首页

> 论文发表知识库

首页 论文发表知识库 问题

毕业论文普通车床螺纹

发布时间:

毕业论文普通车床螺纹

车螺纹的步骤与方法:(低速车削三角形螺纹Vく5米∕分)\x0d\x0a1、车螺纹前对工件的要求:\x0d\x0a1)螺纹大径:理论上大径等于公称直径,但根据与螺母的配合它存在有下偏差(—),上偏差为0;因此在加工中,按照螺纹三级精度要求。螺纹外径比公称直径小。螺纹外径D=公称直径—\x0d\x0a2) 退刀槽:车螺纹前在螺纹的终端应有退刀槽,以便车刀及时退出。\x0d\x0a3) 倒角:车螺纹前在螺纹的起始部位和终端应有倒角,且倒角的小端直径く螺纹底径。\x0d\x0a4) 牙深高度(切削深度):h1=\x0d\x0a2、调整车床:先转动手柄接通丝杠,根据工件的螺距或导程调整进给箱外手柄所示位置。调整到各手柄到位。\x0d\x0a3、开车、对刀记下刻度盘读数,向右退出车刀。\x0d\x0a4、合上开合螺母,在工件表面上车出一条螺旋线,横向退出车刀,并开反车把车刀退到右端,停车检查螺距是否正确(钢尺)。\x0d\x0a5、开始切削,利用刻度盘调整切深(逐渐减小切深)。注意操作中,车刀将终了时应做好退刀、停车准备,先快速退出车刀,然后开反车退回刀架。吃刀深度控制,粗车时t=,精车时tく。

很是看不懂这些学校的孩子,该死的教育!!

普通车工车削螺纹技师论文范文

UG在铣削中的运用 姓 名: 班 级: 学 号: 指导老师: (单位: 邮编:) 2010-5-20 UG在铣削中的运用 【摘 要】UG是目前功能最为强大的CAD/CAM软件,它为用户提供了多种CAM方法。其中包含零件设计、二维工程图、零件加工和仿真(可以进行外形铣削、挖槽加工和开放平面带台阶的加工等)以及有限元分析等模块,具有设计修改方便,更新迅速等特点。 【关键词】自动编程 UG 后处理 一、UG编程在铣削模块的功能运用 1.铣削模块的类型 图1 铣削模块的创建 UG的铣削模块包含平面铣削、高等铣削、外形铣削以及开口轮廓铣削等几个加工子模块,如图1所示。我们可以根据加工需要,灵活选择其中一个或者几个子模块,就可以完成零件的铣削加工任务。这些模块基本上满足零件从2轴到4轴的加工需求。 在铣削加工中,有的工件型腔(打深径)需要采用粗加工方式把型腔内的材料全部铣削加工。通过UG铣削模块里面的粗加工方式生成的刀具轨迹,有时存在不合理的刀路,如尖角等,这就要我们对走刀方式进行控制。 2.平面铣模块编程过程 图2 平面铣削模块 由于其它编程模块存在不便之处,在分析了UG平面铣模块的特点之后,决定采用这个模块来编制铣削粗加工程序,达到 控制铣刀走刀方式的目的。图2为平面铣模块的子模块面板。 图3 走刀方式 UG面铣模块等是针对零件的平面部分进行三轴加工的模块,其特点是铣削加工发生在XY平面上,Z轴的作用主要是下 刀、提刀以及在加工中避让夹具等功能。走刀方式具有灵活、易于控制等优点,可采取的走刀方式有单方向、往返方式、跟随工件外形、铣外形以及混合加工等,如图3所示。加工中心机床的工作平面为XY平面,通过铣削切割在二维平面上的运动完成零件的加工。如果能够在UG面铣模块编程时,抑制Z轴下刀和抬刀,就可以生成只含XYZ三个坐标的刀具轨迹文件。通过后处理便可以生成适用于加工中心机床的数控程序,这样就 极大地增强了铣削编程走刀方式的可控性。 图4 生成加工图形 图4是一个典型的零件外形,现在需要面铣方式进行圆内型腔的加工和表面加工,如果直接采用UG加工中心模块里面的面铣方式进行加工,则生成的刀具轨迹如图5中轨迹所示,轨迹里面存在尖角,机床在尖角处突然变向容易而引起冲击图5中轨迹是通过平面铣方式生成的种种不同走刀方式的刀具轨迹。从这种走刀轨迹可以看出,采用平面铣的刀具轨迹有更好 的可控性,而且生成的程序更加平滑,没有尖角,因而不会引起机床的冲击,更好的保证了零件的加工精度以及延长了机床的使用寿命。 二、UG程序的编制与后置处理 通常,加工中心机床都具有很高的定位精度和重复定位精度,适合加工表面粗糙度要求较高,尺寸精度控制严格的零件。现在以该机床的程序编制为例介绍加工中心铣削程序编制一般步骤。 前述生成的刀具轨迹是刀具在加工过程中所经过的一系列位置点的集合,称之为刀位,以一定格式和表述方法来记录这些刀位位置信息的文件称为刀位文件。在UG中,这些文件一般都以ISO文件格式保存,里面不仅记录可刀位的点位信息,同时还包含刀具的信息以及进给、主轴转速等其他加工信息。刀位文件不能直接用于数控机床,要使数控机床识别这些刀位,就应该将其转变成机床能够识别的NC代码。UG后处理中,通过这个文件来定义机床类型以及在后置处理中生成NC代码的格式。通过后置处理编辑器后处理器创建和编辑上述这个文件,使其符合特定的机床规范。 1.编程规范与后置处理 在编制该机床的后置处理器之前,首先要了解该机床的程序规范。该加工中心机床的编程规范有如下一些特点: (1)程序开头以N作为序号,后面的数字从1往后以1逐步递增; (2)程序第一段以G00作为机床的定位点,此点必不可少,而且只能在一个指令开始时出现。然后在进行直线(G01)、圆 弧(G02或者G03)等插补; (3)程序中每一段都要以“;”结束; (4)圆弧中心I、J值为从圆弧起点指向圆心的向量; (5)当整段程序运行完成以后,以M01完成该程序段。 2.后置处理 在了解了该机床的编程规范后,下面的工作就是按照该规范创建、编辑于之相应的后置处理文件。最后进入后置处理时,输入选择相应机床类型,然后根据规范编辑机床行程、程序序号以及程序结尾等相关内容,保存创建内容,后处理器自动生成上述(STEP)可以应用于后置处建的后主处理文件,把刀位文件转换为该机床的NC代码。UG的后处理文件编辑器后处理器主界面选择相应的处理器。 3.编程实例 图5生成的刀具轨迹 上述采用平面铣模块生成的加工中心铣削刀位文件在进行 后置处理时,还要编制后置处理文件。其中机床类型选择为三轴铣,否则在进行后置处理的时候系统会出现错误。其余内容按照编程规范进行编辑、修改即可。 以上述图4中的零件为例,采用面铣模块创建如图5中轨迹,生成刀位文件。创建、编辑后处理文件并保存。通过后置处理生成的NC代码如下,该NC代码在机床上面运行良好。 % G40 G17 G90 G54 G0 S5000 M03 Z-4. F250. M08 Z-10. Z-7. ………… Z-7. GO Z10. G91 G28 Z0 G28 X0 Y0 MO1 结束语 利用UG软件进行数控编程,可缩短程序编制时间,提高了加工效率。通过对铣削加工数控规范的分析,创建了后置处理文件并应用于后置处理器,把刀位文件转化成了机床能够识别 的NC程序。同时,通过面铣模块进行粗加工铣削程序等的编制,丰富了铣削程序走刀方式的多样性和可操作性,成为了铣削编程模块有益的补充。实践证明,采用这种方法进行加工中心程序编制取得了很好的经济效益和时间效益。 参考文献 郑贞平主编 数控加工典型范例》 电子工业出版社 《

车工技师论文--用普通数控车床准确加工母线为非圆曲线的工件摘要:讨论了用普通数控车床准确加工母线为非圆曲线工件的插补技术要点,编制了通用的加工程序生成软件。只需将工件的母线方程和几何参数输入该软件,即可生成NC 代码加工程序,并可在计算机上动画模拟加工全过程。该软件应用于GSK-928 型数控车床加工时取得了良好效果。 1 引言 普通数控车床的数控系统内存有限,计算功能不足,在拟合加工曲线时,一般只能采用直线插补和圆弧插补两种方式。因此,用普通数控车床加工母线为非圆曲线的工件时较为困难,尤其对于一些母线较复杂而对形状精度要求较高的非圆曲线工件,其加工难度更大。为简化母线为非圆曲线工件的加工程序编制,提高对该类工件的加工准确性和适应性,本文提出一种针对母线为非圆曲线工件的准确加工方法,并编制了相应的通用加工程序生成软件,经在数控车床上实际应用,效果良好。 2 提高插补精度的技术要点 选择圆弧插补方式 在选择加工曲线插补方式时,由于直线插补方式的曲线划分段数必须足够多才能保证较高加工精度,因此占用内存较大。为兼顾对各种加工曲线的通用性,合理利用内存,保证较高加工精度,采用圆弧插补方式比较有利。 以等弦长曲线内各微曲线的平均曲率半径作为插补圆半径 曲线上某点的曲率圆与曲线在该点具有相同的切线和曲率。用划分好的各曲线段的曲率半径作为圆弧插补半径,可使圆弧插补半径始终与曲线的弯曲程度较好吻合,从而保证较高的插补精度。因此,求取准确的曲率半径是保证插补准确性的关键。若以等坐标长对曲线进行划分,则对于沿该坐标不均匀变化的曲线,其在不同坐标点的曲线形状变化对曲率准确性的影响不容忽视。为此,我们采用了沿曲线走向以等弦长进行曲线划分的方法。由于该段曲线是以经过再细分的许多微线段的平均曲率半径作为其曲率半径,所以即使对于起伏较大、变化很不均匀的曲线,也能获得较好的拟合效果。其实现方法为借助计算机快速、准确的运算能力,用极小的递增量划分曲线并计算各段微曲线的曲率半径,将所得点到起点的直线距离与指定长度相比较,一旦达到规定的弦长长度时即产生一个插补点,计算出该段所有微曲线的平均曲率半径并将其作为圆弧插补半径。然后再将该点作为新一段曲线段的起点,寻找下一个插补点。如此类推,直至将整条曲线划分完毕。微曲线各点的曲率半径pi和各等弦长曲线段的平均曲率半径p可通过各微曲线段端点的一阶导数y'和二阶导数y" 计算求得,即 式中m——曲线段内微曲线段的段数加工精度要求较高的工件时,应采用较小的弦长进行划分,以增加插补点,提高曲线拟合精度。当然,具体操作时需对数控系统内存和工艺要求进行综合考虑,以求达到最佳加工效果。曲线各圆弧的凹凸性可通过比较该曲线段两端点函数值的平均值与该曲线段中点的函数值进行判断,若〔f(x1)+ f(x2)〕/ 2 f[( x1 + x2)/2],则x1和x2间的曲线为下凹。 合理设计走刀方向由于普通数控车床的数控系统内存有限(如GSK-928 数控系统内存仅为28K),因此合理、充分地利用内存是制定加工工艺时必须考虑的一个重要因素。为充分利用内存,粗加工时可采用径向走刀方案(见图1a)。由于径向走刀的多次循环会产生许多插补数据,因此与轴向走刀相比可明显节省内存空间,从而可增加精加工的插补点数,提高插补精度。精加工则采用沿曲线轴向走刀、圆弧插补的加工方案(见图1b)。 图1 走刀方向示意图3 加工程序的生成建立了圆弧插补数学模型后,用C语言生成加工文本文件。首先定义一个文件指针fp,用fp创建一个文本文件,将其工作状态设置为写方式,然后用fprintf()函数将NC指令和插补数据以NC代码格式写入加工文件,写圆弧插补的程序段形式如:fprintf( fp“ N%d G%d X% Z% R%”,n,aotu,x,y,r),其中变量n、aotu、x、y、r分别代表程序段号、圆弧方向、x向坐标、z向坐标和插补圆标半径。插补数据的计算和插补条件由C语言for循环语句控制。程序流程如图2 所示。 图2 程序流程图4 加工程序生成软件的应用根据被加工工件图纸要求,将母线曲线函数及尺寸参数输入源程序,进行应用功能选择后,即可实现以下的应用操作。 加工过程的动画模拟仿真程序中设计了一个加工过程模拟仿真与显示子程序。输入工件的母线方程、尺寸参数并选择模拟仿真操作方式后,运行该子程序,即可以动画形式模拟出加工的全过程。该过程与实际加工状况相吻合,并可显示出工件加工完后的真实形状,使操作人员能迅速、直观地验证加工程序的正确性,也可作为选用刀具和加工参数的参考依据。 切削加工将应用方式选择为切削操作,则加工软件可生成粗、精加工的刀尖坐标和换刀数据,利用通讯软件将系统编译生成的加工数据发送到车床数控系统,经光学对刀、设置加工原点和刀号、刀偏值等常规操作后,即可在机床数控面板上操作运行,进行切削加工。应用该加工软件在GSK-928 型数控车床上加工母线为双曲函数、指数函数等多种复杂形状的超声变幅杆等工件,均取得了良好效果。5 结语本文采用以等弦长划分曲线、以平均曲率半径作为插补圆半径等方法,提高了插补准确性和对不同曲线的适应性,并编制了相应的加工程序生成软件。对于插补数据容量超出系统内存容量的程序,可将程序在加工转折点分为若干个小程序,按顺序采用分段发送、分段加工的方法解决。该软件具有较强的通用性,对在普通数控车床上加工母线为非圆曲线的工件尤其适用,很适合小批量加工及工件母线类型和尺寸更换频繁的加工场合。

撒;可这些们,奥斯陆下列

车螺纹毕业论文

第一部分:数控机床应用调查一、 品正数控深孔钻床外型及简介 品正数控深孔钻床外型如图1-1 图1-1品正数控深孔钻床简介:深孔钻 : 自1982年生产以来, 一直占据生产的重要位置。 现市场对模具生产交期需求迫切, 深孔加工机快捷,便利, 不需要铰孔, 一步到位, 成了不可或缺的工具。更兼投资回收成本快速, 是抢占市场的利器。 二、深孔钻在设计上的优点合运水道,热流道,顶针孔,油泵深孔,轧辊孔等深孔加工。 敝司深孔钻在设计上有以下的优点 :1. 工作台, 底座机身, 立柱, 升降台, 全部 FC30铸铁成型, 加工时达至最佳的吸震效果。 2. 床身工作台底座一体成型, 结构一致, 筋骨强壮, 没有立柱与工作台分开的设计。3. 滑轨, 工作台导轨, 采用V型导轨, 保证准确的导向性, 无方轨之侧间隙。滑动时无蛇行现象, 亦能维持滑动之顺畅。在强压下承载座与滑动座更紧密结合。两者接触而能平均受力。长时间运动能维持稳定之动静态精度, 而能达到增长机件寿命及提高加工品质。 4. 滑轨经热处理研磨, 更能保证耐用与刚性。 5. 采用良好的油压泵设计, 控制流量与压力, 确保使用寿命。 6. 另外更采用CNC 换刀系统装置, 只用轻轻按下控制键, 气动锁刀系统。 更换刀具方便。 7. 纸带与磁铁过滤装置, 能将钢材加工中铁屑与切削油废弃的微量元素过滤, 循环再用。三、品正深孔钻规格表深孔钻规格表 型号 MGD-813 MGD-1015 MGD-1520 MGD-1525 Table (单位 mm) 工作台尺寸 400x1500 600x2000 800x2300 800x2800 作业面积 1300x600x800(z1)x400(z2) 1500x600x1000 2000x1000x1500 2500x1000x1500 T型槽 18mmx63mmx5 22x34x5 22x34x7 22x34x7 主轴 主轴进给行程 800 主轴进给速度 (mm/min) 20-5000mm主轴直径 Φ120 主轴端至台面距离 70 mm 电动机 主轴(kw) 磁力分离器(W) 25W 纸带过滤器 25W 铁削排除机 (W) 油压泵 10HPx6P润滑油泵 150Wx2加工能力 加工深度 800 1000 1250 1500 钻孔能力 Φ3-25mm(32)油压系统 切削油桶 (L) 1800LT高压泵压力 (kg/cm2 ) 0-120 高压泵吐出量 (L/min) 5-70最大载重 (kg) 7000 机械净重 (kg) 占地面积 第二部分:数控加工工艺分析要求:能够根据图纸的几何特征和技术要求,运用数控加工工艺知识,选择加工方法、装夹定位方式、合理地选择加工所用的刀具及几何参数,划分加工工序和工步,安排加工路线,确定切削参数。在此基础上,能够完成中等复杂零件数控加工工艺文件的编制(至少两个零件的工艺分析)。一、加工平面凸轮零件上的槽与孔,外部轮廓已加工完,零件材料为HT200。 图、零件图工艺分析 凸轮槽形内、外轮廓由直线和圆弧组成,几何元素之间关系描述清楚完整,凸轮槽侧面与 、 两个内孔表面粗糙度要求较高,为。凸轮槽内外轮廓面和 孔与底面有垂直度要求。零件材料为HT200,切削加工性能较好。 根据上述分析,凸轮槽内、外轮廓及 、 两个孔的加工应分粗、精加工两个阶段进行,以保证表面粗糙度要求。同时以底面A定位,提高装夹刚度以满足垂直度要求。2、确定装夹方案 根据零件的结构特点,加工 、 两个孔时,以底面A定位(必要时可设工艺孔),采用螺旋压板机构夹紧。加工凸轮槽内外轮廓时,采用“一面两孔”方式定位,既以底面A和 、 两个孔为定位基准。3、确定加工顺序及走刀路线 加工顺序的拟定按照基面先行、先粗后精的原则确定。因此应先加工用做定位基准的 、 两个孔,然后再加工凸轮槽内外轮廓表面。为保证加工精度,粗、精加工分开,其中 、 两个孔的加工采用钻孔—粗铰—精铰方案。走刀路线包括平面进给和深度进给两部分。平面进给时,外凸轮廓从切线方向切入,内凹轮廓从过渡圆弧切入。为使凸轮槽表面具有较好的表面质量,采用顺铣方式铣削。深度进给有两种方法:一种是在XOY平面(或YOX平面)来回铣削逐渐进刀到既定深度;另一种方法是先打一个工艺孔,然后从工艺孔进刀到既定深度。4、刀具选择 根据零件特点选用8把刀具,如下表:序号 刀具号 刀具 加工表面 备注 规格名称 数量 刀长/mm 1 T01 ¢5中心钻 1 钻¢5mm中心孔 2 T02 ¢钻头 1 45 ¢20孔粗加工 3 T03 ¢钻头 1 30 ¢12孔粗加工 4 T04 ¢20铰刀 1 45 ¢20孔精加工 5 T05 ¢12铰刀 1 30 ¢12孔精加工 6 T06 90°倒角铣刀 1 ¢20孔倒角×45° 7 T07 ¢6高速钢立铣刀 1 20 粗加工凸轮槽内外轮廓 底圆角 T08 ¢6硬质合金立铣刀 1 20 精加工凸轮槽内外轮廓 5、切削用量选择 凸轮槽内、外轮廓精加工时留㎜铣削余量,精铰 、 两个孔时留㎜铰削余量。主轴转数是1000r/min。二、轴类零件的加工工艺分析与实例 一渗碳主轴(如图2-2),每批40件,材料20Cr,除内外螺纹外~C59。渗碳件工艺比较复杂,必须对粗加工工艺绘制工艺草图(如图)。主轴加工工艺过程工 序 工种 工步 工序内容及要求 机床设备(略) 夹具 刀具 量具1 车 按工艺草图车全部至尺寸工艺要求:(1)一端钻中心孔φ2。(2)1:5锥度及莫氏3#内锥涂色检验,接触面>60%。(3)各需磨削的外圆对中心孔径向跳动不得大于 CA6140 莫氏3号铰刀 莫氏3号塞规1:5环规 检查 2 淬 热处理-C59 3 车 去碳。一端夹牢,一端搭中心架 <1> 车端面,保证φ36右端面台阶到轴端长度为40 <2> 修钻中心孔φ5B型 <3> 调头 车端面,取总长340至尺寸,继续钻深至85,60°倒角 检查 4 车 一夹一顶 CA6140 <1> 车M30×–6g左螺纹大径及ф30JS5处至Φ30 <2> 车φ25至φ25 、长43 <3> 车φ35至φ35 <4> 车砂轮越程槽 5 车 调头,一夹一顶 <1> 车M30×–6g螺纹大径及φ30JS5处至φ30 <2> 车φ40至φ40 <3> 车砂轮越程槽 6 铣 铣19 二平面至尺寸 7 热 热处理HRC59 8 研 研磨二端中心孔 9 外磨 二顶尖,(另一端用锥堵) M1430A <1> 粗磨φ40外圆,留~余量 <2> 粗磨φ30js外圆至φ30t (二处)台阶磨出即可 <3> 粗磨1:5锥度,留磨余量 10 内磨 用V型夹具(ф30js5二外圆处定位) M1432A 磨莫氏3#内锥(重配莫氏3#锥堵)精磨余量~ 11 热 低温时效处理(烘),消除内应力 12 车 一端夹住,一端搭中心架 <1> 钻φ孔,用导向套定位,螺纹不攻 Z–2027 <2> 调头,钻孔φ5攻M6–6H内螺纹 <3> 锪孔口60°中心孔 <4> 调头套钻套钻孔ф×25(螺纹不改) <5> 锪60°中心孔,表面精糙度 60°锪钻 检查 13 钳 <1> 锥孔内塞入攻丝套 <2> 攻M12–6H内螺纹至尺寸 14 研 研中心孔 15 外磨 工件装夹于二顶尖间 <1> 精磨φ40及φ35φ25外圆至尺寸 <2> 磨M30× M30×左螺纹大径至30 <3> 半精磨ф30js5二处至ф30 <4> 精磨1:5锥度至尺寸,用涂色法检查按触面大于85% 1:5环规16 磨 工件装夹二顶尖间,磨螺纹 <1> 磨M30×–6g左螺纹至尺寸 M33×左环规 <2> 磨M30×–6g螺纹至尺寸 M33×环规17 研 精研中心孔 18 外磨 精磨、工件装夹于二顶尖间 M1432A 精磨2-φ30 至尺寸,注意形位公差 19 内磨 工件装在V型夹具中,以1–ф30外圆为基准,精磨莫氏3号内锥孔(卸堵,以2–ф30js5外圆定位),涂色检查接触面大于80%,注意技术要求“1”“2” MG1432A 检查 20 普 清洗涂防锈油,入库工件垂直吊挂 该轴类零件加工过程中几点说明:1.采用了二中心孔为定位基准,符合前述的基准重合及基准统一原则。2.该零件先以外圆作为粗基准,车端面和钻中心孔,再以二中心孔为定位基准粗车外圆,又以粗车外圆为定位基准加工锥孔,此即为互为基准原则,使加工有一次比一次精度更高的定位基准面。3号莫氏圆锥精度要求很高。因此,需用V型夹具以2-ф30js5外圆为定位基准达到形位公差要求。车内锥时,一端用卡爪夹住,一端搭中心架,亦是以外圆作为精基准。3.半精加工、精加工外圆时,采用了锥堵,以锥堵中心孔作为精加工该轴外圆面的定位基准。 对锥堵要求: ① 锥堵具有较高精度,保证锥堵的锥面与其顶尖孔有较高同轴度。② 锥堵安装后不宜更换,以减少重复安装引起的安装误差。③ 锥堵外径靠近轴端处须制有外螺纹,以方便取卸锥堵。4.主轴用20Cr低碳合金钢渗碳淬硬,对工件不需要淬硬部分发(M30×-6g左、M30×-6g、M12-6H、M6-6H)表面留-3mm去碳层。5.螺纹因淬火后,在车床上无法加工,如先车好螺纹后再淬火,会使螺纹产生变形。因此,螺纹一般不允许淬硬,所以在工件中的螺纹部分的直径和长度上必需留去碳层。对于内螺纹,在孔口也应留出3mm去碳层。6.为保证中心孔精度,工件中心孔也不允许淬硬,为此,毛坯总长放长6mm。7.为保证工件外圆的磨削精度,热处理后须安排研磨中心孔的工序,并要求达到较细的表面粗糙度。外圆磨削时,影响工件的圆度主要是由于二顶尖孔的同轴度,及顶尖孔的圆度误差。8.为消除磨削应力,粗磨后安排低温时效工序(烘)。9.要获高精度外圆,磨削时应分粗磨、半精磨、精磨工序。精磨安排在高精度磨床上加工。第三部分:编制数控加工程序要求:能够根据图纸的技术要求和数控机床规定的指令格式与编程方法,正确地编制中等复杂典型零件的加工程序,或应用CAD/CAM自动编程软件编制较复杂零件的加工程序。(至少两个零件)。一、 编制轴类零件(1)数控加工程序如图所示的零件。毛坯为 42㎜的棒料,从右端至左端轴向走刀切削;粗加工每次进给深度㎜,进给量为㎜/r;精加工余量X向㎜,Z向㎜,切断刀刃宽4㎜。工件程序原点如图 图所示。 该零件结构较为简单,属典型轴类零件,轴向尺寸80㎜,采用三爪卡盘装夹即可,选工件回转轴线及右侧面的交点为加工坐标系原点。1. 选择刀具编号并确定换刀点根据加工要求选用3包刀具:1号为外圆左边偏粗车刀,2号为外圆左偏精车刀,3号刀为外圆切断刀,换刀点与对刀点重合2.确定加工路线1)粗车外圆。从右至左切削外轮廓,采用粗车循环。2)精车外圆。左端倒角→ 20㎜外圆→倒角→ 30㎜外圆→倒角→ 40㎜外圆。(3)切断3选择切削用量选择切削用量参数见表.表 选择切削用量参数转数指令 进给速度(mm/r) 刀具粗车外圆 M43 1号精车外圆 M44 2号切断 M43 2号编写程序O0001M03T0101 M43 P1 Q2 N1 G01 M44 T0202G70 P1 Q2 M43 T0303G00 二、 编制轴类零件(2)数控加工程序加工如图3-2所示零件,材料45钢,坯料 60×122。1、刀具:T1——硬质合金93°右偏刀;T2——宽3mm硬质合金割刀,D1——左刀尖。加工工序 材料 刀具车外圆 硬质合金 T1切槽 硬质合金 T2该零件结构较为简单,属典型轴类零件,轴向尺寸120㎜,采用三爪卡盘装夹即可,选工件回转轴线及右侧面的交点为加工坐标系原点。2、 选择刀具编号并确定换刀点根据加工要求选用2包刀具:1号为外圆左边偏粗车刀,2号刀为外圆切断刀和切槽刀,换刀点与对刀点重合 3、程序编写程序指令 说明N10 G56 S300 M3 M7 T1; 选择刀具,设定工艺数据N20 G96 S50 LIMS=3000 ; 设定粗车恒线速度N30 G0 X65 Z0; 快速引刀接近工件,准备车端面N40 G1 X-2; 车端面N50 G0 X65 Z10; 退刀N60 CNAME=“LK2”; 轮廓调用N70 R105=1 R106= R108=4 R109=0 R110=2 R111= R112=; 毛坯循环参数设定N80 LCYC95; 调用LCYC95循环轮廓粗加工N90 G96 S80 LIMS=3000 ; 设定精车恒线速度N100 R105=5; 调整循环参数N110 LCYC95; 调用LCYC95循环轮廓精加工N120 G0 X100 Z150; 快速退刀,准备换割刀N125 G97; 取消恒线速度N130 T2 S250; 换T2割刀D1有效,调整工艺数据N140 G0 X42 Z-33; 快速引刀至槽Z向左侧N150 LCEXP2 P8; 调用子程序8次割8槽N160 G0 X100 Z150 M9; 快速退刀,关冷却N170 M2; 程序结束LK2 N10 G1 X0 Z0; N20 G3 X20 Z-10 CR=10; N30 G1 Z-20; N40 G2 X30 Z-25 CR=5; N50 G1 CHF=; N60 Z-100; N70 X60 Z-105; N80 M17; LCEXP2 N10 G91 G1 X-14; N20 G4 S2; N30 G1 X14; N40 G0 Z-8; N50 G90 M17; 第四部分:绘制CAD零件图

基于单片机的仪表车床简易数控系统的实现第2章 数控系统的设计要求概述该数控系统是为了适应国内众多的普通机床改造而设计的主要考虑四个方面:①经济性既然是用于普通机床的数控化改造,因此,必须充分考虑系统的成本,这是保证达到系统设计目的的关键。这里的成本包括整个系统的成本,包括数控系统、伺服驱动系统及机械传动系统等,其核心在于数控系统的方案选择。②方便性数控系统的方便性,又叫“宜人性”,主要反映在系统的编辑部分。编辑(编程)部分是人和系统直接打交道的部分,即所谓的“人机界面”。人机界而应当对用户友好,也就是说编辑(编程)部分应当尽量给用户提供力便、快捷舒适的操作使用环境。系统需从以下几个途径来体现:●汉化按键,方便各种层次的操作者使用。●输入、检索、修改尽量一体化。即输入时可以检索、修改,检索时可以修改、输入,并且自动显示程序段号。●快速检索,即能对程序进行上下翻页显示。③实用性经济则数控系统的设计不应追求功能的大而全,应以实用为原则。一般的机械加工只要能具有以下功能即可满足需要:●直线、圆弧插补。插补速度要充分考虑被机床本身的内在素质,如刚性、抗震性、耐磨性等,不宜过高。●速度衔接技术,即速度升/降速控制。速度衔接技术可以保证系统在加工过程中实现2段程序间的速度平滑连接,从而避免造成加工刀痕或平台,保证精度。●动态坐标显示。●加工程序的掉电保护能力。●电动刀架控制。采用电动刀架,用软件进行控制,可以提高生产效率。●细分技术。细分技术是当今经济型数控系统的一项重要技术。它可以有效解决步近电机的低频振荡问题,同时使机床脉冲当量细化,提高控制精度;另外,还可以提高低速加工时的出刀。④可靠性由于数控系统工作环境十分恶劣,必须有足够的可靠性才能保证系统稳定运行。数控系统的性能指标按照广述设计要求及设想,数控系统的性能指标可归纳为:●X,Z两轴联动,开环控制方式。●ISO国际数控标准格式代码编程。●快速定位。●具有直线、圆弧插补能力。●能与上价机串行通信、具有简单的联网能力。●最大编程尺寸,z轴脉冲当量,x轴脉冲当量,最大进给速度为(5m/min)。●预留螺纹加工功能的接口。●具有连动、点动2种手动加工方式,以及自动连续加工方式。第3章 总体方案的确定系统总体方案本系统在研制过程中,紧紧围绕可靠性、方便性、低成本等设计要求。确定总体方案如下:基于单片机的系统结构按照上述设计思想,本系统采用基于单片机的系统结构。这种方案结构简单,成本低。考虑到扩展性,主系统采用89S58单片机。AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。1.一个个8位的CPU2、26个特殊功能寄存器(Special Function Register)3、一个片内振荡器及时钟电路4、全静态工作:0Hz-24KHz5、32条可编程I/O线6、2个16位可编程定时计数器7、5个中断优先级2层中断嵌套中断8、2个全双工串行通信口9、电源控制模式:低功耗的闲置和掉电模式10、8031 CPU与MCS-51 兼容11、4个8位并行(Parallel)I/O口12、三级程序存储器保密锁定13、128B 内部RAM14、内部硬件看门狗电路15、4k Bytes Flash片内程序存储器(寿命:1000写/擦循环)16、一个SPI串行接口,用于芯片的在系统编程17、可寻址64KB的外部ROM和外部RAM的控制电路这些我们称为单片机的资源(Souce),单片机的应用就是怎么充分合理地利用这些资源,来解决实际中的问题人机界面(1)采用液晶显示界面作为一个简易型数控系统,采用了12232汉字图形点阵液晶显示模块,带背光字符型液晶模块作为主显示界面,不采用数码管显示。这样做的目的有3个:●液晶显示方式具有显示容量大、可以显示所有字符及自定义字符的能力。至于不能显示图形以实现加工曲线动态显示的缺陷,可以通过上仪机模拟仿真加工来弥补。●液晶显示模块自身具有控制器,可以减轻主CPU的负担。●使系统具有菜单驱动的基本素质。采用菜单驱功方式实现编辑模块的全屏幕编辑功能,达到友好的人机界面要求。●可显示汉字和图形。(2)采用双功能按键设计,简化键盘系统设计中充分考虑功能的需要、操作方便的需要及系统复杂性的要求三者之间的关系确定系统的大多数按键为双功能键,使得整个系统界面简洁。采用开环控制方式系统设计的目的决定了系统只能采用开环控制方式。在开环型位置控制系统中,只能采用步进电机作为伺服执行单元。这是由步进电机车身的特性决定的。关于步进电机的特性等详细内容参见本章后续有关章节。开环控制系统的数控机床结构简单,成本较低,仅适用于加工精度要求不很高的中小型数控机床,特别是简易经济型数控机床。这类系统比较简单,价格最便宜,可以用于小型车床、铣床、钻床和线切割机床。如下图是常见的两坐标简易数控系统的组成框图。系统软件固化在单片机的存储器中,加工程序可通过键盘或磁带机输入,经系统软件进行编辑处理后输出一个系列脉冲,再经光电隔离,功率放大后大驱动两台步进电机,分别控制机床两个方向的运动,完成位置、轨迹和速度的控制。根据需要,微机还可通过继电器电路,实现对诸如主轴起停、变速、各种辅助电机起停、刀架转位、工件爽紧松开等动作的自动控制,使整个加工过程自动进行。图3-1开环步进电机与单片机连接电路单片机控制步进电机拖动的开环系统具有价廉,技术成熟等优点,因而使用较多。但这种系统还存在拖动力矩偏小,过载能力差、速度偏低,精度不够高及其价格随力矩增加成指数卜升等缺点。为此,选用时要注意在适当的范围内发挥其优势。一般主要适用于拖动力矩小于15Nm的小型机床,如C616,C618,C620,C6140等普通车床。对于转矩要求大、功能要求多的机床(如铣床、镗床、钻床及镗铣床)和高精度机床(如坐标镗床)就难于使用,需要开发与其适应的其他经济型数控系统。功能精简,提高可靠性设计具备简易型数控系统必需的基本功能●直线、圆弧插补能力。●端面、台阶的循环加工。●点动、连动、自动3种运行方式。●申行通信能力。系统功能模块及其分析系统功能模块与总体框架(1)系统操作界面按照上述图3-2 系统的人机界面图复位——系统在死机、工作出错等情况下的总清键,使系统回复设计的原始状态。运行——自动运行用户的零件加工程序,包括程序的语法检查、数据处理、编译、插补运算及步进电机控制等。暂停一—自动加工的暂停,是一个乒乓键,按一次,加工暂停,再按一次,继续加工。换刀一—用于手工换刀,每按一次.电动刀架转一个工位,本系统中为90度。手动——与“←、↑、→、↓”配合,以实现动作台的连动;在编辑程序时为光标移动键。数字1—9均为双功能键、用于程序输入、用“上下档”键进行切换。G—一准备功能键,用于ISO加工程序输入。M——辅助功能键,用于冷却泵的启/停、程序的结束等程序段的输入。插入—一用于程序编辑过程中“插入修改”方式的切换。也是乒乓键,用块光标或下划线光标指示。删除——在插入方式下,删除当前的字符;在修改方式下,删除当前光标位置字符。上页一—程序上翻到上一程序段。相当PC机的PageUp键。下页——程序下翻到下一程序段。与上页键一样是一个屏幕编辑键。相当PC机的PageDown键。回车——确认键。Esc——相当于PC机的Esc键。(2)系统功能模块与总体框架系统从总体上分为人机界面模块、伺服执行模块、电动刀架拧制模块、串行通信模块及基于AT89S51单片机的主控模块等5大模块,参见图3-2。各模块的功能分别是:图3-3 系统模块与总体框架①人机界面模块该模块主要完成人机的对话与交流,物理上表现为显示器与键盘,核心功能是加工程序的编辑。由于采用全程菜单驱动形式.使该模块具有较好的友善性。②伺服执行模块该模块主要由脉冲分配器、伺服驱动及步进电机等组成,是一个执行单元,按照主机的指令完成工作台与刀具的相对运动,实现车削加工。其速度特性、矩频特性等直接影响加工的精度和速度。③电动刀架控制模块采用2继电器方式的4方电动刀架.用软件完成刀架的换刀动作,即刀架电机的正转拾刀→换刀→反转锁紧,是经济型数控系统必不可少的部分,可以提高加工效率,大大减少在加工过程中因手工换刀带来的误差。④串行通信模块该模块的功能是完成与上位机的串行通信,采用三线制方式,使系统具有基本的组网能力。⑤主控模块主要包括零片微处理器(也括监控程序)、加工程序存储单元及与其他模块的接口电路要完成程序编辑、加工程序处理、软件插补达贸、电动刀架饺制及行程限位保护等。系统软件框架如图3-4展示了系统软件框图。系统上电后,执行初始化程序、键盘扫描程序。如有“计数显示”、“计数清零”、“点动”等功能键按下,执行其各自的工作子程序后返回初始化程序,并显示其相应的提示符。顺序控制程序也设计成子程序模块,它的主要功能是读入各行程开关及压力继电器的信号状态组合,经分析判断,输出一系列控制信号,完成对工件的自动加工。如按下“点动”键,则显示点动提示符,执行顺序控制程序,即返回初始化程序,如按下“连动”功能键,则首先置连动工作标记(此时,除“返回”键外,其余各键均用软件屏蔽),然后开中断,等待,刀具检测信号,收到中断请求信号后,执行中断服务程序。在中断服务控制中,先后执行顺序控制子程序,键盘扫描及显示子程序,并记录和显示数据。完成一次顺序控制或有“返回”键按下,则返回主程序。回到主程序后,仍判断是否有“返回”键按下,如有,则返回初始化程序。否则,重新等待中断。采用模块化设计:①点动,连动,换刀该模块主要实现工作台在x,z两轴上正、反2个方向的点动、连动操作,以及手动控制换刀等,用于方便对刀、工作原点设置等。②自动该模块主要实现加工程序的处理(包括程序语法检查、程序编译、数据处理等)、插补运算步进电机的控制及自动换刀控制等。③参数设置该模块主要实现刀具补偿参数设置、间隙补偿参数设置等自动加工参数的设置。④编辑模块该模块主要实现零件加工程序的键盘编辑、输入。⑤通信模块该模块主要实现与上位机或其他智能设备的串行通信,可用于加工程序的传送等。图3-4 系统软件原理框图第4章 硬件系统设计主模块设计主模块中关键器件及其选型(1)单片机本系统采用PHILIPS公司的8位单片机AT89S51为控制核心。AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,全静态工作,RAM可扩展到64K字节,5个中断优先级,2层中断嵌套中断,32个外部双向输入/输出(I/O)口,2个16位可编程定时计数器。外接一片2764EPROM,作为监控程序的程序存储器和存放常用零件的加工程序。再选用一片6264RAM用于存放需要随机修改的零件程序、工作参数。采用译码法对扩展芯片进行寻址,采用74LS138译码器完成此功能。8279作为系统的输入输出口扩展,分别接键盘的输入、输出显示,8255接步进电机的环形分配器,分别并行控制X轴和Z轴的步进电机。另外,还要考虑机床与单片机之间的光电隔离,功率放大电路等.图4-1单片机系统原理框图(2)数据存储器的选用系统采用单片机作为控制核心,最高速度为33MHz,我们用到。速度高对外部电路特别是外部数据,程序存储器扩展电路要求很高。必须满足在CPU读数据或程序指令时,外部数据或程序指令已准备好了。所以必须进行芯片的时序校验。为了使系统工作可靠我们也进行存储器的校验。首先,对存储器作一介绍。单片机存储器分为内部存储器和外部存储器,内部存储器又分为内部数据存储器和程序存储器,同样,外部存储器也分为程序和数据存储器。本系统采用AT89S51为核心单元,其本身带有128B的RAM和4KB的Flash内部程序存储器。对于数据存储器,内外两部分是独立编址的,用不同指令来访问不同的数据存储器,即,MOV访问片内,MOVC访问片外,外部可扩展到64K,由于在外部数据存储器和I/0是统一编址的,应给I/0留一定的空间,且本系统要求留有一定的扩展空间,所以本系统扩展采用的芯片是6264。Y62256是HUNDAI公司的一种高速低功耗32K的CMOS的静态RAM,采用现代公司的高速CMOS工艺技术。HY62265具有数据保持模式,以确保在最低供电电压下2V数据有效。使用CMOS技术,电源电压在之间,数据保持电流几乎没有影响。HY62256适合使用在低压和电池供电工作环境。M28256用于扩展程序存储器,是一种采用ST微电子公司拥有知识产权的多极性硅技术制造的。在3V或}V供电条件下具有快谏低功耗工作模式。电路已被设计成可提供与微控制器柔性接口特征。可使用软件或硬件进行数据循环测试或位功能锁定。可以使用标准的JEDEG运算法则进行软件数据保护。电路扩展如图4-2所示。图4-2 存储器扩展(3)总线驱动、数据、地址锁存及译码电路由于单片机的数据线和低位地址线共用必须加地址锁存器进行低位地址锁存。使用74LS373作为地址锁存器,当应用系统规模过大,扩展所接芯片过多,超过总线的驱动能力时,系统将不能可靠工作,此时应加用总线驱动器来减少读数据的持续时间。整个系统可扩展的外部数据总共为64K,由于单片机外部数据存贮器和工/0是统一编址的,我们将低32K作为外部扩展的数据存储器,高译码电路采用两片74LS138,用了32K作为I/0使用或留给以后扩展用。由于外设使可编程器件,所以在使用138作译码时需要产生两种译码地址:一种是地址连续,一种是段地址连续。其中Ll,L5可作为系统再次扩展时用。译码地址输出在图4-3中已给出,Y0-Y7作为单地址芯片片选信号,Y8-Y15可作为可编程芯片片选信号,如8254可编程计数器。译码电路如图4-3.图4-3译码电路主模块电原理图设计本系统选用AT89S51CPU作为数控系统的中央处理机。主程序框图如图4-4。外接一片2764EPROM,作为监控程序的程序存储器和存放常用零件的加工程序。再选用一片6264RAM用于存放需要随机修改的零件程序、工作参数。采用译码法对扩展芯片进行寻址,采用74LS138译码器完成此功能。8279作为系统的输入输出口扩展,分别接键盘的输入、输出显示,8255接步进电机的环形分配器,分别并行控制X轴和Z轴的步进电机。另外,还要考虑机床与单片机之间的光电隔离,功率放大电路等。8255A可编程并行I/O口扩展芯片可以直接与MCS系列单片机系统总线连接,它具有三个8位的并行I/O口,具有三种工作方式,通过编程能够方便地采用无条件传送、查询传送或中断传送方式完成CPU与外围设备之间的信息交换。CPU对8279的控制是先读回8279的状态字,查看PIFORAM中有无字符 ,若有将根据字符个数读出所有字符,并进行相应处理;若无,则直接返回。CPU对8279的监视采用查询方式,对8279分配的数据口地址为8000H,状态口地址为8001H,CPU每隔10ms定时中断查询一次,所有显示采用查询段码表的方式实现,简化了程序设计过程,提高了程序质量。图4-4主程序框图输入/输出模块设计 I/O模块电原理图设计8279作为系统的输入输出口扩展,分别接键盘的输入、输出显示。8279是可编程接口芯片,通过编程使其实现相应的功能,编程的过程实际上就是CPU向8279发送控制指令的过程。在软件设计中,显示方式采用了8个字符显示,左入方式,编码扫描键盘,双键锁定。I/O模块电原理图如图4-5所示。图4-5 I/O模块电原理图图4-6 8279工作程序框图步进电机控制接口X,Z两轴采用3相6拍步进电机,并口8255向控制端口写控制字,PUSLE来实现对步进电机的控制。8255接步进电机的环形分配器,通过3片4N25光电隔离,分别形成X、Z所需的3相控制信号,送往步进电机驱动电源,分别并行控制X轴和Z轴的步进电机。芯片YB013实现硬件环分任务,;达林顿光隔离管4N25实现计算机弱点部分和步进电机强电部分的隔离,既起功率放大作用,又充当无触点开关,实现对计算机的保护。单片机控制步进电机连接如图4-7所示。图4-7 单片机控制步进电机刀具控制接口(1)电动刀架及其工作原理电动刀架的机械部分类似于蜗轮机构,实现刀具的抬升、旋转(交换刀具位置)及下降锁紧,这里着重讨论实现上述动作所必须的硬件条件和电路原理。在图4-8中,继电器KA1,KA2实现电动刀架的动作切换控制,主要完成刀架电机的正、反转切换。在刀架旋转过程中,每个工位上的霍尔元件会依次切换为有效状态,系统根据T1,T2,T3及T4状态的变化,可以推断出目前的刀号,并判断是否为当前所选用刀具,一旦符合,则电机反向旋转,锁紧刀具。电动刀架各时序的切换反间隔是系统控制的关键,反向锁紧所用时间取决于电动刀架生产厂家的推荐指标,过长会引起电机发热甚至烧毁。为保证电动刀架安全运行,在电动刀架交流380V进线处加装快速熔断器和热继电器。图4-8电动刀架的电原理图(2)电动刀架与单片机的接口电动刀架与系统的硬件接口主要是控制电机正、反转信号J1,J2及刀号反馈信号TI,T2,T3和T4。上述信号均光电隔离后与单片机系统接口。电动刀架软件控制流程如图4-9所示,采用查询方式。图4-9电动刀架控制流程程序为:#include <>#include <>#define N1 XBYTE[ ]typedef unsigned char ucharvoid adc0809(uchar idata *x);void delay();void main(){static uchar idata ad[4];adc0809(ad);}void adc0809(uchar idata *x){uchar i,*ad_adr;uchar motor=1;ad_adr=&N1;for(i=0;i<4;i++){If(*ad_adr=i){delay1( );KA1=1;delay2( );return();}else KA1=0}}void delay1(motor==0){uchar j;for(j=0;j<20000;j++){;}}void delay2(void){uchar j;for(j=0;j<150000;j++){;}}急停、暂停、行程限位接口电路限位开关为常开状态;因此,X十,X一,Z十,Z一正常输人为低电平状态。因此如果行程开关被压合,向INT0发出中断信号,系统进行复位,步进电机的脉冲消失,也就无法继续前行,起到保护机床的目的。本系统采用三输入端与非门74HC10的输出端作为一个共用的中断信号接至单片机的INT0,用于实时处理紧急停车、暂停、限位报警功能。电路如图4-8所示:串行通信电路本系统由两部分构成,上位机系统和下位机系统,由于上位机主要完成管理显示等工作,下位机完成控制功能,所以上位机和下位机的数据传输实时性要求不高,我们采用串口通信。使用RS232标准,MAX232进行电频的转换。串口RS232标准,它是美国电子工业协会(Electronic Industry Association)的推荐标准。本系统采用9针连接器,其定义见表4-1。本系统采用三线制TXD,RXD,GND连接,以使电路简单。表4-1 连接器定义表串口通讯电路主要由MAX 232电平转换电路构成。MAX232是MAXIM公司产品,一种电平转换芯片。可以将TTL转换成RS232,或RS232转换成TTL。满足单片机和普通计算机的通讯电平转换要求。电路如图4-10所示。图4-10 通信接口电路人机界面模块设计单片机应用系统中常用显示方式及其比较在单片机应用系统中,目前比较常用的显示介质有数码管(LED)、液晶显示(LCD)及CRT等,在家用电器中用的比较多的是真空荧光屏(VFD)。现就各自特点简述如下:(1)数码管数码管是一种主动发光器件。所谓主动发光.是指环境越暗越清晰。分为7段数码管和“米”字数码管2种。前者用于显示ARCⅡ码,显示信息量小;后者除了可显示ARCⅡ字符外,还可显示一些自定义的比较复杂的字符。数码管按驱动电流分,又可分为普通亮度、高亮、超高亮等。数码管由于其廉价而且扩展方便等特性,—直是单片机系统中用得最多、最广的一种显示器件。国内有不少型号的数控系统、尤其是早期的数控系统,广泛采用数码管作为显示界面。(2)液晶显示液晶显示器是一种被动发光器件。所谓被动发光,是指环境越亮越清晰,黑暗环境下必须加入背光才能清晰显示。分为字段型液晶显示器、字符型液晶显示器及图形点阵液晶显示器。字段型只能显示ASCII字符,字符型可以显示ASCII字符,显示效果比字段型好,而且可以显示少量的自定义字符;图形点阵液晶显示器是目前在单片机系统中比较流行的新型显示器件,可以显示所有字符及图形,由于其可以显示汉字的特性,被广泛用于国内智能设备中,国内的数控系统也开始广泛采用。(3)CRTCRT显示器分为单色和彩色2种,在数控系统中,尤其是高档数控系统中应用日益广泛。其特点是成本低、显示容量大;可以显示所合字符、图形及汉字;采用视频专用接口电路MC6847等与单片机接口,比较复杂,因而在—般的应用中比较少见。(4)真空荧光屏真空荧光屏简称VFD(vacuunm fluorescent display module),是一种新型的显示器件。它由3个基本电极——阴极(灯丝)、阳极及栅做封装在一个真空的玻璃容器内构成。阴极是涂敷了金属氧化物的钨丝;栅极是极细的金属网;阳极为段或点阵型的导电电极,它上面的荧光物质可显示相应的字符或符号。栅极和阳极之间加有正电压,从阴极发射出来的电子被这个正电压加速,碰擅到阳极表面的荧光物质产生辐射,发出波长为505nm左右的谈绿色荧光。通过按制栅极和阳极之间的电压,就可以显示各种字符。VFD由于其以下特点而被广泛应用于家用电器、商场POS机以及新型的仪器仪表中。①亮度高,并且不存在视角问题,②工作温度范围宽、寿命长;②外围电路简单,只需十5v电源就可以工作,提供准8位数据总线接口;④功耗低。但这种显示器目前用在数控系统上还比较少。点阵液晶显示模块(1)字符型液晶显示模块本数控系统采用字符点阵液晶显示模块DM12232。该模块具有以下特点:●能显示122列32行●电源(内置升压电路,无需负压)●与微处理器接8位或4位并行/ 3位串行●多种软件功能:自定义字符、画面移动、光标显示、睡眠模式等功能●配置LED背光}

1)零件图工艺分析 该零件表面由圆柱、圆锥、顺圆弧、逆圆弧及螺纹等表面组成。其中多个直径尺寸有较严的尺寸精度和表面粗糙度等要求;球面Sφ50㎜的尺寸公差还兼有控制该球面形状(线轮廓)误差的作用。尺寸标注完整,轮廓描述清楚。零件材料为45钢,无热处理和硬度要求。 通过上述分析,可采用以下几点工艺措施。 ①对图样上给定的几个精度要求较高的尺寸,因其公差数值较小,故编程时不必取平均值,而全部取其基本尺寸即可。 ②在轮廓曲线上,有三处为圆弧,其中两处为既过象限又改变进给方向的轮廓曲线,因此在加工时应进行机械间隙补偿,以保证轮廓曲线的准确性。 ③为便于装夹,坯件左端应预先车出夹持部分(双点画线部分),右端面也应先粗车出并钻好中心孔。毛坯选φ60㎜棒料。 (2)选择设备 根据被加工零件的外形和材料等条件,选用TND360数控车床。 (3)确定零件的定位基准和装夹方式 ①定位基准 确定坯料轴线和左端大端面(设计基准)为定位基准。 ②装夹方法 左端采用三爪自定心卡盘定心夹紧,右端采用活动顶尖支承的装夹方式。 (4)确定加工顺序及进给路线 加工顺序按由粗到精、由近到远(由右到左)的原则确定。即先从右到左进行粗车(留㎜精车余量),然后从右到左进行精车,最后车削螺纹。 TND360数控车床具有粗车循环和车螺纹循环功能,只要正确使用编程指令,机床数控系统就会自动确定其进给路线,因此,该零件的粗车循环和车螺纹循环不需要人为确定其进给路线(但精车的进给路线需要人为确定)。该零件从右到左沿零件表面轮廓精车进给,如图2所示。 图2 精车轮廓进给路线 (5)刀具选择 ①选用φ5㎜中心钻钻削中心孔。 ②粗车及平端面选用900硬质合金右偏刀,为防止副后刀面与工件轮廓干涉(可用作图法检验),副偏角不宜太小,选κ=35 0。 ③精车选用900硬质合金右偏刀,车螺纹选用硬质合金600外螺纹车刀,刀尖圆弧半径应小于轮廓最小圆角半径,取rε=~㎜。 将所选定的刀具参数填入数控加工刀具卡片中(见表1),以便编程和操作管理。 表1 数控加工刀具卡片 产品名称或代号 ××× 零件名称 典型轴 零件图号 ××× 序号 刀具号 刀具规格名称 数量 加工表面 备注 1 T01 φ5中心钻 1 钻φ5 mm中心孔 2 T02 硬质合金90 0 外圆车刀 1 车端面及粗车轮廓 右偏刀 2 T03 硬质合金90 0 外圆车刀 1 精车轮廓 右偏刀 3 T04 硬质合金60 0 外螺纹车刀 1 车螺纹 编制 ××× 审核 ××× 批准 ××× 共页 第页 (6)切削用量选择 ①背吃刀量的选择 轮廓粗车循环时选a p =3 ㎜,精车a p =㎜;螺纹粗车时选a p = ㎜,逐刀减少,精车a p =㎜。 ②主轴转速的选择 车直线和圆弧时,选粗车切削速度v c =90m/min、精车切削速度v c =120m/min,然后利用公式v c =πdn/1000计算主轴转速n(粗车直径D=60 ㎜,精车工件直径取平均值):粗车500r/min、精车1200 r/min。车螺纹时,参照式(5-1)计算主轴转速n =320 r/min. ③进给速度的选择 选择粗车、精车每转进给量,再根据加工的实际情况确定粗车每转进给量为㎜/r,精车每转进给量为㎜/r,最后根据公式v f = nf计算粗车、精车进给速度分别为200 ㎜ /min和180 ㎜/min。 综合前面分析的各项内容,并将其填入表2所示的数控加工工艺卡片。此表是编制加工程序的主要依据和操作人员配合数控程序进行数控加工的指导性文件。主要内容包括:工步顺序、工步内容、各工步所用的刀具及切削用量等。 表2 典型轴类零件数控加工工艺卡片 单位名称 ××× 产品名称或代号 零件名称 零件图号 ××× 典型轴 ××× 工序号 程序编号 夹具名称 使用设备 车间 001 ××× 三爪卡盘和活动顶尖 TND360数控车床 数控中心 工步号 工步内容 刀具号 刀具规格 / mm 主轴转速 / -1 进给速度 /mm. min -1 背吃刀量 / mm 备注 1 平端面 T02 25×25 500 手动 2 钻中心孔 T01 φ5 950 手动 3 粗车轮廓 T02 25×25 500 200

螺纹车刀切削毕业论文

数控的设计我可以写

你看看我这个行吗,行的话我给发过去;论文开 题 报 告螺纹轴套相配件分析所给零件的金属切削工艺。一、根据零件图样分析,选择合理的工件材料,刀具及其几何参数,量具及机床。二、根据加工工序的划分原则,确定在CK6136数控车床上加工零件,其加工工序的划分应依据零件的具体形状,要求具体分析——先加工套件,后加工轴件。三、工件的装夹方式应遵循工序集中的原则,尽可能在一次装夹中完成所有工序。四、依据对刀点和换刀点的选择原则:按保证零件的加工精度和表面粗糙度,方便数值计算,减少编程工作量,超刀路线尽可能短,减少进退刀时间和其他辅助时间,尽量减少空行程,以利于提高生产率。从而确定对刀点与换刀点。五、切削用量的选择应依据机床的具体状况以及刀具的耐用度,并结合加工实践经验,进行合理选择,以保证有效地进行零件的加工,并能加工出符合零件要求的尺寸精度和形位精度。六、加工程序的编制应符合零件加工误差的控制。七、具体加工工艺分析内容如下:选用设备有CK6136或CK6140选用刀具有93度硬质合金外圆车刀,60度硬质合金螺纹车刀,4mm宽带硬质合金外割槽刀,93度硬质合金内孔镗刀,60度硬质合金内螺纹车刀。选用的量具有0mm-150mm的外径游标卡尺,0mm-25mm的千外径分尺,25mm-50mm的外径千分尺25mm-50mm内径千分尺,M24×2的环规M24×2的塞规。选用的 夹具有三爪自动定心卡盘。选用合理的切削参数:是采用G99每转进给,93度外圆粗加工时选用转速为800转,切削深度为1mm,进给量为每转,精加工时转速为1000转,切削深度为,进给量为每转,内孔镗刀镗内孔时粗加工转速为600转,切削深度为,进给量为每转,精加工时转速为800转,切削深度为,进给量每转,4mm割刀切槽时转速为280转,进给量每转,60度外螺纹刀加工螺纹时代转速为1200转,螺纹导程为F2机床进给倍率为100%,60度内螺纹刀加工内螺纹时的转速为1200转,螺纹导程为F2,机床进给倍率为100%,45度刀切削端面转速为800转,进给速度为。对图纸上一些未知点进行数学计算,本张图纸的未知点,可用勾股定理算出未知点。选用的材料是45号圆钢,可以用YT15的硬质合金刀具对零件进行加工。工件(1)加工工艺为:打开电源,机床通电。开机回零,编辑所要加工的程序,预热机床。下料:锯床下料尺寸Φ40×Φ80夹具三爪自动定心卡盘夹持45号圆钢Φ45的直径,伸出长度为50mm。45端面车刀切削端面,保证基准面。中心转打中心孔,打中心孔时转速为1000转。直径Φ20的麻花钻打底孔,深度为25mm用93度硬质合金内孔镗刀粗镗孔Φ32深10mm用93度硬质合金外圆车刀粗车一端外圆Φ38±至尺寸Φ39长6mm,车Φ36±外圆及端面至尺寸Φ37长35mm。调头夹外圆Φ37,粗车SΦ34外圆为Φ35长35mm.检验各档尺寸夹外圆Φ35,用93度硬质合金外圆车刀精车Φ36± Φ30±各部外圆至尺寸. 用93度硬质合金内孔镗刀精镗孔Φ33 深10 ,Φ29至深度尺寸25±.调头用夹套夹外圆Φ36±,车端面至总长75±,车M24×2至尺寸Φ25长24,等待工件冷却后车Φ38±,车SΦ34 ,M24×2, Φ18±各部至尺寸.使用45端面车刀进行倒角,锐角倒钝.使用加工所需量具对加工精度进行测量,保证所加工出的尺寸精度符合零件图样的技术要求,确保准确无误。

1)零件图工艺分析 该零件表面由圆柱、圆锥、顺圆弧、逆圆弧及螺纹等表面组成。其中多个直径尺寸有较严的尺寸精度和表面粗糙度等要求;球面Sφ50㎜的尺寸公差还兼有控制该球面形状(线轮廓)误差的作用。尺寸标注完整,轮廓描述清楚。零件材料为45钢,无热处理和硬度要求。 通过上述分析,可采用以下几点工艺措施。 ①对图样上给定的几个精度要求较高的尺寸,因其公差数值较小,故编程时不必取平均值,而全部取其基本尺寸即可。 ②在轮廓曲线上,有三处为圆弧,其中两处为既过象限又改变进给方向的轮廓曲线,因此在加工时应进行机械间隙补偿,以保证轮廓曲线的准确性。 ③为便于装夹,坯件左端应预先车出夹持部分(双点画线部分),右端面也应先粗车出并钻好中心孔。毛坯选φ60㎜棒料。 (2)选择设备 根据被加工零件的外形和材料等条件,选用TND360数控车床。 (3)确定零件的定位基准和装夹方式 ①定位基准 确定坯料轴线和左端大端面(设计基准)为定位基准。 ②装夹方法 左端采用三爪自定心卡盘定心夹紧,右端采用活动顶尖支承的装夹方式。 (4)确定加工顺序及进给路线 加工顺序按由粗到精、由近到远(由右到左)的原则确定。即先从右到左进行粗车(留㎜精车余量),然后从右到左进行精车,最后车削螺纹。 TND360数控车床具有粗车循环和车螺纹循环功能,只要正确使用编程指令,机床数控系统就会自动确定其进给路线,因此,该零件的粗车循环和车螺纹循环不需要人为确定其进给路线(但精车的进给路线需要人为确定)。该零件从右到左沿零件表面轮廓精车进给,如图2所示。 图2 精车轮廓进给路线 (5)刀具选择 ①选用φ5㎜中心钻钻削中心孔。 ②粗车及平端面选用900硬质合金右偏刀,为防止副后刀面与工件轮廓干涉(可用作图法检验),副偏角不宜太小,选κ=35 0。 ③精车选用900硬质合金右偏刀,车螺纹选用硬质合金600外螺纹车刀,刀尖圆弧半径应小于轮廓最小圆角半径,取rε=~㎜。 将所选定的刀具参数填入数控加工刀具卡片中(见表1),以便编程和操作管理。 表1 数控加工刀具卡片 产品名称或代号 ××× 零件名称 典型轴 零件图号 ××× 序号 刀具号 刀具规格名称 数量 加工表面 备注 1 T01 φ5中心钻 1 钻φ5 mm中心孔 2 T02 硬质合金90 0 外圆车刀 1 车端面及粗车轮廓 右偏刀 2 T03 硬质合金90 0 外圆车刀 1 精车轮廓 右偏刀 3 T04 硬质合金60 0 外螺纹车刀 1 车螺纹 编制 ××× 审核 ××× 批准 ××× 共页 第页 (6)切削用量选择 ①背吃刀量的选择 轮廓粗车循环时选a p =3 ㎜,精车a p =㎜;螺纹粗车时选a p = ㎜,逐刀减少,精车a p =㎜。 ②主轴转速的选择 车直线和圆弧时,选粗车切削速度v c =90m/min、精车切削速度v c =120m/min,然后利用公式v c =πdn/1000计算主轴转速n(粗车直径D=60 ㎜,精车工件直径取平均值):粗车500r/min、精车1200 r/min。车螺纹时,参照式(5-1)计算主轴转速n =320 r/min. ③进给速度的选择 选择粗车、精车每转进给量,再根据加工的实际情况确定粗车每转进给量为㎜/r,精车每转进给量为㎜/r,最后根据公式v f = nf计算粗车、精车进给速度分别为200 ㎜ /min和180 ㎜/min。 综合前面分析的各项内容,并将其填入表2所示的数控加工工艺卡片。此表是编制加工程序的主要依据和操作人员配合数控程序进行数控加工的指导性文件。主要内容包括:工步顺序、工步内容、各工步所用的刀具及切削用量等。 表2 典型轴类零件数控加工工艺卡片 单位名称 ××× 产品名称或代号 零件名称 零件图号 ××× 典型轴 ××× 工序号 程序编号 夹具名称 使用设备 车间 001 ××× 三爪卡盘和活动顶尖 TND360数控车床 数控中心 工步号 工步内容 刀具号 刀具规格 / mm 主轴转速 / -1 进给速度 /mm. min -1 背吃刀量 / mm 备注 1 平端面 T02 25×25 500 手动 2 钻中心孔 T01 φ5 950 手动 3 粗车轮廓 T02 25×25 500 200

普通车床轴类毕业论文

巧了,我的毕业课题也是轴类的,复合轴刚刚做好毕业设计可以给你参考一下这上面只能发一点,文件大呢。想要的话加我qq250762561 免费提供我的论文给你参考下面给你看看复合轴数控车工艺分析及程序编制目 录前言………………………………………………………………1第一章 绪论………………………………………………………………本文的研究背景及意义………………………………………………… 数控编程技术的历史…………………………………………………… 2数控编程中的加工工艺分析及设计……………………………数控加工工艺…………………………………………………………… 分析零件图…………………………………………………………… 数控加工工艺概念与工艺过程………………………………………… 数控车床加工工艺主要内容…………………………………………… 加工方法选择及加工方案确定…………………………………………… 数控机床的合理选用………………………………………………… 加工方法的选择……………………………………………………… 加工方案设计的原则………………………………………………… 数控加工工艺路线的设计……………………………………………… 数控车削加工零件的工序顺序…………………………………………按零件装夹定位方式划分工序…………………………………………数控车削工序的格工步顺序………………………………………… 数控加工工序与普通加工工序的衔接…………………………………走刀路线的设计…………………………………………………………确定零件夹紧的方法和夹具的选择…………………………………… 工件定位和夹紧方案的确定………………………………………… 12 夹具的选择………………………………………………………… 刀具的选择…………………………………………………………… 切屑用量的确定……………………………………………………… 吃刀量的选择……………………………………………………… 每齿进给量的选择………………………………………………… 主轴转速的确定…………………………………………………… 数控加工工艺文件………………………………………………………16第三章 数控加工工序分析…………………………………………… 分析零件图…………………………………………………………… 数控加工顺序………………………………………………………… 加工用量的选择与确定…………………………………………………14第四章 加工程序编写及主要操作步骤……………………………… GSK980TD简介………………………………………………………… 程序编写的基本步骤和内容…………………………………………… 编写加工程序单…………………………………………………………19结论……………………………………………………………………… 20致谢……………………………………………………………………… 21参考文献………………………………………………………………… 22附录……………………………………………………………………… 23摘 要 :能通过运用机械制造工艺学课程中的基本理论以及在生产实习中学到实践知识,正确的解决一个零件在加工过程中的定位.夹紧以及工艺路线安排.工艺尺寸确定等问题,保证零件的加工质量 学会使用图表资料以及手册,掌握与本本设计有关的各种资料的名称,出处,能够做到熟练运用。因此,它在我们的大学生活中占有重要的地位。就我个人而言,我希望能通过这次课程设计对自己未来从事的工作进行一次适应性训练,从中锻炼自己分析问题,解决问题的能力,为今后参加工作打下一个良好的基础。由于能力有限,设计当中可能会有不足之处,恳请各位老师给予批评指正。关键词:夹具 走刀路线 加工用量Abstract:Can through the utilization machine manufacture technology curriculum in elementary theory as well as in the productive practice middle school to the practice knowledge, a correct solution components in processing process localization. Clamp as well as craft route arrangement. Questions and so on craft size determination, guarantee components processing quality The academic society uses the graph data as well as the handbook, grasps designs the related each kind of material with the notebook the name, the source, can achieve the skilled utilization. Therefore, it holds the important status in ours university life. To my own opinion, I hoped that can the work which will be engaged to own future carry on an adaptability training through this curriculum project, will exercise itself to analyze the question, will solve the question ability, will start the work for the present to build a good foundation. Because ability is limited, middle the design will possibly have the deficiency, will request earnestly fellow teachers to give the criticism to point out Words:Fixture Moving Path Processing amount前言 这次毕业设计,我的设计题目是:数控复合轴加工工艺规程设计。由于设计的需要,我仔细研究了零件图,但在设计过程中,因自己经验不足,遇到了很多实际问题,使我体会到了在现场实习调研仅证明可不可以实干,而不能代表能不能干好。所以我积极与设计指导老师、操作指导老师沟通,在各位老师的全力帮助、指导下问题得到了全面解决,同时受到各位老师优良工作品质的影响,培养出了我缓中求稳、虚心求教、实事求是、一丝不苟的工作作风,并树 立了明确的生产观、经济观和全局观,为今后从事工作打下了良好的基础。通过毕业设计,我真正认识到理论和实践相结合的重要性,并培养了我综合运用所学理论知识和实际操作知识去理性的分析问题和解决实际工作中的一般技术工程问题的能力,使我建立了正确的设计思想,掌握了工艺设计的一般程序、规范和方法,并进一步巩固、深化地吸收和运用了所学的基本理论知识和基本操作技能。还有,它提高了我设计计算、绘图、编写技术文件、编写数控程序、数控机床操作、实际加工零件和正确使用技术资料、标准、手册等工具书的独立工作能力,更培养了我勇于创新的精神及严谨的学风及工作作风。由于本人能力有限,缺少设计经验,设计中漏误在所难免,敬请各位老师指正批评,以使我对自己的不足得到及时的发现并修改,也使我在今后的工作中避免再次出现。在这里,向在这次毕业设计中给予过我鼓励、指导及帮助的每位老师表示我虔诚和衷心的感谢!绪论本文的研究背景及意义:数控加工技术概况: 数字控制简称数控,是近代发展起来的一种自动控制技术,是用数字化信号对机械设备的运动及加工过程进行控制的一种方法,它所控制的一般是位置、角度、速度等机械量,也可以控制温度、压力、流量等物理量。 数控加工具有自动化程度高、加工复杂形状零件的能力、生产准备周期短、加工精度高、质量稳定、生产效率高等优点。 数控机床的加工原理可简要概述为:在数控机床上加工零件时,要是想根据零件的加工图样的要求确定零件的工艺过程、工艺参数和刀具参数,再按规定编写零件数控加工程序,然后通过手动数据输入方式或计算机通信等方式将数控加工程序送到数控系统,在数控系统控制软件的支持下,经过分析处理与计算后发出相应的指令,通过伺服系统使机床按预定的轨迹运动,从而控制机床进行零件的自动加工。 数控加工原理及加工过程: 零件图→阅读零件图→工艺分析→制定工艺→数控编程→程序传输→数控机床 数控编程的内容包括:分析零件图,确定工艺过程;数学处理;编写程序单;制作程序戒指并输入程序信息;程序校验。 数控编程技术的历史目前,世界先进制造技术不断兴起,超高速切削、超精密加工等技术的应用,柔性制造系统的迅速发展和计算机集成系统的不断成熟,对数控加工技术提出了更高的要求。当今数控机床正在朝着以下几个方向发展: 1.高速度、高精度化。速度和精度是数控机床的两个重要指标,它直接关系到加工效率和产品质量。目前,数控系统采用位数、频率更高的处理器,以提高系统的基本运算速度。同时,采用超大规模的集成电路和多微处理器结构,以提高系统的数据处理能力,即提高插补运算的速度和精度,并采用直线电动机直接驱动机床工作台的直线伺服进给方式,其高速度和动态响应特性相当优越。采用前馈控制技术,使追踪滞后误差大大减小,从而改善拐角切削的加工精度。 为适应超高速加工的要求,数控机床采用主轴电动机与机床主轴合二为一的结构形式,实现了变频电动机与机床主轴一体化,主轴电机的轴承采用磁浮轴承、液体动静压轴承或陶瓷滚动轴承等形式。目前,陶瓷刀具和金刚石涂层刀具已开始得到应用。 2.多功能化。配有自动换刀机构(刀库容量可达100把以上)的各类加工中心,能在同一台机床上同时实现铣削、镗削、钻削、车削、铰孔、扩孔、攻螺纹等多种工序加工,现代数控机床还采用了多主轴、多面体切削,即同时对一个零件的不同部位进行不同方式的切削加工。数控系统由于采用了多cpu结构和分级中断控制方式,即可在一台机床上同时进行零件加工和程序编制,实现所谓的“前台加工,后台编辑”。为了适应柔性制造系统和计算机集成系统的要求,数控系统具有远距离串行接口,甚至可以联网,实现数控机床之间的数据通信,也可以直接对多台数控机床进行控制。 3.智能化。现代数控机床将引进自适应控制技术,根据切削条件的变化,自动调节工作参数,使加工过程中能保持最佳工作状态,从而得到较高的加工精度和较小的表面粗糙度,同时也能提高刀具的使用寿命和设备的生产效率。具有自诊断、自修复功能,在整个工作状态中,系统随时对cnc系统本身以及与其相连的各种设备进行自诊断、检查。一旦出现故障时,立即采用停机等措施,并进行故障报警,提示发生故障的部位、原因等。还可以自动使故障模块脱机,而接通备用模块,以确保无人化工作环境的要求。为实现更高的故障诊断要求,其发展趋势是采用人工智能专家诊断系统。 4.数控编程自动化。随着计算机应用技术的发展,目前cad/cam图形交互式自动编程已得到较多的应用,是数控技术发展的新趋势。它是利用cad绘制的零件加工图样,再经计算机内的刀具轨迹数据进行计算和后置处理,从而自动生成nc零件加工程序,以实现cad与cam的集成。随着cims技术的发展,当前又出现了cad/capp/cam集成的全自动编程方式,它与cad/cam系统编程的最大区别是其编程所需的加工工艺参数不必由人工参与,直接从系统内的capp数据库获得。 5.可靠性最大化。数控机床的可靠性一直是用户最关心的主要指标。数控系统将采用更高集成度的电路芯片,利用大规模或超大规模的专用及混合式集成电路,以减少元器件的数量,来提高可靠性。通过硬件功能软件化,以适应各种控制功能的要求,同时采用硬件结构机床本体的模块化、标准化和通用化及系列化,使得既提高硬件生产批量,又便于组织生产和质量把关。还通过自动运行启动诊断、在线诊断、离线诊断等多种诊断程序,实现对系统内硬件、软件和各种外部设备进行故障诊断和报警。利用报警提示,及时排除故障;利用容错技术,对重要部件采用“冗余”设计,以实现故障自恢复;利用各种测试、监控技术,当生产超程、刀损、干扰、断电等各种意外时,自动进行相应的保护。 6.控制系统小型化。数控系统小型化便于将机、电装置结合为一体。目前主要采用超大规模集成元件、多层印刷电路板,采用三维安装方法,使电子元器件得以高密度安装,较大规模缩小系统的占有空间。而利用新型的彩色液晶薄型显示器替代传统的阴极射线管,将使数控操作系统进一步小型化。这样可以方便地将它安装在机床设备上,更便于对数控机床的操作使用。第二章数控编程中的加工工艺分析及设数控加工工艺分析零件图1. 零件的完整性和正确性的分析 本次我们要分析的轴类零件是一根复合轴,复合轴为典型的轴类零件,生产规模为小批量加工,零件的轨迹比较复杂,必须保证曲面轴零件的尺寸精度。可以看出这根轴是由M30的螺纹;φ25长为5mm的槽,及1:10的锥度组合而成的外圆结构,在轴的右端还有深30的φ25的内孔。从整体的机构来看轴的轮廓是完整的,而且从尺寸的标准到表面粗糙度的标准都比较完整,而且整体看起来这根轴没有什么结构上的缺陷,精度的要求和粗糙度的要求也比较合理,符合轴和孔之间的配合。 总体看起来轴之间的结构是正确的,每一段螺纹后都加工了退刀槽,圆弧的大小也合适,没有超过车刀的要求;还有就是内孔的大小也比较合理,不过大也不过小。如果是内孔的直径过大那么左端的锥度的外圆柱段的壁厚就显得比较小,这时我们在数控车上加工起来就比较的困难,还要考虑更多的问题来保证轴的精度,因而我们的夹紧也就成了一个大的问题,但是在这里没有出现,也就说明作为典型的轴类零件的加工在数控车上加工的正确性,而且这根轴的表面粗糙度的要求也不高,通过精车基本上都能达到,也体现出了数控技术的精度高的特点。2.零件材料的分析 工程材料,特别是钢铁,是现代工业、农业、国防及科学技术等部门使用最广泛的材料。工程材料之所以能获得如此广泛的应用,不仅由于它的来源广泛,而且还由于它具有优良的性能。钢铁材料,又称黑色金属材料,它是可以用于制造机械构件和工具的铁基合金。可分为刚和铸铁两大类,其主要区别在于含碳量的不同。钢的含碳量低于,铸铁的含碳量则在以上。 钢的韧性、塑性较好,强度较高。常以热锻、轧制等方法成形。强度要求较高、形状较复杂的零件可用铸钢。 由于钢的强度、硬度、塑性、等综合力学性能较好,因此一般用于制作承受拉、压、弯曲、剪切、扭转等载荷的构件,如钢筋、齿轮轴。3.零件精度的分析 零件的加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数相符合的程度。符合程度越高则加工精度就越高。实际加工不可能做得与理想零件完全一致,总会有大小不同的偏差,零件加工后的实际几何参数对理想几何参数的偏离程度,称为加工误差。 由于在加工过程中有很多因素影响加工精度,所以同一种加工方法在不同的工作条件下所能达到的精度是不同的。任何一种加工方法,只要精心操作,细心调整,并选用合适的切削参数进行加工,都能使加工精度得到较大的提高,但这样会降低生产率,增加加工成本。由机床、夹具、刀具和工件组成的机械加工工艺系统(简称工艺系统)会有各种各样的误差产生,这些误差在各种不同的具体工作条件下都会以各种不同的方式(或扩大、或缩小)反映为工件的加工误差。 工艺系统的原始误差主要有工艺系统的几何误差、定位误差、工艺系统的受力变形引起的加工误差、工艺系统的受热变形引起的加工误差、工件内应力重新分布引起的变形以及原理误差、调整误差、测量误差等。这些都会影响到零件的加工精度。图1-2-1是各种加工方法得到的加工精度 图1-3-1 如图1-3-2就是我们本次要加工的轴:在这次的数控车削加工中,零件重要的径向加工部位有:φ40圆柱段,φ521圆柱孔,φ50 0圆柱孔,φ35圆柱沟槽。零件其他径向加工部位相对容易加工。零件的轴向加工部位:零件左端φ40圆柱段的轴向长度为25,.零件右端φ25圆柱孔的轴向长度为300mm,由上述尺寸可以确定零件的轴向尺寸应该以零件左端面为基准,这样才能保证零件的加工精度要求,零件其轴向加工部位要求较低。 图1-3-24、表面粗糙度的分析 表面粗糙度反映的是零件加工表面的微观几何形状误差,及、即指加工表面所具有的较小间距和微小峰谷不平度。它不同于宏观几何形状,也不同于表面波度。主要由加工过程中刀具和零件表面的摩擦、切削分离时表面金属层塑性变形及工艺系统变频振动等原因而形成。 表面粗糙度是衡量零件表面质量的重要指标。表面粗糙度越小,表面就越光滑;表面粗糙度越大,表面就越粗糙。 表面粗糙度大小, 对机械零件的使用性能有很大的影响。主要表现在对零件的耐磨性、配合性质的稳定性、抗腐蚀性、密封性、疲劳强度、外观质量等方面的影响。我国执行的表面粗糙度国家标准有三个: GB/T3505—2000 《表面粗糙度 术语 表面及参数》 GB/T1031—1995 《表面粗糙度 参数及其数值》 GB/T131—1993 《机械制图 表面粗糙度符号、代号及其注法》 附图(机械制造基础81页) 在这里我参考的是国标GB/T131—1993,由图1-3-2可以知道这根复合轴表面粗糙度的要求不是很高,M30的螺纹的表面粗糙值为;φ36+ 的槽表面、φ500 长度为5mm的左端面、以及φ52+ 、φ25+ 0的内孔表面的表面粗糙度值为;这些的粗糙度的要求都不是很高,可以通过精加工和半精加工得到,R10 ,R20长度为15mm的圆弧段表面、及左端的圆锥的表面粗糙度。的精度可以通过精车之后再通过磨削可以得到。其他未注的粗糙度为也是通过半精车可以达到。 数控加工工艺概念与工艺过程1.数控加工工艺概念 是采用数控机床加工零件时所运用各种方法和技术手段的总和,应用于整个数控加工工艺过程。数控加工工艺是伴随着数控机床的产生、发展而逐步完善起来的一种应用技术,它是人们大量数控加工实践的经验总结。2.数控加工工艺过程 是利用切削工具在数控机床上直接改变加工对象的形状、尺寸、表面位置、表面状态等,使其成为成品或半成品的过程。 数控车床加工工艺的主要内容4 机械加工工艺卡 产品型号 零件图号 4 共1页 产品名称 零件名称 复合轴 第1页 车间 工序号 工序名称 材料牌号 5 车 45 毛坯种类 毛坯外形尺寸 每毛坯可制件数 每台件数 45号钢 1 1 设备名称 设备型号GSK980TD 设备编号 同时加工数 数控车床 GSK980TD 1工步号 工步内容 工艺设备 主轴转速/(r/min) 切削速度/(m/min) 进给量/(mm/r) 背吃刀量/mm 进给次数1 调头、精车零件左端外圆成型 800r/min F=100 2 32 车削M30的螺纹,加工后零件达到图纸的 要求。 800r/min F=100 3 车B=5mm的槽 400r/min F=40 4 倒角 600r/min 设计日期 审核日期 会签日期 标记 处数 更改文件号 签字 汤伟建 日期 在生产实际中,大部分的零件的数控加工,往往仍然需要以混合工艺的形式来进行工艺编制。本次加工零件的工艺内容如下:1.零件左、右端打B型中心孔.目的是为数控车削加工工序提供可靠的装夹工艺基准 。2. 用三爪自动定心卡盘装夹零件,采用一夹一顶进行装夹定位,数控粗车加工零件右端外形以及倒角1×45°,加工后的零件各部尺寸留下精加工的余量。3. 零件调头后用三爪自动定心卡盘装夹零件,采用一夹不顶进行装夹定位,先用φ8、φ25的钻头手动加工φ25的孔,然后数控粗车加工零件左端内、外形以及倒角1×45°,加工后的零件各部分尺寸留下精加工的余量。4. 精车、零件右端B型中心孔,为精车加工提供可靠的定位基准。5. 用三爪自动定心卡盘装夹零件,数控精车加工零件内形以及倒角1×45°与内孔空刀槽,加工后的零件各部尺寸达到图纸技术的要求。6. 用双顶尖一鸡心夹装夹零件,数控精车加工零件左端外形以及倒角1×45°与空刀槽,加工后的零件各部尺寸。7. 零件调头后用一夹一顶的方式夹紧定位好零件,数控精车加工零件右端外形,并进行B=5mm的切槽加工,加工后零件各部尺寸达到图纸的要求。加工方法选择及加工方案确定数控机床的合理选用 本次加工的零件较为简单,因为在学校期间实习过,所以选择广数GSK980TD数控车床。操作简单易掌握!加工方法的选择 一种加工方法能够保证的加工精度有一个相当大的范围,但如果要求它保证的加工精度过高,需要采取的一些特殊的工艺措施,将使加工成本随之增大。同样理由,作为一种加工方法,有加工经济表面粗糙度的概念。每一种加工方法都有一个加工精度的范围,例如在普通车床上加工外圆,所能获得尺寸的加工经济精度为:IT8~IT9级,加工经济表面粗糙度为:Ra>μm。普通外圆磨床磨削外圆,尺寸的加工经济精度为:IT5~IT6 级,加工经济表面粗糙度Ra>μm.各种的加工方法到达的加工经济精度和加工经济表面粗糙度都可以查阅各种金属切削加工工艺手册。 机械零件都是一些简单的几何表面如外圆、孔、平面等组合而成的,因此的零件的工艺路线的就是这些表面加工路线的恰当的组合。表3-2-1、表3-2-2是外圆柱、孔的典型加工路线。 可以通过对我们这次加工的轴的分析和上表的参考,来选择我们我们零件的加工路线。由前面对轴精度和表面粗糙度的分析,知道这根轴的精度和表面粗糙度的要求都不是很高,最高的表面粗糙度值也是,如果是我们所使用的数控车精度比较高的话,精车也就可以达到了。 ⑴外圆加工方法:粗车—半精车—精车。它能达到的公差等级为IT7~IT8,表面粗糙度也能达到~μm。完全复合零件的加工要求。 ⑵内孔的加工方法:钻—粗车—半精车,它能达到的公差等级是IT10~IT8,粗糙度 ~μm,而我们此次加工的零件的内孔的表面粗糙度的值Ra ,内圆的公差最小的也有,所以这样的的加工方法也能到达我们的要求。 ⑶端面的加工方法:粗车。端面一边是用来做基准的,因此在端面没有作具体的要求的时候我们一般只是采用粗车的方法来加工。在这里我们只采用粗车的原因主要是,我们通过粗车端面作为我们打B型中心孔的基准,然后再以B型的中心孔作为精基准来加工其他的表面。加工方案设计的原则 本次零件加工的原则是,以达到图纸规定的要求为基础,一步步来 确保零件尺寸和图纸规定的相符。数控加工工艺路线的设计 数控车削加工零件的工序顺序 在轴的数控加工中,分为粗车加工和精车加工二次切削进行,起工序如下:粗车加工Ⅰ:使用外圆车刀车削加工零件右端各部外圆与所在端面。工件各部位均留精车余量。粗车加工Ⅱ:零件调头重新安装装夹定位后,先用φ8、φ25的钻头手动加工φ24的孔,再使用外圆车刀、内孔精镗刀。车削加工端各部内型型面与所在端面达到要求零件左端各部内、外圆型面与所在的端面,零件各部均留精车余量。精车加工Ⅰ:使用内孔镗刀精车加工零件右。精车加工Ⅱ:使用外圆精车车刀、切槽车刀,精车加工左端各部外圆型面与所在端面达到要求。零件调头重新安装装夹定位后,使用外圆精车车刀、切槽刀、螺纹刀车削加工零件右端各部外圆型面与所在端面达到精车的要求。 按零件装夹定位方式划分工序 三抓卡盘夹住左端,先粗加工右端外圆,然后精加工右端外圆及螺纹 三抓卡盘夹住右端,先粗加工左端外形面,然后换精加工,达到图纸要求。 换镗刀,镗孔右端内形。数控车削工序的各工步顺序数控加工工序卡1 机械加工工序卡 产品型号 零件图号 1 共1页 产品名称 零件名称 复合轴 第1页 车间 工序号 工序名称 材料牌号 1 车、钻 毛坯种类 毛坯外形尺寸 每毛坯可制件数 每台件数 45号钢 Φ60×150 1 1 设备名称 设备型号 GSK980TD 设备编号 同时加工数 数控车床 GSK980TD 1工步号 工步内容 工艺设备 主轴转速/(r/min) 切削速度/(m/min) 进给量/(mm/r) 背吃刀量/mm 进给次数1 车右端面 T1 600 120 1 2 左、右两端钻B形中心孔 φ钻头 600 120 设计日期 审核日期 会签日期 标记 处数 更改文件号 签字 日期 2 机械加工工序卡 产品型号 零件图号 2 共1页 产品名称 零件名称 复合轴 第1页 车间 工序号 工序名称 材料牌号 2 车 45 毛坯种类 毛坯外形尺寸 每毛坯可制件数 每台件数 45号钢 Φ60×150 1 1 设备名称 设备型号 设备编号 同时加工数 数控车床 GSK980TD 1工步号 工步内容 工艺设备 主轴转速/(r/min) 切削速度/(m/min

我的百度空间

数控机床诊断维修方法经验浅述X 摘 要:本文就近几年来在对进口数控设备的维护中,逐渐学习并掌握了CNC 系统的一些故障规 律和快速诊断方法进行了整理。意在使其更好地为数控设备的使用与维修服务提供借鉴。 关键词:数控机床;诊断维修;方法 随着发达国家先进技术和装备的不断引进,使 我们设备维护人员的维修难度越来越大,这是不可 否认的事实。但怎样尽快适应和掌握它,是我们应 该认真探讨并急需解决的课题,下面就自己多年的 维修经验谈一点个人体会。 笔者近年引进的日立精机VA 一65 和HC 一 800 两台加工中心,不但具有交流伺服拖动、四轴联 动功能,而且还配有磁栅全闭环位置反馈及自动测 量、自动切削监视系统,其CNC 是当时国际上最先 进的FANUC 一11M 系统。运行11 年来,虽然随 着使用年限的增长,一些元器件的老化、故障期的到 来,特别是加工任务的增多,设备每天24h 不停机的 运转,出现了几乎每周都有故障报警的现象。但为 保证任务的按期完成,我们在没有经过国内外培训 且图纸资料不全的条件下,在无数次的维修测试中, 认真分析故障规律,不断积累有关数据,逐渐掌握维 修要领,尽量在最短的时间内查出故障点,用最快的 速度修复调整完成。以下从几方面论述快速诊断和 维修数控设备的方法: 1 先观察问询再动手处置 首先看报警信息,因为现在大多数CNC 系统都 有较完善的自诊断功能,通过提示信息可以马上知 道故障区域,缩小检测范围。像一次HC 一800 卧 式加工中心在运行中出现5010 # spindle drive unit alarm 报警。我们根据提示信息马上按顺序检查了 主轴电机及其执行元件、主轴控制板,查明过流断路 点后恢复正常,仅用20min 完成。但从我们的经验 中也有受报警信息误导的例子,因此说可依据它但 不能依赖它。 故障发生后如无报警信息,则需要进一步用感 官来了解设备状态,最重要的就是向操作人员问询 故障发生的前因后果。同样是该设备,有一次其 APC 系统在防护罩没有打开情况下B 轴突然旋转 起来刮坏护罩,这一现象以前从未出现过。经我们 现场仔细询问操作过程,清楚了故障经过:原来操作 人员先输入了M60 指令,使_bPm_�APC 系统程序运行(更 换旋转工作台) ,当执行元件失控中途停机后,又进 行了手动状态下的单步指令操作。当时M60 并没 有删除,使其执行元件恢复正常后继续了原程序动 作。经认真了解并仔细分析后,我们立刻清除所有 原设定的指令,检测并更换了失控元件,避免了更大 故障的发生。根据报警信息和故障前的设备状态, 来判断故障区域,争取维修时间。 2 遵循由外到里,由浅入深的检修原则 笔者对加工中心多年的维修经历来看,大多数 故障根源都是来自于外部元器件,因其受外界因素 影响较大,象机械碰撞磨损、冷却液腐蚀、积尘过多、 润滑不良等,使这些年久失修的元器件处于不完好、 不可靠状态,成为设备故障的最大隐患。像各轴经 常出现的超程报警、零点复归误差、位置信号不反馈 等,都是一些磁性或机械式开关失灵造成。还有的 故障也是出现在电磁阀、电机和经常伸缩的电缆上。 像HC 一800 的一次B 轴旋转不到位或有时根本不 旋转故障,报警提示为: feed axis fault (APC com2 mand) ,看起来与命令有关。但我们根据故障现象 还是果断地检查B 轴各行程限位,果然有一撞块与 开关接触不好,经调整后正常。这就避免无目标地 消耗很大精力去查整个CNC 系统,先把重点放在外 部环节上。 这实际上是一种经验上的诊断,如果我们手里 有原理接线图,那就应该正规地按图纸去相应对照, 顺序查找并针对性的去测试电位和波形,还能从中 悟出一些理论上的东西。正是因为没有这个条件, 所以我们在维修中就是遵循从外部到内部、从人为 到系统、由浅入深的原则去进行,这就大大缩短了设 备的停修时间。 3 充分利用PC 图查找故障点 根据报警信息调出与其相关的PC 图进行分析 核对,也是一种诊断的方便途径。一次VA 一65 自 动换刀机械手到位后不执行抓刀指令,我们马上调 出PC 图从各指令开关信号到各进、退、松、紧动作 信号逐一进行对应校验,最后查出机械手旋转到信 号没有发出,原因是由于一磁性接近开关松动移后 不起作用,使下一步抓刀动作无法进行,调整后恢复 正常。 由PC 图查故障点看来比较方便直观,但如果 不了解其内部动作原理和工作程序,那可以说也是 大海捞针,无从下手。特别是无电气原理图就更难 以判断,每个输出动作多达几十个开关条件才能满 足,确实要下很大工夫才能逐步认识并掌握。我们 就是靠平时维修时的日积月累,在不断的了解和运 用它。 4 疑难故障的检测分析和快捷处理 此两台加工中心的一些元器件年久老化,使其参数随温度 或电流的变化而极不稳定,造成故障后能自动恢复 即时好时坏现象,这是我们最为之挠头的故障。因 为搞维修的都知道,元件坏了容易检测,而不正常的 通断情况则很难判断是元件坏了还是线路接触不良 造成,因为无法进行正常的信号检测。如B 轴工作 台换位;刀库进刀口自动打开;B 轴台板夹紧、松开 失灵等故障,其执行元件均是固态继电器接受指令 信号接通后带动电磁阀动作。当检测时可能未见异 常,启动后又可能一切正常,待连续动作几次后又停 机报警。我们根据故障现象及反复周期判定应该是 执行元件性能下降造成,因图纸不详、标识不清,只 能将关联的一组执行元件在正常和异常的情况下分 别进行检测,经反复测试后,最后从30 多只继电元 件中分别查出并更换了其性能下降的元件。 一次HC 一800 B 轴原点复归失控,指令发出 后旋转不停,没有报警信息。经现场了解分析,首先 认定应该是B 轴零点检测系统故障,而该系统是由 一只磁性接近开关发出到位信号后控制执行元件减 速停车。我们马上对这一信号进行线路测试,结果 无信号发出,人为设定一个到位信号则准确复归停 车,确认检测开关到设定信号点这一段有故障。但 如果想直接检测接近开关则必须将B 轴和与其关 联的调轴解体,因为此开关装在B 轴工作台体内。 这样的大结构拆修以前从未干过,测算一下工作量 需半个月时间,而且还要特别精心地对十多根控制 电缆和几十根油管拆除和恢复,这就很难保证拆装 后各部分的精度,但要想解决问题还必须露出这一 开关进行检测和维修。能否用一个简便的方法既能 节省拆装工作量又能拿出这一检测开关,经反复论 证后终于想出一个只拆B 轴端盖和调轴磁尺支架 拿出此开关的方法。虽然电气维修人员拆装、检测 难度很大,但保证了台面不大解体,把后患影响减小 到了最低限度。经实际测试开关、处理断路点原位 安装后恢复了B 轴复归功能,又对拆装后影响到的 调轴位置误差和B 轴定位故障进行了补偿和调整, 一切正常后仅用三天时间即交付使用,保证了试制 加工任务的完成。 5 结语 总之,在处理故障过程中怎样尽快打开思路、进 入状态,缩小检测范围,直触故障根源是维修技术人 员水平高低的关键所在。看似简单的道理却饱含着 方方面面,也是维修人员多年辛勤劳动的结晶。我 们就是在这种高频率故障的压力下,克服了重重困 难,尽力在短时间内解决问题,减少设备停歇台时, 为车型试制做出了我们应有的贡献。 [参考文献] [1 ] 李亚芹,龙泽明,韩阳阳. 数控机床爬行问题的 分析与研究[J ] . 组合机床与自动化加工技术, 2006 , (10) :76~78. [2 ] 卓迪仕. 数控技术及应用[M] . 北京:国防工出 版社,1997.

相关百科

热门百科

首页
发表服务