首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

细胞凋亡机制的研究和意义论文

发布时间:

细胞凋亡机制的研究和意义论文

提高新陈代谢能力、促进全球物质循环、保持循环系统的稳定。

细胞凋亡的过程大致可分为以下几个阶段: 接受凋亡信号→凋亡调控分子间的相互作用→蛋白水解酶的活化(Caspase)→进入连续反应过程 1.凋亡的启动阶段细胞凋亡的启动是细胞在感受到相应的信号刺激后胞内一系列控制开关的开启或关闭,不同的外界因素启动凋亡的方式不同,所引起的信号转导也不相同,客观上说对细胞凋亡过程中信号传递系统的认识还是不全面的,目前比较清楚的通路主要有: 1)细胞凋亡的膜受体通路:各种外界因素是细胞凋亡的启动剂,它们可以通过不同的信号传递系统传递凋亡信号,引起细胞凋亡,我们以Fas -FasL为例: Fas是一种跨膜蛋白,属于肿瘤坏死因子受体超家族成员,它与FasL结合可以启动凋亡信号的转导引起细胞凋亡。它的活化包括一系列步骤:首先配体诱导受体三聚体化,然后在细胞膜上形成凋亡诱导复合物,这个复合物中包括带有死亡结构域的Fas相关蛋白FADD。Fas又称CD95,是由325个氨基酸组成的受体分子,Fas一旦和配体FasL结合,可通过Fas分子启动致死性信号转导,最终引起细胞一系列特征性变化,使细胞死亡。Fas作为一种普遍表达的受体分子,可出现于多种细胞表面,但FasL的表达却有其特点,通常只出现于活化的T细胞和NK细胞,因而已被活化的杀伤性免疫细胞,往往能够最有效地以凋亡途径置靶细胞于死地。Fas分子胞内段带有特殊的死亡结构域(DD,death domain)。三聚化的Fas和FasL结合后,使三个Fas分子的死亡结构域相聚成簇,吸引了胞浆中另一种带有相同死亡结构域的蛋白FADD。FADD是死亡信号转录中的一个连接蛋白,它由两部分组成:C端(DD结构域)和N端(DED)部分。DD结构域负责和Fas分子胞内段上的DD结构域结合,该蛋白再以DED连接另一个带有DED的后续成分,由此引起N段DED随即与无活性的半胱氨酸蛋白酶8(caspase8)酶原发生同嗜性交联,聚合多个caspase8的分子,caspase8分子逐由单链酶原转成有活性的双链蛋白,进而引起随后的级联反应,即Caspases,后者作为酶原而被激活,引起下面的级联反应。细胞发生凋亡。因而TNF诱导的细胞凋亡途径与此类似 2)细胞色素C释放和Caspases激活的生物化学途经 线粒体是细胞生命活动控制中心,它不仅是细胞呼吸链和氧化磷酸化的中心,而且是细胞凋亡调控中心。实验表明了细胞色素C从线粒体释放是细胞凋亡的关键步骤。释放到细胞浆的细胞色素C在dATP存在的条件下能与凋亡相关因子1(Apaf-1)结合,使其形成多聚体,并促使caspase-9与其结合形成凋亡小体,caspase-9被激活,被激活的caspase-9能激活其它的caspase如caspase-3等,从而诱导细胞凋亡。此外,线粒体还释放凋亡诱导因子,如AIF,参与激活caspase。可见,细胞凋亡小体的相关组份存在于正常细胞的不同部位。促凋亡因子能诱导细胞色素C释放和凋亡小体的形成。很显然,细胞色素C从线粒体释放的调节是细胞凋亡分子机理研究的关键问题。多数凋亡刺激因子通过线粒体激活细胞凋亡途经。有人认为受体介导的凋亡途经也有细胞色素C从线粒体的释放。如对Fas应答的细胞中,一类细胞(type1)中含有足够的胱解酶8 (caspase8)可被死亡受体活化从而导致细胞凋亡。在这类细胞中高表达Bcl-2并不能抑制Fas诱导的细胞凋亡。在另一类细胞(type2)如肝细胞中,Fas受体介导的胱解酶8活化不能达到很高的水平。因此这类细胞中的凋亡信号需要借助凋亡的线粒体途经来放大,而Bid -- 一种仅含有BH3结构域的Bcl-2家族蛋白是将凋亡信号从胱解酶8向线粒体传递的信使。 2.凋亡的执行尽管凋亡过程的详细机制尚不完全清楚,但是已经确定Caspase即半胱天冬蛋白酶在凋亡过程中是起着必不可少的作用,细胞凋亡的过程实际上是Caspase不可逆有限水解底物的级联放大反应过程,到目前为止,至少已有14种Caspase被发现,Caspase分子间的同源性很高,结构相似,都是半胱氨酸家族蛋白酶,根据功能可把Caspase基本分为二类:一类参与细胞的加工,如Pro-IL-1β和Pro-IL-1δ,形成有活性的IL-1β和IL-1δ;第二类参与细胞凋亡,包括caspase2,3,6,7,8,9.10。Caspase家族一般具有以下特征: 1)C端同源区存在半胱氨酸激活位点,此激活位点结构域为QACR/QG。 2)通常以酶原的形式存在,相对分子质量29000-49000(29-49KD),在受到激活后其内部保守的天冬氨酸残基经水解形成大(P20)小(P10)两个亚单位,并进而形成两两组成的有活性的四聚体,其中,每个P20/P10异二聚体可来源于同一前体分子也可来源于两个不同的前体分子。 3)末端具有一个小的或大的原结构域。 参与诱导凋亡的Caspase分成两大类:启动酶(inititaor)和效应酶(effector)它们分别在死亡信号转导的上游和下游发挥作用。 Caspase活化机制Caspase的活化是有顺序的多步水解的过程,Caspase分子各异,但是它们活化的过程相似。首先在caspase前体的N-端前肽和大亚基之间的特定位点被水解去除N-端前肽,然后再在大小亚基之间切割释放大小亚基,由大亚基和小亚基组成异源二聚体,再由两个二聚体形成有活性的四聚体。去除N-端前肽是Caspase的活化的第一步,也是必须的,但是Caspase-9的活化不需要去除N-端前肽,Caspase活化基本有两种机制,即同源活化和异源活化,这两种活化方式密切相关,一般来说后者是前者的结果,发生同源活化的Caspase又被称为启动caspase(initiator caspase),包括caspase-8,-10,-9,诱导凋亡后,起始Caspase通过adaptor被募集到特定的起始活化复合体,形成同源二聚体构像改变,导致同源分子之间的酶切而自身活化,通常caspase-8,10,2介导死亡受体通路的细胞凋亡,分别被募集到Fas和TNFR1死亡受体复合物,而Caspase-9参与线粒体通路的细胞凋亡,则被募集到Cyt c/d ATP/Apaf-1组成的凋亡体(apoptosome)。同源活化是细胞凋亡过程中最早发生的capases水解活化事件,启动Caspase活化后,即开启细胞内的死亡程序,通过异源活化方式水解下游Caspase将凋亡信号放大,同时将死亡信号向下传递。异源活化(hetero-activation)即由一种caspase活化另一种caspase是凋亡蛋白酶的酶原被活化的经典途径。被异源活化的Caspase又称为执行caspase(executioner caspase),包括Caspase-3,-6,-7。执行Caspase不象启动Caspase ,不能被募集到或结合起始活化复合体,它们必须依赖启动Caspase才能活化。 Caspase的效应机制凋亡细胞的特征性表现,包括DNA裂解为200bp左右的片段,染色质浓缩,细胞膜活化,细胞皱缩,最后形成由细胞膜包裹的凋亡小体,然后,这些凋亡小体被其他细胞所吞噬,这一过程大约经历30-60分钟,Caspase引起上述细胞凋亡相关变化的全过程尚不完全清楚,但至少包括以下三种机制: 1.凋亡抑制物正常活细胞因为核酸酶处于无活性状态,而不出现DNA断裂,这是由于核酸酶和抑制物结合在一起,如果抑制物被破坏,核酸酶即可激活,引起DNA片段化(fragmentation)。现知caspase可以裂解这种抑制物而激活核酸酶,因而把这种酶称为Caspase激活的脱氧核糖核酸酶(caspase-activated deoxyribonulease CAD),而把它的抑制物称为ICAD。因而,在正常情况下, CAD不显示活性是因为CAD-ICAD,以一种无活性的复合物形式存在。ICAD一旦被Caspase水解,即赋予CAD以核酸酶活性,DNA片段化即产生,有意义的是CAD只在ICAD存在时才能合成并显示活性,提示CAD-ICAD以一种共转录方式存在,因而ICAD对CAD的活化与抑制却是必需要的。 2.破坏细胞结构Caspase可直接破坏细胞结构,如裂解核纤层,核纤层(Lamina)是由核纤层蛋白通过聚合作用而连成头尾相接的多聚体,由此形成核膜的骨架结构,使染色质(chromatin)得以形成并进行正常的排列。在细胞发生凋亡时,核纤层蛋白作为底物被Caspase在一个近中部的固定部位所裂解,从而使核纤层蛋白崩解,导致细胞染色质的固缩。 3.调节蛋白丧失功能Caspase可作用于几种与细胞骨架调节有关的酶或蛋白,改变细胞结构。其中包括凝胶原蛋白(gelsin)、聚合粘附激酶(focal adhesion kinase,FAK)、P21活化激酶α(PAKα)等。这些蛋白的裂解导致其活性下降。如Caspase可裂解凝胶原蛋白而产生片段,使之不能通过肌动蛋白(actin)纤维来调节细胞骨架。 除此之外,Caspase还能灭活或下调与DNA修复有关的酶、mRNA剪切蛋白和DNA交联蛋白。由于DNA的作用,这些蛋白功能被抑制,使细胞的增殖与复制受阻并发生凋亡。 所有这些都表明Caspase以一种有条不紊的方式进行"破坏",它们切断细胞与周围的联系,拆散细胞骨架,阻断细胞DNA复制和修复,干扰mRNA剪切,损伤DNA与核结构,诱导细胞表达可被其他的细胞吞噬的信号,并进一步使之降解为凋亡小体。

答:1..保存内环境的稳定。2.免疫的需要:部分老的淋巴细胞凋亡,为新生免疫细胞创造下更大的生存空间,提高抗病能力。3.发育的需要:比如蝌蚪在向青蛙的转变过程中其尾部细胞凋亡。4.减少不必要的能耗和空间,为细胞的更新换代做准备。无论在发育期还是在成人体内,既有大量的新细胞产生,也有大量的旧细胞死亡,这是生物体的一种自然现象.为了维持机体组织中适宜的细胞数量,在细胞分裂和细胞死亡之间需要一种精确的动态平衡.由于这种生成与死亡的有序流程,在胚胎和成人期便维持着人体组织的适宜细胞数量.而这种精密地控制细胞的消亡过程就称为程序性细胞死亡.正常的生命需要细胞分裂以产生新细胞,并且也要有细胞的死亡,由此人体和生物的器官才得以维持平衡.研究意义 细胞凋亡也帮助我们理解一些病毒和细菌侵袭人体细胞的机理.除了 A IDS,另外一些疾病,如神经变性性疾病、中风、心肌梗塞和自身免疫疾病等都是由于很多正常细胞被不正确地启动了程序性死亡过程而造成细胞过量死亡.有关系,举例如下:比如神经细胞, 寿命很长, 因为它们是神经元传递兴奋的,比如精子, 寿命很短,因为它们仅仅是为了和卵子进行结合比如红细胞, 寿命比较短,因为它们只是携带氧气而已.2:意义:参与体内细胞数量的调节,并清除体内无功能的细胞、对机体有害的细胞、突变的细胞以及受损伤后不能存活的细胞,并在发育和机体的稳态调节中发挥重要的作用

细胞凋亡的速率与它们的功能是有关系的。

细胞凋亡检测论文

应该就是细胞自主的,有序的发生死亡,而且就是自然老死的情况,并且也是一个主动的过程,等等,这些都是细胞凋亡的原理。

指的就是维持内环境稳定,由基因控制的细胞自主有序的死亡,和细胞坏死有很大的不一样,在这个过程中是可以由基因自己去进行控制,所以对于身体没有太大的损伤。

细胞凋亡是一种正常的基因程序性细胞死亡,其中老化细胞在其生命周期结束时收缩,其剩余片段被吞噬而没有任何炎症反应。

1972 年,Kerr、Wyllie 和 Currie 在一篇论文中首次引入了细胞凋亡这一术语,以描述一种形态上不同的细胞死亡类型。它由一系列导致细胞形态变化或死亡的生化变化组成。它导致普通成年人每天有 50 到 700 亿个细胞死亡。它也被称为“细胞自杀”,因为细胞经历了一个高度调控的过程,以程序化地从体内去除细胞。作为细胞周期的一部分,大多数细胞具有内置的细胞凋亡机制。这种机制可以让身体摆脱不必要的细胞或受感染的细胞。

细胞凋亡被认为是各种过程的重要组成部分,包括正常细胞周期、免疫系统的正常发育和功能、胚胎发育和化学诱导的细胞死亡。细胞凋亡是发育的一部分,因为它对于将大量组织分化为不同的群体至关重要。

细胞凋亡发生在可能已感染病毒甚至可能癌变的细胞中。这个过程通常发生在细胞检测到 DNA 中的缺陷并且无法修复它时。细胞凋亡也是免疫系统的重要组成部分,因为一旦异物从体内清除,它就会清除病原体特异性免疫细胞。

这也有助于去除可能与身体细胞发生反应并导致自身免疫疾病的免疫细胞。细胞凋亡的另一个原因是通过去除旧细胞为新细胞腾出空间来维持体内稳态。

启动细胞凋亡的外在途径涉及跨膜受体介导的相互作用。这些相互作用发生在配体和它们相应的死亡受体之间,这些受体都是肿瘤坏死因子 (TNF) 家族的一部分。TNF 受体家族的所有成员共享一个共同的富含半胱氨酸的胞外域,该域包含约 80 个氨基酸,称为“死亡域”。

检索策略:褪黑素*细胞凋亡*保护作用维普、万方的高级检索与cnKI里标准检索都差不多,检索时,建议将褪黑素、细胞凋亡可以放在题名字段下,保护作用放在主题字段。维普下载的题录信息如下: 1/5【题名】褪黑素对离体帕金森病模型黑质NF-KB表达及黑质细胞凋亡的影响【作者】邢红霞 彭海 刘敏 王玉梅 朱红灿【刊名】中国神经免疫学和神经病学杂志.2008(1)【机构】新乡医学院第一附属医院神经内一科,河南卫辉453100 华中科技大学同济医学院协和医院神经内科,湖北武汉430022 武汉市精神卫生中心神经内科,湖北武汉430022 郑州大学第一附属医院神经内科,河南郑州450052【ISSN号】1006-2963【CNNO号】11-3552/R【馆藏号】98536X【关键词】帕金森病 6-羟多巴胺 黑质细胞 凋亡 核因子-kB p65【分类号】R742.5【文摘】目的研究褪黑素(melatonin,MT)对6-羟多巴胺(6-hydroxydopamine,6-OHDA)所制造的离体帕金森病(Pakinson disease,PD)模型的影响。方法将14只大鼠分成假手术组、MT组和对照组3组,MT组大鼠经腹腔连续3d注射MT,另两组以相同方法注射等量生理盐水,然后MT组和对照组分别取脑片置于含6-OHDA的人工脑脊液中孵育2h。应用TUNEL法、免疫组化技术观察黑质细胞凋亡的数量并检测黑质细胞NF-kBp65表达情况。结果假手术组未见明显黑质细胞凋亡,MT组较对照组黑质细胞凋亡明显减少,且黑质细胞NF—KBp65的表达也有所减少,与对照组比较差异具有统计学意义(P〈0.05)。结论MT对离体PD模型具有保护作用,其机制可能为抗凋亡。2/5【题名】褪黑素对巨核细胞凋亡的影响及作用机制研究【作者】周敏 徐酉华 李晓辉 李晓静 徐鸣 杨默【刊名】第三军医大学学报.2008(18)【机构】重庆医科大学附属儿童医院血液科,重庆400014 成都市儿童医院血液科,成都610014 香港大学李嘉诚医学院儿童及青少年科学系,香港【ISSN号】1000-5404【CNNO号】50-1126/R【馆藏号】92156X【关键词】褪黑素 巨核细胞 凋亡 AKT ERK【分类号】R329.28 R331.14【文摘】目的探讨褪黑素(melatonin,Mel)对巨核细胞凋亡的影响及其作用机制。方法巨核细胞细胞株CHRF-288-11去血清诱导凋亡,加或不加Mel共培养后,流式细胞仪检测凋亡指标:AnnexinV/PI、Caspase-3和JC-1,并与正常组和TPO组比较。同时检测信号通路AKT、ERK1/2,了解其参与保护作用的机制。结果Mel 200nmol/L作用72h后,CHRF细胞AnnexinV/PI、Caspase-3和JC-1的表达较对照组有明显下降,分别由42.9%、29.5%、47.7%降至31.7%(P〈0.05)、21.8%(P〈0.05)和37.2%(P〈0.05)。其中,JC-1的表达与TPO组(20.7±5.2)%比较,差异有统计学意义(P〈0.05),而Annexin V/PI、Caspase-3的表达与TPO组比较,差异无统计学意义(P〉0.05)。加入Mel后CHRF细胞的磷酸化AKT、ERK1/2水平明显增高,分别由(5.9±0.1)%、(6.1±0.4)%升至(9.5±0.1)%(P〈0.05)、(9.3±0.5)%(P〈0.05)。结论Mel可抑制巨核细胞凋亡,其保护机制可能通过AKT、ERK信号通路发挥作用。3/5【题名】褪黑素对糖尿病视网膜病变大鼠微血管细胞凋亡的保护作用【作者】夏培金 宋迎香 李文桐 邹俊杰 石勇铨 刘志民【刊名】第二军医大学学报.2007(7)【机构】第二军医大学长征医院内分泌科,上海200003 浙江省人民医院内分泌科,杭州310014【ISSN号】0258-879X【CNNO号】31-1001/R【馆藏号】91242X【关键词】糖尿病视网膜病变 大鼠模型 保护作用 细胞凋亡 微血管 褪黑素 免疫组织化学方法 链脲佐菌素【分类号】R587.2【文摘】目的:观察褪黑素(Mel)对糖尿病视网膜病变大鼠微血管细胞凋亡的保护作用。方法:链脲佐菌素(60mg/kg)诱导糖尿病大鼠模型,造模成功后按体质量和血糖随机分为3组:糖尿病组、小剂量Mel组[0.5mg/(kg·d)]、大剂量Mel组[10mg/(kg·d)]。另设正常对照组(7只)。干预12周后,应用免疫组织化学方法检测各组大鼠视网膜NF-κB、bcl—2、Bax的表达;图像分析仪测定阳性面积,计算出其表达量。4/5【题名】大鼠供心保存期间心肌细胞凋亡的动态变化及褪黑素的保护作用【作者】高思海 潘铁成 杨辰垣【刊名】中医杂志.2004(2)【机构】华中科技大学同济医学院附属同济医院胸心外科 华中科技大学同济医学院附属协和医院心外科 430030武汉【ISSN号】1001-1668【CNNO号】11-2166/R【馆藏号】90115X【关键词】器官保存 心脏移植 大鼠【分类号】R654.2【文摘】目的探讨大鼠供心保存期间心肌细胞凋亡的动态变化及褪黑素的保护作用。方法将 80只Wistar大鼠随机平均分为实验组和对照组。实验组在 4℃StThomas液中加入褪黑素(0 .1mmol/L)保存大鼠心脏 ;对照组单用StThomas液保存。分别于保存 4、8、12、2 4、3 6h后 ,各取出8只供心 ,TUNEL法染色检测细胞凋亡情况。以心肌凋亡阳性细胞数占总心肌细胞数的百分比作为心肌细胞凋亡指数。结果随着保存时间的延长 ,凋亡的心肌细胞数量明显增加 ,各时间点比较 ,差异有显著性 (P <0 .0 1) ;实验组各时间点心肌细胞凋亡指数明显小于相应对照组 (7.68%± 1.0 4%vs 2 4.3 7%± 1.2 3 % ,P <0 .0 1;8.2 7%± 1.17%vs 3 5.73 %± 1.98% ,P <0 .0 1;10 .14 %±1.2 2 %vs 42 .85%± 2 .3 6% ,P <0 .0 1;12 .3 1%± 1.54%vs 58.3 7%± 3 .12 % ,P <0 .0 1;14 .53 %± 1.89%vs 79.65%± 4.16% ,P <0 .0 1)...5/5【题名】褪黑素对氧自由基诱导的PC12细胞凋亡的保护作用【作者】杨玲玲 付振涛 孔峰 胡晓燕 曾季平 崔行【刊名】山东大学学报:医学版.2004(6)【机构】山东大学医学院生物化学与分子生物学研究所,山东济南250012 山东省疾病预防控制中心,山东济南250000【ISSN号】1671-7554【CNNO号】37-1390/R【馆藏号】95413A【关键词】活性氧 阿尔茨海默病 细胞凋亡【分类号】R741.02【文摘】目的:探讨氧自由基在阿尔茨海默病(Alzheimer Disease,AD)发生中的作用及可能机制,评价褪黑素(Melatonin,MT)的临床应用价值。方法:采用超氧自由基产生系统黄嘌呤/黄嘌呤氧化酶系统(X/XO)作用于PC12细胞,以褪黑素拮抗其作用,观察细胞的形态学变化;MTT法检测细胞存活率,DNA电泳和流式细胞术分析细胞凋亡情况,RT-PCR技术测定凋亡相关基因bcl-2、bax的表达。结果:X/XO作用后,PC12细胞出现凋亡特征性改变,凋亡率增加,电泳呈现DNA ladders,凋亡相关基因bax上调:而10^-5M褪黑素即能改善凋亡情况。结论:氧自由基可诱导神经元凋亡从而促进AD发生,其机制与促凋亡相关基因Bax表达增高有关;褪黑素可减缓神经元凋亡,可用于临床预防与治疗。

7901细胞凋亡的实验研究论文

细胞凋亡的过程及机理 细胞凋亡的过程大致可分为以下几个阶段: 接受凋亡信号→凋亡调控分子间的相互作用→蛋白水解酶的活化(Caspase)→进入连续反应过程 1.凋亡的启动阶段 细胞凋亡的启动是细胞在感受到相应的信号刺激后胞内一系列控制开关的开启或关闭,不同的外界因素启动凋亡的方式不同,所引起的信号转导也不相同,客观上说对细胞凋亡过程中信号传递系统的认识还是不全面的,目前比较清楚的通路主要有: 1)细胞凋亡的膜受体通路:各种外界因素是细胞凋亡的启动剂,它们可以通过不同的信号传递系统传递凋亡信号,引起细胞凋亡,我们以Fas -FasL为例: Fas是一种跨膜蛋白,属于肿瘤坏死因子受体超家族成员,它与FasL结合可以启动凋亡信号的转导引起细胞凋亡。它的活化包括一系列步骤:首先配体诱导受体三聚体化,然后在细胞膜上形成凋亡诱导复合物,这个复合物中包括带有死亡结构域的Fas相关蛋白FADD。 Fas又称CD95,是由325个氨基酸组成的受体分子,Fas一旦和配体FasL结合,可通过Fas分子启动致死性信号转导,最终引起细胞一系列特征性变化,使细胞死亡。Fas作为一种普遍表达的受体分子,可出现于多种细胞表面,但FasL的表达却有其特点,通常只出现于活化的T细胞和NK细胞,因而已被活化的杀伤性免疫细胞,往往能够最有效地以凋亡途径置靶细胞于死地。 Fas分子胞内段带有特殊的死亡结构域(DD, death domain)。三聚化的Fas和FasL结合后,使三个Fas分子的死亡结构域相聚成簇,吸引了胞浆中另一种带有相同死亡结构域的蛋白FADD。FADD是死亡信号转录中的一个连接蛋白,它由两部分组成:C端(DD结构域)和N端(DED)部分。DD结构域负责和Fas分子胞内段上的DD结构域结合,该蛋白再以DED连接另一个带有DED的后续成分,由此引起N段DED随即与无活性的半胱氨酸蛋白酶8(caspase8)酶原发生同嗜性交联,聚合多个caspase8的分子,caspase8分子逐由单链酶原转成有活性的双链蛋白,进而引起随后的级联反应,即Caspases,后者作为酶原而被激活,引起下面的级联反应。细胞发生凋亡。因而TNF诱导的细胞凋亡途径与此类似 2)细胞色素C释放和Caspases激活的生物化学途经 线粒体是细胞生命活动控制中心,它不仅是细胞呼吸链和氧化磷酸化的中心,而且是细胞凋亡调控中心。实验表明了细胞色素C从线粒体释放是细胞凋亡的关键步骤。释放到细胞浆的细胞色素C在dATP存在的条件下能与凋亡相关因子1(Apaf-1)结合,使其形成多聚体,并促使caspase-9与其结合形成凋亡小体,caspase-9被激活,被激活的caspase-9能激活其它的caspase如caspase-3等,从而诱导细胞凋亡。此外,线粒体还释放凋亡诱导因子,如AIF,参与激活caspase。可见,细胞凋亡小体的相关组份存在于正常细胞的不同部位。促凋亡因子能诱导细胞色素C释放和凋亡小体的形成。很显然,细胞色素C从线粒体释放的调节是细胞凋亡分子机理研究的关键问题。多数凋亡刺激因子通过线粒体激活细胞凋亡途经。有人认为受体介导的凋亡途经也有细胞色素C从线粒体的释放。如对Fas应答的细胞中,一类细胞(type1)中含有足够的胱解酶8 (caspase8)可被死亡受体活化从而导致细胞凋亡。在这类细胞中高表达Bcl-2并不能抑制Fas诱导的细胞凋亡。在另一类细胞(type2)如肝细胞中,Fas受体介导的胱解酶8活化不能达到很高的水平。因此这类细胞中的凋亡信号需要借助凋亡的线粒体途经来放大,而Bid -- 一种仅含有BH3结构域的Bcl-2家族蛋白是将凋亡信号从胱解酶8向线粒体传递的信使。 2.凋亡的执行 尽管凋亡过程的详细机制尚不完全清楚,但是已经确定Caspase即半胱天冬蛋白酶在凋亡过程中是起着必不可少的作用,细胞凋亡的过程实际上是Caspase不可逆有限水解底物的级联放大反应过程,到目前为止,至少已有14种Caspase被发现,Caspase分子间的同源性很高,结构相似,都是半胱氨酸家族蛋白酶,根据功能可把Caspase基本分为二类:一类参与细胞的加工,如Pro-IL-1β和Pro-IL-1δ,形成有活性的IL-1β和IL-1δ;第二类参与细胞凋亡,包括caspase2,3,6,7,8,9.10。Caspase家族一般具有以下特征: 1)C端同源区存在半胱氨酸激活位点,此激活位点结构域为QACR/QG。 2)通常以酶原的形式存在,相对分子质量29000-49000(29-49KD),在受到激活后其内部保守的天冬氨酸残基经水解形成大(P20)小(P10)两个亚单位,并进而形成两两组成的有活性的四聚体,其中,每个P20/P10异二聚体可来源于同一前体分子也可来源于两个不同的前体分子。 3)未端具有一个小的或大的原结构域。 参与诱导凋亡的Caspase分成两大类: 启动酶(inititaor)和效应酶(effector)它们分别在死亡信号转导的上游和下游发挥作用。[编辑本段]Caspase活化机制 Caspase的活化是有顺序的多步水解的过程,Caspase分子各异,但是它们活化的过程相似。首先在caspase前体的N-端前肽和大亚基之间的特定位点被水解去除N-端前肽,然后再在大小亚基之间切割释放大小亚基,由大亚基和小亚基组成异源二聚体,再由两个二聚体形成有活性的四聚体。去除N-端前肽是Caspase的活化的第一步,也是必须的,但是Caspase-9的活化不需要去除N-端前肽,Caspase活化基本有两种机制,即同源活化和异源活化,这两种活化方式密切相关,一般来说后者是前者的结果,发生同源活化的Caspase又被称为启动caspase(initiator caspase),包括caspase-8,-10,-9,诱导凋亡后,起始Caspase通过adaptor被募集到特定的起始活化复合体,形成同源二聚体构像改变,导致同源分子之间的酶切而自身活化,通常caspase-8, 10, 2介导死亡受体通路的细胞凋亡,分别被募集到Fas和TNFR1死亡受体复合物,而Caspase-9参与线粒体通路的细胞凋亡,则被募集到Cyt c/d ATP/Apaf-1组成的凋亡体(apoptosome)。同源活化是细胞凋亡过程中最早发生的capases水解活化事件,启动Caspase活化后,即开启细胞内的死亡程序,通过异源活化方式水解下游Caspase将凋亡信号放大,同时将死亡信号向下传递。异源活化(hetero-activation)即由一种caspase活化另一种caspase是凋亡蛋白酶的酶原被活化的经典途径。被异源活化的Caspase又称为执行caspase(executioner caspase),包括Caspase-3,-6,-7。执行Caspase不象启动Caspase ,不能被募集到或结合起始活化复合体,它们必须依赖启动Caspase才能活化。[编辑本段]Caspase的效应机制 凋亡细胞的特征性表现,包括DNA裂解为200bp左右的片段,染色质浓缩,细胞膜活化,细胞皱缩,最后形成由细胞膜包裹的凋亡小体,然后,这些凋亡小体被其他细胞所吞噬,这一过程大约经历30-60分钟,Caspase引起上述细胞凋亡相关变化的全过程尚不完全清楚,但至少包括以下三种机制: 1.凋亡抑制物 正常活细胞因为核酸酶处于无活性状态,而不出现DNA断裂,这是由于核酸酶和抑制物结合在一起,如果抑制物被破坏,核酸酶即可激活,引起DNA片段化(fragmentation)。现知caspase可以裂解这种抑制物而激活核酸酶,因而把这种酶称为Caspase激活的脱氧核糖核酸酶(caspase-activated deoxyribonulease CAD),而把它的抑制物称为ICAD。因而,在正常情况下,CAD不显示活性是因为CAD-ICAD,以一种无活性的复合物形式存在。ICAD一旦被Caspase水解,即赋予CAD以核酸酶活性,DNA片段化即产生,有意义的是CAD只在ICAD存在时才能合成并显示活性,提示CAD-ICAD以一种其转录方式存在,因而ICAD对CAD的活化与抑制却是必需要的。 2.破坏细胞结构 Caspase可直接破坏细胞结构,如裂解核纤层,核纤层(Lamina)是由核纤层蛋白通过聚合作用而连成头尾相接的多聚体,由此形成核膜的骨架结构,使染色质(chromatin)得以形成并进行正常的排列。在细胞发生凋亡时,核纤层蛋白作为底物被Caspase在一个近中部的固定部位所裂解,从而使核纤层蛋白崩解,导致细胞染色质的固缩。 3.调节蛋白丧失功能 Caspase可作用于几种与细胞骨架调节有关的酶或蛋白,改变细胞结构。其中包括凝胶原蛋白(gelsin)、聚合粘附激酶(focal adhesion kinase ,FAK)、P21活化激酶α(PAKα)等。这些蛋白的裂解导致其活性下降。如Caspase可裂解凝胶原蛋白而产生片段,使之不能通过肌动蛋白(actin)纤维来调节细胞骨架。 除此之外,Caspase还能灭活或下调与DNA修复有关的酶、mRNA剪切蛋白和DNA交联蛋白。由于DNA的作用,这些蛋白功能被抑制,使细胞的增殖与复制受阻并发生凋亡。 所有这些都表明Caspase以一种有条不紊的方式进行"破坏",它们切断细胞与周围的联系,拆散细胞骨架,阻断细胞DNA复制和修复,干扰mRNA剪切,损伤DNA与核结构,诱导细胞表达可被其他的细胞吞噬的信号,并进一步使之降解为凋亡小体。

她的水平是被大家公认的,是一个能力很出众的科学家,总是能够一针见血,将事情的核心把握好。

在一定的生理条件下,细胞也是为了维持体内的环境稳定,遵循自身的发展顺序,自己结束生命的过程。

这么年轻的作家,实力超强,写作能力很丰富。

细胞凋亡研究进展论文3000字

无论在发育期还是在成人体内,既有大量的新细胞产生,也有大量的旧细胞死亡,这是生物体的一种自然现象。为了维持机体组织中适宜的细胞数量,在细胞分裂和细胞死亡之间需要一种精确的动态平衡。由于这种生成与死亡的有序流程,在胚胎和成人期便维持着人体组织的适宜细胞数量。而这种精密地控制细胞的消亡过程就称为程序性细胞死亡。正常的生命需要细胞分裂以产生新细胞,并且也要有细胞的死亡,由此人体和生物的器官才得以维持平衡。 研究意义 细胞凋亡也帮助我们理解一些病毒和细菌侵袭人体细胞的机理。除了 A IDS,另外一些疾病,如神经变性性疾病、中风、心肌梗塞和自身免疫疾病等都是由于很多正常细胞被不正确地启动了程序性死亡过程而造成细胞过量死亡。

这是我已经发表的药理方面的综述,你可以看一下,但不能用来发表,否则自己会有麻烦的。再者,综述参考文献一般较多,10篇左右的基本没有。国内综述一般参考文献20-30篇左右即可,而国外的好多综述的参考文献都是上百篇或者更多心肌细胞凋亡与梗塞的研究进展关键词:细胞凋亡 心肌缺血 心肌梗塞 细胞凋亡是细胞在正常的生理或病理状态下发生的一种自发的、程序化的死亡过程。细胞凋亡发生时呈现出独特的形态学和生物化学特征,其表现为细胞膜完整,细胞器形态改变较轻,细胞核固缩、断裂,最终形成凋亡小体并被巨噬细胞等清除。而且,凋亡细胞基因组的裂解产物在琼脂糖凝胶电泳图谱上呈现出典型的DNA ladder。心肌缺血可引起缺血区及缺血边缘区心肌细胞的死亡,并可随后发展为心肌梗塞(myocardial infarction, MI),使心肌细胞死亡进一步加剧,最终可导致心衰的发生。近年来研究显示,细胞凋亡参与MI心肌细胞的死亡,并在心室重构、心功能改变过程中起关键作用[1,2]。现就心肌细胞凋亡与梗塞的研究进展综述如下。 1 心肌细胞凋亡存在于MI中的依据心肌细胞凋亡是缺血所致MI心肌细胞死亡的途径之一。Yue等[3]发现,在缺血导致的大鼠MI 模型3d后通过原位末端脱氧核苷酸转移酶介导的切口末端标记法(TUNEL)和DNA laddering检测,梗塞边缘区(离梗塞区~500um)心肌细胞凋亡指数明显增高。Gu等[4]在心肌缺血诱发的MI动物模型中发现,与远离梗塞区相比,梗塞边缘区存在不规则形状的心肌细胞及大量的凋亡细胞核。Baldi等[5]报道在人类急性心肌梗塞(AMI)晚期尸解中,心肌细胞凋亡仍然非常活跃,而且远离梗塞区细胞凋亡指数(0.7%)远远低于梗塞区(25.4%)。以上说明细胞凋亡主要存在于梗塞区及梗塞边缘区。也有研究发现,在早期MI患者中远离梗塞区凋亡细胞数量仍然可观,但心肌细胞凋亡的存在并不能作为MI的诊断标志[6]。2 心肌细胞凋亡与梗塞后心室重构MI发生时引起心肌细胞丢失以及细胞外基质的一系列变化,导致心室重构的发生。心肌细胞凋亡与心室重构关系密切,抑制心肌细胞凋亡有利于心室功能的改善。研究发现,通过药物抑制心肌细胞凋亡可提高左心室射血分数,减少左心室舒张末期内径,改善心功能[4]。Sinagra等[7]研究发现,MI后由细胞凋亡引起的细胞丢失导致左心室舒张功能障碍,这可能是心室功能恶化的原因之一。Abbate等[8]最近发现,在两个不同的实验动物模型中,MI 24h之内通过抑制心肌细胞凋亡能够显著改善心室重构过程。Diwan等[9]在敲除鼠心脏促凋亡基因Bnip3的MI模型中研究发现,2d后梗塞边缘区及远离梗塞区的心肌细胞凋亡减少,3周后则显示出改善左心室收缩及抑制左心室扩张的功能,从而证实Bnip3是MI后心室重构的一个主要决定性因子。另外,AMI后远离梗塞区的左心室正常区域,心肌细胞凋亡明显增加,通过抑制此区域的心肌细胞凋亡能够逆转AMI后的不利反应,起到保护左心室功能的作用[10]。3 与MI有关的凋亡调控因子心肌细胞凋亡受多种蛋白、基因、生长因子的调控,Bcl-2家族是迄今研究最深入的凋亡调控因子之一,其促凋亡蛋白与抗凋亡蛋白的比值在决定细胞存亡中起关键作用。P53在调控心肌细胞凋亡中同样起重要作用。有研究证明,通过药物预处理能明显抑制实验性AMI大鼠心肌细胞中P53及Bax、Fas的表达,Bcl-2表达则增加,从而明显减少心肌细胞的凋亡[2]。人类血液中还存在可溶性Fas(sFas)和FasL(sFasL),前者通过抑制Fas与细胞膜上的FasL结合阻断细胞凋亡,后者可诱导细胞发生凋亡。Soeki等[11]研究发现,在AMI后1d血浆sFas浓度显著增加,14d后浓度减少,而sFasL浓度无明显变化。说明AMI早期,机体自身sFas浓度增加抑制心肌细胞凋亡;随着时间推移,sFas浓度减少,细胞凋亡加剧。该研究还发现,在心室重构患者中sFasL浓度于AMI 后14d及21d高于无心室重构患者,说明MI晚期发生心室重构的患者心肌细胞凋亡增多,sFasL起了诱导作用。另外,hsp70是热休克蛋白家族(hsps)在心肌细胞保护中研究最成熟的成员之一[1]。Dybdahl[12]等对28例AMI患者研究发现,血液中hsp70和C反应蛋白(CRP)及白细胞介素-6(IL-6)显著增加,hsp70峰值浓度与心脏肌钙蛋白T及心肌肌酸激酶同工酶的峰值浓度相关。而且AMI后1d左心室射血分数与hsp70浓度呈负相关,说明hsp70浓度可能与梗塞面积有关。一些生长因子也参与心肌细胞凋亡的发生,如Davis等[13]在大鼠MI模型中通过生物素化的那诺芬使胰岛素样生长因子-1持续释放28d,与仅有那诺芬的组别比较,Akt活性增强,caspase-3减少28%。 4 心肌细胞凋亡的信号转导途径在心肌细胞凋亡的信号转导途径中死亡受体途径与线粒体途径研究最成熟。 最近发现,阻断AT1受体能够明显减少Fas表达,从而抑制Fas/FasL介导的心肌细胞凋亡[14]。TNF-α也能通过与Fas/FasL相同的途径诱导心肌细胞凋亡。Sun等[15]在TNF-α敲除小鼠MI模型中发现,与正常小鼠相比远离梗塞区及无梗塞心肌中细胞凋亡数目非常少。线粒体在细胞凋亡过程中起着主开关作用。Cyt C释放到胞浆中后与凋亡活化因子-1、caspase-9分子形成凋亡体。凋亡体活化caspase-9,从而激活下游caspase分子,如caspase-3等,最终诱导凋亡的发生。有研究证明,抑制凋亡体的形成同时伴随caspase-9和-3的失活能够抑制心肌细胞凋亡[16]。另外,Bcl-2家族可调节线粒体途径中Cyt C的释放。通过抑制Bax通道的活化能够抑制Cyt C的释放,从而抑制细胞凋亡 [17]。Akt在调节心肌细胞生长及存活中起重要作用,其途径的激活能够抑制心肌细胞凋亡[3]。Akt又称磷酸激酶B,是一种丝氨酸/苏氨酸蛋白激酶,包括Akt1、Akt2、Akt3三个亚型。其中Akt1和Akt2已被证实有抑制心肌细胞凋亡作用[3,4]。Akt激活后可使促凋亡因子Bad、caspase-9磷酸化及上调P53的负向调节蛋白,阻断以上因子介导的凋亡途径。有研究发现,三碘甲状腺原氨酸能够明显诱导MI边缘区Akt自身Ser473磷酸化,使此区域心肌细胞凋亡减少,而且MI后正常区Akt2有轻微表达但与模型组相比差异显著,其意义有待进一步研究[3]。最近丝裂原活化蛋白激酶(MAPK)途径在心肌细胞凋亡中的作用日益受到关注。MAPK有3个主要的亚家族:细胞外信号调节激酶(ERK),c-Jun氨基末端激酶(JNK)和P38 MAPK。其中P38 MAPK在心肌缺血后细胞凋亡的信号转导途径中起中枢作用,通过抑制P38 MAPK能明显上调Bcl-2蛋白表达[18]。5 MI心肌细胞凋亡的防治5.1 基因治疗 在包含人类A20基因的转基因小鼠MI模型中发现,在心脏中特异性过度表达人类A20基因可阻断IκB激酶β和P65活性,抑制NF-κB信号通路,减少caspase-3、-9及Cyt C和第二线粒体来源的半胱氨酸天冬氨酸蛋白水解酶激活剂(Smac)的释放,抑制心肌细胞凋亡。进一步研究发现,A20能够增强抗凋亡蛋白Bcl-2、X染色体凋亡蛋白抑制剂(XIAP)、细胞型Fas相关死亡域样白介素-1β转换酶抑制蛋白(cFLIP)的表达,减少促凋亡蛋白Fas、FasL、Bax的表达,明显缩小心肌梗塞面积,阻止左心室功能障碍和重构,延迟随后心衰的发生[19]。Rong等[20]在移植人生长激素(hGH)基因的大鼠心肌缺血模型中发现,缺血4周后GH可下调Bax表达,Bcl-2/Bax比率增加,心肌细胞凋亡被抑制;而且,左心室舒张末期内径和梗塞面积明显减小,心功能明显改善,这可能与血中IGF-1浓度升高、脑钠素水平明显降低有关。大量研究表明,P38 MAPK激活可诱导心肌细胞凋亡。MAPK磷酸化酶-1(MKP-1)可使P38 MAPK去磷酸化而钝化,在心肌缺血MKP-1转基因小鼠中,MKP-1过度表达明显抑制P38 MAPK活性,从而明显减轻梗死损伤程度[18]。也有研究发现,MI早期通过局部P38α基因转移增强P38 MAPK活性,同时增加血管发生相关因子表达,明显降低心肌细胞凋亡指数和减少心肌梗塞面积,改善MI后心室重构[21]。5.2 干细胞移植治疗 干细胞移植为目前治疗缺血性心脏病的热点之一。由于胚胎干细胞的研究受到伦理道德及取材困难等因素的影响,研究者把更多的希望寄予成体干细胞。目前用于心肌细胞研究的成体干细胞主要有骨髓干细胞、骨髓间充质干细胞、内皮祖细胞、骨骼肌干细胞等。Uemura等[22]在鼠心肌缺血导致的MI模型中发现,骨髓干细胞(BMSC)治疗组心肌细胞Akt活性增加,TUNEL阳性细胞数明显减少。BMSC预处理组可通过旁分泌途径抑制心肌细胞凋亡,明显缩减梗塞面积,提高左心室射血分数,减轻MI后左心室重构。Berry等[23]将骨髓间充质干细胞(MSC)直接注入MI大鼠梗塞区及边缘区表现为TUNEL阳性细胞减少,梗塞面积减少,心肌收缩和舒张功能改善。虽然干细胞改善缺血心肌功能的机制尚不明确,其治疗结果存在争议,但大多数研究表明干细胞治疗缺血性心脏病是安全有效的,其最终疗效需进一步进行大样本、随机双盲、多中心的临床研究后才能确定。5.3 天然产物活性成分治疗 天然产物中许多活性成分具有良好的抗心肌细胞凋亡的作用,这些成分主要集中于生物碱、苷类、萜类和黄酮类等化合物中。羟基积雪草苷(MA)是积雪草中的一种主要萜类化合物,研究发现经MA预处理的缺血所致的大鼠MI模型中乳酸脱氢酶、肌酸磷酸激酶释放减少,超氧化物歧化酶活性增强,丙二醛浓度及CRP活性显著降低,心肌细胞凋亡减轻,心肌梗塞面积缩小[24]。Ling等[25]研究发现,四方蒿总黄酮通过调节Bcl-2家族(Bcl-2表达增强,Bax表达降低)抑制心肌细胞凋亡,缩减心肌梗塞面积。绿茶的主要活性成分是表没食子儿茶精没食子酸酯(EGCG),Townsend等[26]研究发现,EGCG可通过抑制信号传导与转录活化因子-1(STAT-1)磷酸化,减少离体大鼠心脏中缺血诱导的心肌细胞凋亡,缩减心肌梗塞面积,改善心功能。在培养的乳鼠心肌细胞中,经EGCG预处理后同样能够抑制STAT-1自身酪氨酸701和丝氨酸727磷酸化,明显减少缺血诱导的Fas受体表达,降低caspase-3活性,抑制心肌缺血损伤诱导的心肌细胞凋亡。从苦苣中提取的单体木犀草素-7-O-β-D-葡萄糖苷可明显减少缺氧培养的乳鼠心肌细胞凋亡,使凋亡小体数目降低[27]。5.4 联合治疗 随着对MI心肌细胞凋亡的研究深入,大量药物治疗可以减少心肌细胞凋亡,改善MI后心功能。有研究发现,MI发生时一些炎症因子参与其中[12,28],通过研究炎症因子与细胞凋亡的关系,抗炎类药物可能会成为今后抑制MI心肌细胞凋亡的一个重要策略之一。另外,血管紧张素转化酶抑制剂(ACEI)、β受体阻滞剂(BB)、他汀类药物等都显示出一定的疗效。最近研究发现,通过药物和治疗方法之间的联合运用显示出优于单独运用其中任一方法的疗效。Boyle等[30]在缺血诱发的MI裸大鼠中分别通过ACEI和BB治疗、内皮祖细胞移植(EPC)治疗、EPC和ACEI/BB治疗,结果发现ACEI和BB治疗组在局部远离梗塞区减少75%的心肌纤维化,EPC治疗组通过诱导梗塞边缘区血管形成而阻抑此区域81%的心肌细胞凋亡,EPC联合ACEI/BB治疗组改善左心室功能的效果优于单独运用其中任一方法。Li等[31]在MI大鼠心肌内直接注射Bcl-2基因修饰的MSC与单独MSC移植相比,心肌细胞存活率明显升高,梗塞面积减少17%,心功能恢复显著。6 小结心肌缺血可导致心肌梗塞,国内外针对缺血引起的心肌梗塞中细胞凋亡的研究日益深入,并对参与心肌细胞凋亡的相关因子进一步明确,为此研发的一系列治疗方法及药物已经或即将应用到临床。但基因治疗中载体的选择、基因表达的调控等问题尚未解决,干细胞移植治疗仍缺乏大量随机双盲的临床证据,而联合治疗则显示出了更佳的疗效。另外,天然产物活性成分因其资源丰富、毒副作用少、疗效独特已引起广泛关注,从天然产物中寻找有效的活性成分抑制心肌细胞凋亡将成为防治MI极具潜力的途径之一。参考文献[1]Gill C, Mestril R, Samali A. Losing heart: the role of apoptosis in heart disease—a novel therapeutic target?. FASEB J, 2002, 16: 135~146.[2]Ruixing Y, Dezhai Y, Jiaquan L. Effects of cardiotrophin-1 on hemodynamics and cardiomyocyte apoptosis in rats with acute myocardial infarction. J Med Invest, 2004, 51(1-2): 29~37.[3]Yue-Feng Chen, Satoru Kobayashi, Jinghai Chen, Short term triiodo-L-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol, 2008, 44(1): 180~187.[4]Gu X, Cheng L, Chueng WL, et al. Neovascularization of ischemic myocardium by newly isolated tannins prevents cardiomyocyte apoptosis and improves cardiac function. Mol Med, 2006, 12(11-12): 275~283.[5]Baldi A, Abbate A, Bussani R, et al. Apoptosis and post-infarction left ventricular remodeling. J Mol Cell Cardiol, 2002, 34(2): 165~174.[6] Abbate A, Biondi-Zoccai GG, Baldi A. Pathophysiologic role of myocardial apoptosis in post-infarction left ventricular remodeling. J Cell Physiol, 2002, 193(2): 145~153.[7]Sinagra G, Bussani R, Abbate A, et al. Left ventricular diastolic filling pattern at Doppler echocardiography and apoptotic rate in fatal acute myocardial infarction. Am J Cardiol, 2007, 99(3): 307~309. [8]Abbate A, Salloum FN, Vecile E, et al. Anakinra a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation, 2008, 117(20): 2670~2683.[9]Diwan A, Krenz M, Syed FM, et al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest, 2007, 117(10): 2825~2833.[10]Sun CK, Chang LT, Sheu JJ, et al. Losartan preserves integrity of cardiac gap junctions and PGC-1 alpha gene expression and prevents cellular apoptosis in remote area of left ventricular myocardium following acute myocardial infarction. Int Heart J, 2007, 48(4): 533~546.[11]Soeki T, Tamura Y, Shinohara H, et al. Relation between circulating soluble Fas ligand and subsequent ventricular remodelling following myocardial infarction. Heart, 2003, 89(3): 339~341.[12]Dybdahl B, Slørdahl SA, Waage A, et al. Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart, 2005, 91(3): 299~304.[13]Davis ME, Hsieh PC, Takahashi T, Tomosaburo Takahashi, et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci USA, 2006, 103(21): 8155~8160.

细胞凋亡和细胞增殖都是生命的基本现象,是维持体内细胞数量动态平衡的基本措施。在胚胎发育阶段通过细胞凋亡清除多余的和已完成使命的细胞,保证了胚胎的正常发育;在成年阶段通过细胞凋亡清除衰老和病变的细胞,保证了机体的健康。和细胞增殖一样细胞凋亡也是受基因调控的精确过程,在这一节我们就细胞凋亡的分子机理作简要的介绍。 细胞凋亡的途径主要有两条,一条是通过胞外信号激活细胞内的凋亡酶caspase、一条是通过线粒体释放凋亡酶激活因子激活caspase。这些活化的caspase可将细胞内的重要蛋白降解,引起细胞凋亡。 一、凋亡相关的基因和蛋白 细胞凋亡的调控涉及许多基因,包括一些与细胞增殖有关的原癌基因和抑癌基因。其中研究较多的有ICE、Apaf-1、Bcl-2、Fas/APO-1、c-myc、p53、ATM等。 1.Caspase家族 Caspase属于半胱氨酸蛋白酶,相当于线虫中的ced-3,这些蛋白酶是引起细胞凋亡的关键酶,一旦被信号途径激活,能将细胞内的蛋白质降解,使细胞不可逆的走向死亡。它们均有以下特点:①酶活性依赖于半胱氨酸残基的亲核性;②总是在天冬氨酸之后切断底物,所以命名为caspase(cysteine aspartate-specific protease),方便起见本文称之为凋亡酶;③都是由两大、两小亚基组成的异四聚体,大、小亚基由同一基因编码,前体被切割后产生两个活性亚基。 最早发现人类中与线虫ced-3同源的基因[1]是ICE,即:白介素-1 β转换酶(Interleukin-1 β-converting enzyme)基因,因该酶能将白介素前体切割为活性分子,故名。通过cDNA杂交和查找基因组数据库,在人类细胞中已发现11个ICE同源物[2],分为2个亚族(subgroup):ICE亚族和CED-3家族(图15-6),前者参与炎症反应,后者参与细胞凋亡,又分为两类:一类为执行者(executioner或effector),如caspase-3、6、7,它们可直接降解胞内的结构蛋白和功能蛋白,引起凋亡,但不能通过自催化(autocatalytic)或自剪接的方式激活;另一类为启动者(initiator),如caspase-8、9,受到信号后,能通过自剪接而激活,然后引起caspase级联反应,如caspase-8可依次激活caspase-3、6、7。 细胞中还具有caspase的抑制因子,称为IAPs(inhibitors of apoptosis proteins),属于一个庞大的蛋白家族。它们能通过BIR结构域(baculovirus IAP repeats domain)[3]与caspase结合,抑制其活性,如XIAP。 图15-6:ICE家族成员 A:3类caspase:蓝色参与炎症反应,红色为执行者,绿色为启动者;B:caspase-3的结构模型;C:caspase-3的活化过程 引自Katja C. Zimmermann等2001 2.Apaf-1 Apaf-1被称为凋亡酶激活因子-1(apoptotic protease activating factor-1),在线虫中的同源物为ced-4,在线粒体参与的凋亡途径中具有重要作用,该基因敲除后,小鼠神经细胞过多,脑畸形发育。Apaf-1含有3个不同的结构域:①CARD(caspase recruitment domain)结构域,能召集caspase-9;②ced-4 同源结构域,能结合ATP/dATP;③C端结构域,含有色氨酸/天冬氨酸重复序列,当细胞色素c[4]的结合到这一区域后,能引起Apaf-1多聚化而激活。Apaf-1具有激活Caspase-3的作用,而这一过程又需要细胞色素c(Apaf-2)和caspase-9(Apaf-3)参与。Apaf-1/细胞色素c复合体与ATP/dATP结合后,Apaf-1就可以通过其CARD结构域召集caspase-9,形成凋亡体(apoptosome),激活caspase-3,启动caspase级联反应。 3.Bcl-2家族 Bcl-2[5]为凋亡抑制基因,是膜的整合蛋白,其功能相当于线虫中的ced-9。现已发现至少19个同源物,它们在线粒体参与的凋亡途径中起调控作用,能控制线粒体中细胞色素c等凋亡因子的释放。 Bcl-2家族成员都含有1-4个Bcl-2同源结构域(BH1-4),并且通常有一个羧端跨膜结构域(transmembrane region ,TM)。其中BH4是抗凋亡蛋白所特有的结构域,BH3是与促进凋亡有关的结构域。根据功能和结构可将Bcl-2基因家族分为两类(图15-7),一类是抗凋亡的(anti-apoptotic),如:Bcl-2、Bcl-xl、Bcl-w、Mcl-1;一类是促进凋亡的(pro-apoptotic),如:Bax、Bak、Bad、Bid、Bim,在促凋亡蛋白中还有一类仅含BH3结构,如Bid、Bad。 虽然Bcl-2蛋白存在于线粒体膜、内质网膜以及外核膜上,但主要定位于线粒体外膜,它拮抗促凋亡蛋白的功能。而大多数促凋亡蛋白则主要定位于细胞质,一旦细胞受到凋亡因子的诱导,它们可以向线粒体转位,通过寡聚化在线粒体外膜形成跨膜通道 ,或者开启线粒体的PT孔,从而导致线粒体中的凋亡因子释放,激活caspase,导致细胞凋亡。 胞质中的促凋亡蛋白可通过不同的方式被激活,包括去磷酸化,如Bad;被caspase加工为活性分子,如Bid;从结合蛋白上释放出来,如Bim是与微管蛋白结合在一起的。 图15-7 Bcl-2家族 引自Katja C. Zimmermann等2001 4.Fas Fas又称作APO-1/CD95,属TNF受体家族。Fas基因编码产物为分子量45KD的跨膜蛋白,分布于胸腺细胞,激活的T和B淋巴细胞,巨噬细胞,肝、脾、肺、心、脑、肠、睾丸和卵巢细胞等。Fas蛋白与Fas配体结合后,会激活caspase,导致靶细胞走向凋亡。 5.p53 是一种抑癌基因,其生物学功能是在G期监视DNA的完整性。如有损伤,则抑制细胞增殖,直到DNA修复完成。如果DNA不能被修复,则诱导其调亡,研究发现丧失p53功能的小鼠胸腺细胞对糖皮质激素诱导的调亡反应和正常细胞相同,而对辐射诱导的调亡不敏感。 6.myc 在许多人类恶性肿瘤细胞中都发现有c-myc的过度表达,它能促进细胞增殖、抑制分化。 在凋亡细胞中c-myc也是高表达,作为转录调控因子,一方面它能激活那些控制细胞增殖的基因,另一方面也激活促进细胞凋亡的基因,给细胞两种选择:增殖或凋亡。当生长因子存在,Bcl-2基因表达时,促进细胞增殖,反之细胞凋亡。 7.ATM ATM(ataxia telangiectasia-mutated gene)是与DNA损伤检验有关的一个重要基因。最早发现于毛细血管扩张性共济失调症患者,人类中大约有1%的人是ATM缺失的杂合子,表现出对电离辐射敏感和易患癌症。正常细胞经放射处理后,DNA损伤会激活修复机制,如DNA不能修复则诱导细胞凋亡。ATM是DNA损伤检验点的一个重要的蛋白激酶(参见第十三章第四节) 二、Fas介导的细胞凋亡 细胞表面的凋亡受体是属于肿瘤坏死因子受体(TNFR)家族的跨膜蛋白,它们包括Fas(Apo-1/CD95)、TNFR1、DR3/WSL、DR4/TRAIL-R1和DR5/TRAIL-R2。其配体属于TNF家族,目前已比较清楚的是Fas介导的细胞凋亡途径。 Fas具有三个富含半胱氨酸的胞外区和一个称为死亡结构域(Death domain,DD,图15-8)的胞内区。Fas的配体FasL(Fas ligand)与Fas结合后,Fas三聚化使胞内的DD区构象改变,然后与接头蛋白FADD(Fasassociated death domain)的DD区结合,而后FADD的N端DED区(death effector domain)就能与Caspase-8(或-10)前体蛋白结合,形成DISC (death-inducing signaling complex )[6] ,引起caspase-8、10通过自身剪激活,它们启动caspase的级联反应,使caspase-3、-6、-7激活,这几种Caspase可降解胞内结构蛋白和功能蛋白,最终导致细胞凋亡。 图15-8 FAS介导的细胞凋亡 引自Avi Ashkenazi and Vishva M. Dixit 1998 Caspase 可激活名叫CAD(caspase-activated Dnase)的核酸酶,CAD能在核小体的连接区将其切断,形成约为200bp整数倍的核酸片段。正常情况下CAD存在于胞质中,并且与抑制因子ICAD/DFF-45蛋白结合,不能进入细胞核。Caspase活化后可以降解ICAD/DFF-45,释放出CAD,使它进入细胞核降解DNA。 Fas/FasL系统在免疫系统中具有重要的作用,其一是参与免疫调节,活化成熟的外周T细胞主要通过Fas/FasL系统介导的细胞凋亡清除与自身抗原有交叉反应的克隆和由自身抗原激活的细胞克隆,以限制T细胞克隆的无限增殖,防止对自身组织的损伤,即产生外周免疫耐受。淋巴细胞凋亡异常导致的免疫耐受失控,是自身免疫性疾病的主要病因。其二是细胞毒T细胞(CTL)可以通过FasL诱导靶细胞凋亡,但遗憾的是,某些肿瘤细胞也可以通过这一途径诱导淋巴细胞凋亡,从而逃脱免疫监控。 三、线粒体与细胞凋亡 细胞应激反应或凋亡信号能引起线粒体细胞色素c释放,作为凋亡诱导因子,细胞色素c能与Apaf-1、caspase-9前体、ATP/dATP形成凋亡体(apoptosome,图15-9),然后召集并激活caspase-3,进而引发caspases级联反应,导致细胞凋亡。 在这里,一个核心的问题是细胞色素c究竟通过哪一种途径释放到细胞质中,由于大部分凋亡细胞中很少发生线粒体肿胀和线粒体外膜破裂的现象,所以目前普遍认为细胞色素是通过线粒体PT孔或Bcl-2家族成员形成的线粒体跨膜通道释放到细胞质中的。 线粒体PT孔(permeability transition pore)主要由位于内膜的腺苷转位因子(Adenine nucleotide translocator,ANT)和位于外膜的电压依赖性阴离子通道(Voltage dependent anion channel,VDAC)等蛋白所组成,PT孔开放会引起线粒体跨膜电位下降和细胞色素c释放。Bcl-2家族蛋白对于PT孔的开放和关闭起关键的调节作用,促凋亡蛋白Bax等可以通过与ANT或VDAC的结合介导PT孔的开放,而抗凋亡类蛋白如Bcl-2、Bcl-xL等则可通过与Bax竞争性地与ANT结合,或者直接阻止Bax与ANT、VDAC的结合来发挥其抗凋亡效应。 Bcl-2家族的结构和能形成离子通道的一些毒素(如大肠杆菌毒素)非常相似。插入膜结构中形成较大的通道,允许细胞色素c等蛋白质通过,这可能是细胞色素c释放的另一个途径。 在线虫中ced-3和ced-4的缺失突变抑制所有发育阶段的细胞死亡。在哺乳动物中,尽管Apaf-1基因缺失的小鼠没有caspase活化,但除了神经细胞过多外,大多数器官发育是正常的。近年来的研究发现随细胞色素c释放的蛋白还有Smac(second mitochondria-derived activator of caspase)、凋亡诱导因子(apoptosis inducing factor,AIF)和核酸内切酶G( Endo G)。Smac能通过N端的几个氨基酸与IAPs(凋亡抑制蛋白)的BIR结构域结合,从而解除IAP对caspase的抑制;AIF[7]则引起核固缩和染色质断裂;Endo G可以使DNA片段化。可见即使在caspase不参与的情况下,由线粒体途径仍可引起细胞凋亡。 在对Fas应答的细胞中,一型细胞(type I),如胸腺细胞,其caspase-8有足够的活性,被Fas活化后导致细胞凋亡,在这类细胞中高表达Bcl-2不能抑制Fas诱导的细胞凋亡。在二型细胞(type II),如肝细胞中,Fas介导的caspase-8活化不能达到足够的水平,因此这类细胞中的凋亡信号需要借助凋亡的线粒体途径来放大。活化的caspase-8将胞质中的Bid剪切,形成活性分子tBid(truncated Bid),tBid进入线粒体,导致细胞色素c释放,使凋亡信号放大。 图15-9 细胞色素释放引起的凋亡 引自R. Chris Bleackley and Jeffrey A. Heibein 2001 我们不看出线粒体既是细胞的能量工厂,也是细胞的凋亡控制中心,可是为什么线粒体会担负起如此重要的双重功能呢?一个主要的原因是各类生长因子都可以促进葡萄糖转运和己糖激酶等向线粒体转运、加速能量生产,相反地剥夺生长因子后,细胞氧消耗降低、ATP合成不足、蛋白质合成受阻,最后细胞走向死亡。由于这一方面的资料较少,目前还很难作出一个较好的解释,只能留在以后再完善。 -------------------------------------------------------------------------------- [1]Horvitz实验室的袁均英1993年发现哺乳动物ced-3的同源物为白介素-1-β转换酶(ICE)。 [2] 哺乳动物中已发现14个。 [3] 最早在细菌和病毒中发现。 [4] 是线粒体内膜的外周蛋白,呼吸链中的两个可移动组分之一,位于膜间隙,释放到细胞质中会引起细胞凋亡。 [5] 是一种原癌基因,名称来源于B细胞淋巴瘤/白血病-2(B-cell lymphoma/Leukemia-2,bcl-2),最早由Tsujimoto(1985)从伴有14、18染色体易位的淋巴瘤细胞中发现,在正常人体内位于18号染色体,在患者易位于14号染色体。 [6] Kischkel等1995发现Fas活化时可以与至少4种蛋白相连,分别称为CAP1(Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins 1)、CAP2、CAP3和CAP4,这4种蛋白与活化的Fas受体一起被称为死亡诱导信号复合物(death-inducing signaling complex, DISC)。随后的研究证实CAP1和CAP2是不同形式丝氨酸磷酸化的FADD蛋白,CAP3和CAP4实际上就是活化的caspase-8。 [7]是一种依赖于黄素的一种氧化还原酶,目前还不清楚其作用机制。

细胞程序性死亡研究论文

读了点儿科普知识,跟大家分享下。 大家都知道,蝌蚪在发育成青蛙的过程中尾巴会自行消失,导致这种现象的根源是“细胞程序性死亡”。细胞程序性死亡是细胞一种生理性、主动性的“自觉自杀行为”,这些细胞死的有规律,似乎是按编好了的“程序”进行的。  犹如秋天片片树叶的凋零,所以这种细胞死亡又称为“细胞凋亡”。细胞程序性死亡在生物发育和维持正常生理活动过程中非常重要。人体内每天都有许多新细胞诞生,同时又有许多细胞程序性死亡,两者处于一种动态平衡中。如果该死亡的细胞没有死亡,就可能导致细胞恶性增长,形成癌症。如果不该死亡的细胞,过多的死亡,比如受艾滋病病毒攻击以后,不该死亡的淋巴细胞大批死亡,就会破坏人体的免疫功能,导致艾滋病发作。科学家在研究中发现细胞程序性死亡是由基因控制的,并发现了与之相关的一些基因,证实了人体内也存在相应的基因。对这些基因的研究,有助于研究针对癌症、艾滋病和老年痴呆症等疾病的新疗法。

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达99.99%的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。 回答者: monkeynobd - 高级经理 六级 5-22 18:16给楼主论文: 分子细胞基因组的研究 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。 1 植物体细胞杂交后代胞质基因组重组的多样性 体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。 2 创制胞质杂种的方法 2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。 2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。 2.3 其它的可能途径 (1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。 3 胞质杂种中双亲胞质基因的传递遗传学 3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。 3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。 4 植物胞质基因组控制的重要性状 目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。 总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。是真的哦

给楼主论文:分子细胞基因组的研究随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。1 植物体细胞杂交后代胞质基因组重组的多样性体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。2 创制胞质杂种的方法2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。2.3 其它的可能途径(1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。3 胞质杂种中双亲胞质基因的传递遗传学3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。4 植物胞质基因组控制的重要性状目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。

1. 洛育,李彩凤*: s-ABA对甜菜氮代谢关键酶活力的影响 中国糖料, 2006.1 5~72. 李士龙, 葛红霞, 肖迪, 杨德光, 李彩凤, 马凤鸣:植物细胞程序性死亡研究进展,,东北农业大学学报,2006.37(2):238~2443.刘迎雪,李文华,李彩凤*等,不同施氮模式对玉米产量和质量的影响,玉米科学,2007(15).2,117-1194.Li Caifeng, Ma fengming, Li Wenhua, et al, Regulation of sucrose synthase activity and sugar yield by nitrogen in sugar beet, Journal of NEAU, 2007(14)., 4: 289-2935.王瑞,李彩凤*,马凤鸣,洛育,陈胜勇:甜菜谷氨酰胺合成酶研究进展,第九届全国作物生理学研讨会论文集,中国农业出版社,2006年8月(通讯作者)6.张多英,马凤鸣,赵越,李彩凤,马国巍,李世龙,培养液NO-3/NH+4 比对甜菜幼苗NO-3 、NH+4 吸收特性的影响,作物学报,2006.4:548~5527. 康传红,王淑春,陈胜勇,李彩凤*,甜菜胞质型谷氨酰胺合成酶基因组DNA的克隆,植物生理学通讯,2008.4:1-58.王瑞,马凤鸣,李彩凤*等,低温胁迫对玉米幼苗脯氨酸、丙二醛含量及电导率的影响,东北农业大学学报,2008.5:20-239.陈胜勇,李彩凤*,马凤鸣,甜菜谷氨酰胺合成酶基因在不同氮素条件下的表达分析,作物杂志,2008.4:64-6710. 陈胜勇,侯 静,李彩凤* ,马凤鸣 尹春佳 黄兆峰,蛋白和核酸合成抑制剂对氮素诱导甜菜谷氨酰胺合成酶基因表达的影响,作物学报,2009,35(3):445-45111.黄兆峰,李彩凤* 孙世臣,尹春佳,赵明珠,赵丽影,陈业婷,越鹏,王圆圆:赤霉素对甜菜当年抽苔激光和作用的调控,作物杂志,2009.2:41-4312.李彩凤,赵东升,赤霉素对亚麻过氧化物酶及主要农艺性状的影响,作物杂志,2009.4:38-4113.尹春佳,李彩凤*,孙世臣,赵明珠,黄兆峰,赵丽影,陈业婷,越鹏,王圆圆,寒地超级稻叶片衰老过程中SOD、POD活性的动态变化,作物杂志,2009.3:37-3914.陈胜勇,李彩凤*,侯静,马凤鸣,孙世臣:蛋白核酸抑制剂对甜菜谷氨酰胺合成酶活性调控分析,东北农业大学学报,2009.40(1):18-2215.刘迎雪; 李彩凤; 李文华; 曲琦环; 陈胜勇; 丑纯明; 尹春佳; 陈万立; 赵杨; 刘丽,生物种衣剂对玉米氮代谢关键酶和光合速率的影响 ,东北农业大学学报,2010,41(1): 13~1816. 侯静; 马凤鸣; 陈胜勇; 丁广洲; 李彩凤,甜菜基因组DNA的提取及Southern杂交分析, 东北农业大学学报,2008.1217.石振,马凤鸣,李彩凤,张顺捷,侯静,李士龙,外源酚酸类物质对大豆幼苗生长的影响,作物杂志,2008.3:40~4218. 孙世臣,洛育,李彩凤*,张凤鸣,尹春佳,赵明珠,黄兆峰,陈业婷,赵丽颖,王园园,黑龙江省超级稻茎秆性状的研究,中国农学通报2010,26(8):146-14819.孙世臣,尹春佳,李彩凤*,赵明珠,张凤鸣,洛育,黄兆峰,赵丽颖,陈业婷,黑龙江省超级稻干物质积累及与产量性状的关系,东北农业大学学报,2010 41(3): 6~1120. 戴建军、常缨、李彩凤、马凤鸣,低温诱导甜菜(Beta vulgaris L.)抽薹相关基因的RACE分析 东北农业大学学报,2010,41(7): 10-1521. 戴建军、常缨、李彩凤、马凤鸣,低温诱导甜菜抽薹基因的差异表达分析, 东北农业大学学报,2009,40(12): 13-1722.越鹏,李彩凤*,陈业婷,赵丽影,王园园,滕祥勇,王南博,氮素水平对甜菜功能叶片光合特性的影响,核农学报,2010.5:1080-108523.陈业婷,李彩凤*,赵丽影,越鹏,王园园,滕祥勇,王南博,甜菜耐盐品种筛选及幼苗对盐胁迫的响应,植物生理学通讯,2010.46(5):1121-112824.李彩凤,赵丽影,陈业婷,越鹏,王园园,滕祥勇,王南博,高等植物脂氧合酶研究进展,东北农业大学学报,2010.41(10):143-14925. 洛育,孙世臣,,李彩凤*,,赵东升:植物生长调节剂对大豆功能叶片硝酸还原酶活性的影响, 中国农学通报2010,26(19):136-139

相关百科

热门百科

首页
发表服务