、社会环境,当然,企业的安全环境也在考虑之中。人员素质分析要求分析工作人员的能力、素质、经历、体质和个性等。 工作分析的方法主要有访谈法、问卷法、典型事例分析法、观察法等。访谈法中尤其需注意的是要消除被访谈者的戒心,毕竟访谈不是 面试 。关于问卷法,其中最难把握的就是调查问卷的设计。问卷设计得不全面,就会导致调查得出的信息不具说服性;问卷的界面设计得不友好,被调查者就不情愿填写,则调查效果收效甚微;如果问卷中没有反馈机制,则不利于后续问题的调查研究,等等都在影响问卷法的最终结果。典型事例分析法则要区分其与典型个例相关分析法。观察法必须要获得观察许可,要不就有偷窥的嫌疑了。其他方法比如实践法中,工作人员亲身参与能掌握一手资料,对于最终分析结果来说也是至关重要的。人力资源规划是企业战略规划之下的首要任务,人力,既是资源,更是企业独一无二的财富,资产没了,可以再有,但人走了,对企业却是致命的伤。人力资源规划有两个方面:人力资源需求预测和人力资源供给预测。 人力资源需求预测的方法主要有四: 1. 管理人员判断法,这是基于 经验 和现状的判断和预测,此法是建立在历史会重演的前提下,且只适合于企业在稳定状况下的中短期预测。 2. 德尔菲法,基于收敛原则的德尔菲法可行性高,集聚了许多专家的意见,中短期有效。 3. 回归分析法,需要一定的计量知识,主要通过理论分析和数理分析来识别影响因素。 4. 转换比率分析法,此法虽然精确、简单的认识相关因素和人员需求之间的关系作用,但进行估计时需要对计划期的业务量、目前人均业务量和生产率的增长率进行精确的估计,而且只考虑人工需求总量,未说明其中不同类别员工需求的差异。 人力资源供给预测的方法主要有:技能清单法,这是用来反映员工工作能力特征的列表,包括培训背景、以前的经历、持有的证书、已通过的考试、主管的能力评价等,但此法缺少了对于岗位情况的认知;管理人员置换图,只针对了管理人员这类企业里的重要岗位,缺少对一般岗位的认识和分析;企业外部劳动力供给,能够准确全面的了解组织外部人员流动状况,但与此同时,却缺少对组织内部人员流动信息的认知和分析。 前面讲述了主要管理方法,那么,企业的人从何来?员工招聘就像在挑合适的种子,选好种然后再精心培养,才能长成茁壮的大树继而成为顶梁柱,否则就会架空企业。人员招聘首先要确定需求,哪些岗位上缺人,缺多少,男女比例如何;接下来就是招募阶段,这期间,制定招聘计划、选择招聘渠道、确定招聘方法、发布招聘信息、确定招聘人员和地点等;然后是甄选阶段,该阶段主要采用笔试、面试等相关测试来选择企业相关岗位所需人员,其中,笔试是淘汰不合格者,面试是选择合格者;录用和调配阶段,在录用之前有一段试用期;招聘评估和反馈阶段,选择适当的方法对招聘结果进行评估, 总结 优点,发现缺点,以便下次做得更好。 人力资源管理的后续就是对员工进行绩效管理、薪酬管理,以及员工的培训、进修等。 人力资源管理是企业发展动力的源泉,是企业可持续发展的根本保障。在竞争日益激烈的社会,在这个人才紧缺的社会,企业要想生存下去,必须严把人力资源的各个环节与关卡,让人力资源管理真正助飞企业的成长。 参考文献: [1] 杨宝宏,杜红平《管理学原理》[M].北京:科学出版社,2006. [2] 钱振波等《人力资源管理:理论.政策.实践》[M].北京:清华大学出版社,2004. [3] 陈维政,余凯成,程文文《人力资源管理》[M].北京:高等 教育 出版社,2006. 猜你喜欢: 1. 学术论文写作标准格式要求 2. 论文格式要求的基本构成要素有哪些? 3. 毕业论文写作标准格式 4. 3000字手写论文格式模板 5. 1500字论文格式模板

1.封面

使用学校统一格式,题目居中,学号等内容靠左侧对齐,后面的下画线要整齐。题目要对论文(设计)的内容有高度的概括性,简明、易读,字数应在20以内。

2.目录

“目录”两字为黑体3号,居中,下面空一行。第一层次标题“一、”顶头,黑体、小四号,第二层次缩进一字,宋体,小四号,第三层次再缩进一字,宋体,小四号……,页码加小括号,页码前为连续的点,垂直居中。

3.正文

正文采用宋体,小四号,每段开头空两字,要符合一般学术论文的写作规范,文理科毕业论文字数一般不少于6000字,工科、艺术类专业毕业设计字数视专业情况而定。

论文应文字流畅,语言准确,层次清晰,论点清楚,论据准确,论证完整、严密,有独立的观点和见解,应具备学术性、科学性和一定的创新性。毕业论文内容要实事求是,尊重知识产权,凡引用他人的观点、统计数据或计算公式的要有出处(引注),计算的数据要求真实、客观、准确。

4.标题

所有标题左侧空两字,数字标题从大到小的顺序写法应为:“一、”,“(一)”,“1、”,“(1)”,“” 的形式,黑体,小四号,左侧空两字,或者采用“1”、“1、1”、“1、1、1”……的形式,黑体,小四号,左侧顶格。

5.注释

采用本学科学术规范,提倡实用脚注,论文所有引用的中外文资料都要注明出处。中外文注释要注明所用资料的原文版作者、书名、出版商、出版年月、页码。

6.图表

正文中出现图表时,调整行距至所需大小,返回正文再将行距调整为22磅。

7.参考文献

参考文献按在正文中出现的先后次序列表于文后;文后以“参考文献:”(左顶格)为标识;参考文献的序号左顶格,并用数字加方括号表示,如[1]、[2]、…,以与正文中的指示序号格式一致。参照ISO690及ISO690-2,每一参考文献条目的最后均以“、”结束。

以上是关于论文格式的相关分享,送给毕业生们,祝愿大家都能顺利通过论文答辩,开开心心的毕业!

毕业论文的标准格式规范汇总

艰辛而又充满意义的大学生活即将结束,众所周知毕业生要通过最后的毕业论文,毕业论文是一种、有准备的检验大学学习成果的形式,那么毕业论文应该怎么写才合适呢?以下是我收集整理的毕业论文的标准格式规范,仅供参考,大家一起来看看吧。

一、毕业论文的概念、作用

(一)毕业论文的概念

毕业论文就是高等院校应届毕业生根据所学专业,提交的一份独立完成、有一定学术价值的总结性的学术论文。毕业论文是高等院校大学生完成学业的标志性作业,是大学生从事专业研究的初步尝试,是高等院校高等教育教学的最后一个重要环节,是对学生专业知识和能力的综合性检阅。

毕业论文,实际上也属于专业论文,或者说,毕业论文是专业论文的“初级阶段”(除了高水平的学位论文)。

(二)毕业论文的作用

毕业论文是结束大学学习生活走向社会的一个中介和桥梁。毕业论文是大学生才华的一次显露,是向母校和社会递交的一份有分量的答卷,是投身社会的报到书。它具有不同于一般论文的作用:

1.综合考核毕业论文是高等院校教学的一个重要环节,是对学生进行的一次综合性考核,并作为衡量能否毕业、是否授予学位的依据同时也是发现人才的较好方式。

2.锻炼能力毕业论文的写作,是学生进行学术论文写作规范的基本能力训练,是对学生从事科学研究能力的初步训练。

二、毕业论文的特点、种类

(一)毕业论文的特点

I.专业性首先,毕业论文的选题范围必须在本专业本学科领域内,选题具有一定的专业理论性或实际意义,是有自己独立认知和看法的专业问题。

2.理论性毕业论文要围绕一个中心主题提出问题、分析问题、解决问题,其行文过程即是一个严密的推理过程,所以一篇毕业论文也像其他专业论文一样,自成一个理论体系,是揭示、反映对事物本质和规律的理论认识。

3.综合性毕业论文是作者的专业水平及综合素质的综合体现。不但反映了作者的专业水平,还综合反映了作者的.总体学识、思维能力、创造能力、研究作风、研究方法乃至文字表达水平。

(二)毕业论文的种类

1.理论型通过对资料进行分析、综合、概括、抽象,运用归纳、演绎、类比等方法来证明已知的观点和定理或提出某种新的理论和见解。

2.实验型介绍实验的装置、实验材料、实验方法、实验过程,对实验结果进行讨论分析,找出客观规律。

3.描述型运用描述说明的方法介绍新发现的具有科学价值的某一客观事物或现象。

4.调查型针对某一问题进行调查采访,了解其历史、现状及发展趋势,或分析其成因、危害、意义等,提出解决问题的建议。

三、毕业论文的格式写法

毕业论文的结构和一般学术论文大体相同,根据国家标准GB7713-1987 《科学技术报告、学位论文和学术论文的编写格式》要求,一般由标题、作者署名、摘要、关键词、正文、注释、参考文献目录等部分构成。

1.标题是论文重要组成部分,是论文内容的高度概括。论文标题要求准确、简练、醒目、新颖。

2.署名即署上作者的真实姓名。署名是作者拥有著作权和责任感的体现。

3.摘要是文章主要内容的摘录,全文精当、全面的概括。用于提示研究对象和日的,课题的基本观点、成果及意义等内容。具有提示和检索的功能,要求短、精、完整。字数少则几十字,多则以不超过300为宜。

4.关键词又称主题词。从论文的题名、摘要和正文中选取出来的,对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,其目的是为了方便文献检索。关键词是经过规范化的词(以国家颁布的《汉语主题词表》为准,不能随意选取),每篇论文一般选取3 '8个词汇作为关键词。关键词排在“摘要”的左下方。

5.正文包括引论、本论、结论。

(1)引论。又称引言、前言等,用在论文的开头。引沦一般要概括地写出作者意图,说明选题及选题的目的和意义,并指出论文写作的范围。引论要短小精悍、紧扣主题。

(2)本论。又称正论,是正文的主体,也是整个论文的核心。这一部分通常是对研究过程的直接阐述,是作者对所研究问题的分析、论证、阐述。应包

括论点、论据和论证过程。其结构形式,常见的有并列式、递进式、过程式和

综合式。这部分要以充分、有力的材料阐述观点,并能准确地把握内容的层次及其内在联系。

(3)结论。它是本论部分分析、论证问题后得出的结论,是解决问题,是本论部分的自然延伸。有的没有单独的结论部分,而是将结论融人前文。

6.致谢 对论文选题、实验过程、论文写作过程中给予帮助的单位及个人表示感谢。

7.注释是论文对正文某些问题的注明和解释。

8.参考文献目录参考文献目录是列出研究和写作论文过程中参考过的专著或文章。其作用一是表示了对他人成果的尊重;二是便于读者了解该领域情况,为读者研究或查找文献提供线索;三是反映作者对本课题、本领域的历史和现状的了解程度,便于读者相信论文水平与增进资料的可信度。

毕业论文篇幅一般在6000字左右,大专生毕业论文字数可稍少些。好的大学本科毕业论文,可以作为学士学位的论文。

毕业论文定稿后还要进行装订,装订顺序是:封面、衬页、目录、内容提要、正文、参考文献、衬页、封底。

四、毕业论文的写作要求

1.选题新要写好毕业论文,首先要选好论题,这是决定论文成败的最基本的前提。选题一般不宜过大,内容不太复杂,要求有一定的创见性,能大致反映作者是否具备运用大学期间所学的专业知识来分析和解决本学科内某一基本问题的学术水平和能力。最好是选择一些学术热点、学术空白的论题,或是老题新作,或是创新思路

2.材料足材料,是形成观点的基础,是证明论点的论据,因而材料是决定毕业论文成败的第二个关键。所以,要充分搜集、占有和使用有关材料。做到“古今中外、理论事实、具体新鲜、丰富充足”。

3.结构严可采用并列递进、数码列项、标题作序的结构方法,做到层次分明、结构严谨。

4.语言精做到语言精确精炼、流畅易懂,同时注意要富有文采、个性突出,避免干瘪单调、枯燥难懂。

5.格式全格式要符合规范,不能漏缺相关要素。

封面

使用学校统一格式,题目居中,学号等内容靠左侧对齐,后面的下画线要整齐。题目要对论文(设计)的内容有高度的概括性,简明、易读,字数应在20以内。

中文论文题目

论文题目 黑体三号,居中。下面空一行。

中文摘要

“摘要:“顶头,黑体四号,后面内容采用宋体小四号,摘要应简要说明毕业论文(设计)所研究的内容、目的、实验方法、主要成果和特色,一般为150-300字。下面空一行

中文关键词

“关键词:“顶头,黑体四号,后面内容采用宋体小四号,关键词一般3-5个,以”,“号隔开,最后一个关键词尾不加标点符号,下面空两行。

英文论文题目

所有英文采用“Times New roman”字体,黑体三号,加粗,居中。下面空一行。

英文摘要和关键词

英文摘要和关键词除字体外同中文摘要和关键词的格式要求,但“Abstract:”和“Key words:”要加粗。内容翻译要准确,英文摘要的词汇和语法必须准确。

注意:如果内容教多,可以将英文题目、摘要、关键词放到下页。

目录

“目录”两字为黑体3号,居中,下面空一行。

第一层次标题“一、”顶头,黑体、小四号,第二层次缩进一字,宋体,小四号,第三层次再缩进一字,宋体,小四号……,页码加小括号,页码前为连续的点,垂直居中。

如果采用“1”、“1、1”、“1、1、1”的形式,则每层缩进半字。

参考文献按第一层次标题的格式。

正文

正文采用宋体,小四号,每段开头空两字,要符合一般学术论文的写作规范,文理科毕业论文字数一般不少于6000字,工科、艺术类专业毕业设计字数视专业情况而定。

论文应文字流畅,语言准确,层次清晰,论点清楚,论据准确,论证完整、严密,有独立的观点和见解,应具备学术性、科学性和一定的创新性。

毕业论文内容要实事求是,尊重知识产权,凡引用他人的观点、统计数据或计算公式的要有出处(引注),计算的数据要求真实、客观、准确。

标题

所有标题左侧空两字,数字标题从大到小的顺序写法应为:“一、”,“(一)”,“1、”,“(1)”,“” 的形式,黑体,小四号,左侧空两字,或者采用“1”、“1、1”、“1、1、1”……的形式,黑体,小四号,左侧顶格。

注释

采用本学科学术规范,提倡实用脚注,论文所有引用的中外文资料都要注明出处。中外文注释要注明所用资料的原文版作者、书名、出版商、出版年月、页码。

图表

正文中出现图表时,调整行距至所需大小,返回正文再将行距调整为22磅。

参考文献

参考文献按在正文中出现的先后次序列表于文后;文后以“参考文献:”(左顶格)为标识;参考文献的序号左顶格,并用数字加方括号表示,如[1]、[2]、…,以与正文中的指示序号格式一致。参照ISO690及ISO690-2,每一参考文献条目的最后均以“、”结束。各类参考文献条目的编排格式及示例如下:

专著、论文集、学位论文、报告

[序号]主要责任者、文献题名[文献类型标识]、出版地:出版者,出版年、起止页码(任选)、(中译本前要加国别),例如,

[1] [英]M奥康诺尔著,王耀先译.科技书刊的编译工作[M]、北京:人民教育出版社,1982、56-57、

[2] 辛希孟、信息技术与信息服务国际研讨会论文集:A集[C]、北京:中国社会科学出版社,1994、

打印及纸张

本科生毕业论文(设计)应一律采用打印的形式,使用A4规格的纸张,左边距2、75cm,右边距及上下边距2、5cm,页眉页脚1、5cm,全文行距22磅,装订线在左侧。按以下介绍的次序依次编排,页号打在页下方,宋体五号,居中。

装订次序

学生答辩后各院系要将有关资料和论文按照封面、中英文内容摘要及关键词、目录、正文、注释、参考文献、选题审批表、开题报告、中期检查表、指导教师评语、答辩记录表的顺序统一装订成册,存入院系教学档案。

提交论文电子稿

学生上交的毕业论文(设计)软盘一定要经过杀毒处理!

毕业论文(设计)应用Microsoft Word编辑,存成以学号为名的、doc文件,例如一个学生的学号为0137023,则文件名应该为0137023、doc。每个学生交上来的磁盘中只能有一个名为学号、doc的文件,对于双修的学生,应上交两篇论文,其中一篇名为学号、doc,另一篇名为学号sh、doc,如 0137023sh、doc(双修专业)。

原则上,每个学生应将自己的论文单独存盘(存为一个文件名),并在软盘封面写明自己的学号、姓名、所属院系,然后上交。不提倡为了将多个学生的论文挤在一张软盘上而将各个文件压缩的做法。如果软盘的空间足够大,也可以集中多个学生的论文文件,但决不能是压缩文件。如果某个学生的论文过大,不得不进行压缩,那么必须将自己所用的压缩、解压软件及解压方法详细记录在一个名为decompress的、doc或、txt文件中;如果所用的解压软件不常见,应该在软盘中附带自己的解压软件。

相关百科

热门百科

首页
发表服务