首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

矩阵的逆矩阵求解方法毕业论文

发布时间:

矩阵的逆矩阵求解方法毕业论文

逆矩阵求法有三种,分别是伴随矩阵法、初等变换法和待定系数法。

一、伴随矩阵法。根据逆矩阵的定义(对于n阶方阵A,如果有一个n阶方阵B满足AB=BA=E,则A是可逆的。),可以得出逆矩阵的计算公式:A^(-1)=1/|A|乘以A*,其中,A*为矩阵A的伴随矩阵。例题如下:

伴随矩阵法解题过程

注:用伴随矩阵法计算逆矩阵时需要运用代数余子式和余子式的相关知识,即代数余子式(Aij)和余子式(Mij),其中,i表示第几行,j表示第几列。

二、初等变换法。根据矩阵初等行变换的计算方式,然后引入单位矩阵E(矩阵对角线所对应的三个数字均为1,其他数字均为0的矩阵)。矩阵 A与单位矩阵E组成一个大矩阵,而后通过行变换将原来A的位置转变为E,此时,变换后的E就是所求的逆矩阵。

本人手写笔记

三、待定系数法。根据矩阵定义的推论,利用矩阵A乘以它的逆矩阵A^(-1)等于单位矩阵E的计算公式求得逆矩阵的方法。这种计算过程繁琐,需要列多组方程组,耗时,不建议使用。

题主可根据以上三种计算方法计算逆矩阵,希望对题主有帮助。

矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可。

A^*=A^(-1)|A|,

两边同时取行列式得

|A^*|=|A|^2 (因为是三阶矩阵)

又|A^*|=4,|A|>0,所以|A|=2

所以A^(-1)=A^(*)/2,就是伴随矩阵除以2。

特殊求法:

(1)当矩阵是大于等于二阶时 :

主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以  , x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以  ,一直是正数,没必要考虑主对角元素的符号问题。

(2)当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。

(3)二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。

矩阵性质

矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。

设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。其中,E为单位矩阵。

典型的矩阵求逆方法有:利用定义求逆矩阵、初等变换法、伴随阵法、恒等变形法等。

逆矩阵和广义逆矩阵毕业论文

所以算出A的广义逆A+,然后验证上述条件即可。

矩阵是工程技术以及经济管理等领域的不可缺少的数学工具,凡是用到矩阵的地方,基本上都要涉及广义逆矩阵,尤其数值分析与数理统计有着重要作用.广义逆矩阵共15类,但最常用有5类,包括A{1},A{1,2},A{1,3},A{1,4},A{1,2,3,4}.主要讨论这5类广义逆矩阵的计算及其应用.作 者: 马秀珍 韩静华 MA Xiu-zhen HAN Jing-hua 作者单位: 沈阳航空工业学院理学系,辽宁,沈阳,110034 刊 名: 沈阳航空工业学院学报 英文刊名: JOURNAL OF SHENYANG INSTITUTE OF AERONAUTICAL ENGINEERING 年,卷(期): 2005 22(2) 分类号: O175.14 关键词: 广义逆矩阵 矩阵方程 自反广义逆 最小范数广义逆 通解 机标分类号: 机标关键词: 广义逆矩阵应用数值分析数学工具数理统计经济管理工程技术计算 基金项目:

逆矩阵和广义逆矩阵的区别如下。1、若A为非奇异矩阵,则线性方程组Ax=b的解为x=A^(-1)b,其中A的逆矩阵A^(-1)满足A^(-1)A=AA^(-1)=I(I为单位矩阵)。2、若A是奇异阵或长方阵,Ax=b可能无解或有很多解。3、若有解,则解为x=Xb+(I-XA)у,其中у是维数与A的列数相同的任意向量,X是满足AXA=A的任何一个矩阵,通常称X为A的广义逆矩阵,用A^g、A^-或A^(1)等符号表示,有时简称广义逆。4、当A非奇异时,A^(-1)也满足AA^(-1)A=A,且x=A^(-1)b+(I-A^(-1)A)у=A^(-1)b。故非异阵的广义逆矩阵就是它的逆矩阵,说明广义逆矩阵确是通常逆矩阵概念的推广。

矩阵分解论文研究方法

■ 雅可比正交相似变换,适用于实对称矩阵求特征值,且计算结果很准确;当用于非对称矩阵时收敛效果并不好。■ QR正交相似变换,一般认为对任意中小型矩阵都可求特征值,实际上最适合非对称矩阵,计算结果准确。对称矩阵用QR正交相似变换时,收敛效果反而不理想。

为什么要进行矩阵分解? 1、从矩阵变换的角度: 将复合变换后的矩阵分解成基本变换过程。具体请看奇异值分解之矩阵变换角度。 2、从 研究动机 的角度:

首先要理解基变换(坐标变换)再理解特征值的本质。 1、如果一个矩阵的行列式为0(非满秩),其特征值为0,这个证明比较简单: (单位矩阵有时候用 表示,有时候用 表示。) 如果 ,那么 ,进而 2、对于一个 的矩阵 ,其 ; 3、主对角线上的元素都不为0,其他元素都为0的矩阵叫对角矩阵,对角矩阵一定是正交矩阵,即其基两两垂直。

特征值分解就是矩阵的对角化,就是可以将 分解为 , 是由对应特征向量组成的矩阵--特征矩阵, 为对角矩阵,对角线上的元素为 的特征值。只有在一定条件下,一个变换可以由其特征值和特征向量完全表述,也就是说: 所有的特征向量组成了空间的一组基 。并不是所有方阵都可以对角化,方阵 可以被对角化的条件是 :

正交矩阵一定可以对角化 。以三维空间为例,正交矩阵就是歪着的立方体,对角化就是把这个立方体摆正(就是让它的某一个顶点放在原点上,同时这个顶点的三条边放在三条坐标轴上)。对角矩阵就是摆正后的立方体。

机器学习中的特征值分解, 往往是协方差矩阵,如PCA,所以我们要确保各个特征之间是线性无关的。

如何通俗地理解奇异值?

我们知道一个向量张成的空间是一条直线, 任意实数 可以得到非零向量 张成的空间是一条直线。那么如果一个 维空间中的向量 其所张成的空间——一条直线上的点,经过一个矩阵 变换到另一个 的空间中依然在同一条直线上,这个直线是 空间中的向量 所张成的空间,只是会有对应的缩放,这个缩放的程度就是奇异值。用数学形式表达为: , 是 空间中的向量, 是 的变换矩阵, 是 空间中的向量, 就是奇异值。

可以感觉到特征值是奇异值的特例,当m=n且 和 重叠的时候(方向可以不同),奇异值=特征值。

奇异值分解计算例子:

SVD(奇异值分解)Python实现:

矩阵分解为了解决传统协同过滤处理稀疏共现矩阵能力差的问题。使用矩阵分解相比传统协同过滤也提升了泛化性。

基于矩阵分解的模型又叫潜在因素模型、隐语义模型。

矩阵分解的开端是2006年的Netflix竞赛。

1、推荐系统中: 分解的是什么矩阵?共现矩阵 怎么共现矩阵分解? 1)特征值分解 要求待分解的是方阵,所以行不通 2)奇异值分解 要求待分解矩阵是稠密矩阵,而共现矩阵是稀疏矩阵,所以不行; 奇异值分解的复杂度是 ,复杂度很高,也不合适。 3)梯度下降法——也就是交替最小二乘法(alternating least squares,ALS),解决两个变量求解。 使用梯度下降法进行矩阵分解 (1)确定目标函数: ,就是一个MSE; (2)分别对 和 求偏导 (3)参数更新 (4)迭代 得到隐向量后,对某个用户进行推荐时,利用该用户的隐向量与所有物品的隐向量进行逐一内积运算,得到该用户对所有物品的得分,再进行排序,得到最终的推荐列表。 4)贝叶斯矩阵分解

2、PCA---奇异值分解

3.2.4.1 方法建立

就全国范围而言,我国地下水质量总体较好,根据国家《地下水质量标准》(GB/T 14848—93),我国63%的地区地下水可直接饮用,17%经适当处理后可供饮用,12%不宜饮用,剩余8%为天然的咸水和盐水,由此可见,不宜饮用的地下水和天然咸水、盐水占到了20%,对于这些地下水型水源地饮用水指标并不一定受到污染而存在超标现象,其水质可能受到地下水形成演化影响更为明显,因此,考虑选择反映地下水形成、演化的地下水水化学类型常规指标,进行影响因素解析。地下水水质指标在取样与分析过程中,由于取样和样品处理、试剂和水纯度、仪器量度和仪器洁净、采用的分析方法、测定过程以及数据处理等过程均会产生测量误差(系统误差,随机误差,过失误差)。从取样到分析结果计算误差都绝对存在,虽然在各个过程中进行质量控制,但无法完全消除不确定性的影响,为确保分析结果的可靠性,采用PMF法对地下水水质指标考虑一定的不确定性误差,使分析数据能够准确地反映实际情况。

PMF(Positive Matrix Factorization)与主成分分析(PCA)、因子分析(FA)都是利用矩阵分解来解决实际问题的分析方法,在这些方法中,原始的大矩阵被近似分解为低秩的V=WH形式。但PMF与PCA和FA不同,PCA、FA方法中因子W和H中的元素可为正或负,即使输入的初始矩阵元素全是正的,传统的秩削减算法也不能保证原始数据的非负性。在数学上,从计算的观点看,分解结果中存在负值是正确的,但负值元素在实际问题中往往是没有意义的。PMF是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法,在求解过程中对因子载荷和因子得分均做非负约束,避免矩阵分解的结果中出现负值,使得因子载荷和因子得分具有可解释性和明确的物理意义。PMF使用最小二乘方法进行迭代运算,能够同时确定污染源谱和贡献,不需要转换就可以直接与原始数据矩阵作比较,分解矩阵中元素非负,使得分析的结果明确而易于解释,可以利用不确定性对数据质量进行优化,是美国国家环保局(EPA)推荐的源解析工具。

3.2.4.2 技术原理

PMF:模型是一种基于因子分析的方法,具有不需要测量源指纹谱、分解矩阵中元素非负、可以利用数据标准偏差来进行优化等优点。目前PMF模型此方法成功用于大气气溶胶、土壤和沉积物中持久性有毒物质的源解析,已有成熟的应用模型 PMF1.1,PMF2.0,PMF3.0等。PMF模型基本方程为:

Xnm=GnpFpm+E (3.7)

式中:n——取样点数;

m——各取样点测试的成分数量;

p——污染源个数;

Xnm——取样点各成分含量;

Gnp——主要源的贡献率;

Fpm——源指纹图谱。

基本计算过程如下:

1)样品数据无量纲化,无量纲化后的样品数据矩阵用D表示。

2)协方差矩阵求解,为计算特征值和特征向量,可先求得样品数据的协方差矩阵,用D′为D的转置,算法为:

Z=DD′ (3.8)

3)特征值及特征向量求解,用雅各布方法可求得协方差矩阵Z的特征值矩阵E和特征向量矩阵Q,Q′表示Q的转置。这时,协方差矩阵可表示为:

Z=QEQ′ (3.9)

4)主要污染源数求解,为使高维变量空间降维后能尽可能保留原来指标信息,利用累计方差贡献率提取显著性因子,判断条件为:

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

式中:n——显著性因子个数;

m——污染物个数;

λ——特征值。

5)因子载荷矩阵求解,提取显著性因子后,利用求解得到的特征值矩阵E和特征向量矩阵Q进一步求得因子载荷矩阵S和因子得分矩阵C,这时,因子载荷矩阵可表示为:

S=QE1/2 (3.11)

因子得分矩阵可表示为:

C=(S′S)-1S′D (3.12)

6)非负约束旋转,由步骤5求得的因子载荷矩阵S和因子得分矩阵C分别对应主要污染源指纹图谱和主要污染源贡献,为解决其值可能为负的现象,需要做非负约束的旋转。

7)首先利用转换矩阵T1对步骤5求得的因子载荷矩阵S和因子得分矩阵C按下式进行旋转:

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

C1=T1C (3.14)

式中:S1——旋转后的因子载荷矩阵;

C1——旋转后的因子得分矩阵;

T1——转换矩阵,且T1=(C∗C′)(C∗C′)-1(其中:C∗为把C中的负值替换为零后的因子得分矩阵)。

8)利用步骤7中旋转得到的因子载荷矩阵S1构建转换矩阵T2对步骤5中旋转得到的因子载荷矩阵S1和因子得分矩阵C1继续旋转:

S2=S1T2 (3.15)

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

式中:S2——二次旋转后的因子载荷矩阵;

C2——二次旋转后的因子得分矩阵;

T2——二次转换矩阵,且T2=(S′1+S1)-1(S′1+ )(其中: 为S1中的负值换为零后的因子载荷矩阵)。

9):重复步骤7、8,直到因子载荷中负值的平方和小于某一设定的误差精度e而终止,最终得到符合要求的因子载荷矩阵S,即主要污染源指纹图谱。

3.2.4.3 方法流程

针对受体采样数据直接进行矩阵分解,得到各污染源组分及其贡献率的统计方法(图3.5)。

图3.5 方法流程图

(1)缺失值处理

正定矩阵因子分析是基于多元统计的分析方法,对数据有效性具有一定的要求,因此在进行分析之前首先对数据进行预处理。根据已有数据的特征结合实际情况主要有以下5种处理方法。

1)采样数据量充足的情况下直接丢弃含缺失数据的记录。

2)存在部分缺失值情况下用全局变量或属性的平均值来代替所有缺失数据。把全局变量或是平均值看作属性的一个新值。

3)先根据欧式距离或相关分析来确定距离具有缺失数据样本最近的K个样本,将这K个值加权平均来估计该样本的缺失数据。

4)采用预测模型来预测每一个缺失数据。用已有数据作为训练样本来建立预测模型,如神经网络模型预测缺失数据。该方法最大限度地利用已知的相关数据,是比较流行的缺失数据处理技术。

5)对低于数据检测限的数据可用数据检测限值或1/2检测限以及更小比例检测限值代替。

(2)不确定性处理

计算数据不确定性。

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

式中:s——误差百分数;

c——指标浓度值;

l——因子数据检出限。

(3)数据合理性分析

本研究所用数据在放入模型前以信噪比S/N(Signal to Noise)作为标准进行筛选,信噪比S/N为:

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

式中:xij——第i采样点第j个样品的浓度;

sij——第i采样点第j个样品的标准偏差。

信噪比小,说明样品的噪声大,信噪比越大则表示样品检出的可能性越大,越适合模型。

(4)数据输入及因子分析

与其他因子分析方法一样,PMF不能直接确定因子数目。确定因子数目的一般方法是尝试多次运行软件,根据分析结果和误差,Q值以及改变因子数目时Q值的相对变化等来确定合理的因子数目。

3.2.4.4 适用范围

PMF对污染源和贡献施加了非负限制,并考虑了原始数据的不确定性,对数据偏差进行了校正,使结果更具有科学的解释。PMF使用最小二乘方法,得到的污染源不需要转换就可以直接与原始数据矩阵作比较,PMF方法能够同时确定污染源和贡献,而不需要事先知道源成分谱。适用于水文地质条件简单,观测数据量较大,污染源和污染种类相对较少的地区,运用简便,可应用分析软件进行计算。

3.2.4.5 NMF 源解析

NMF在实现上较PMF算法简单易行,非负矩阵分解根据目的的不同大致可以分为两种:一是在保证数据某些性质的基础上,将高维空间的样本点映射到某个低维空间上,除去一些不重要的细节,获得原数据的本质信息;二是在从复杂混乱的系统中得到混合前的独立信息的种类和强度。因此,基于非负矩阵分解过程应用领域的不同,分解过程所受的约束和需要保留的性质都不相同。本书尝试性地将NMF算法应用于水质影响因素的分离计算中(表3.2)。

表3.2 RMF矩阵分解权值表

依照非负矩阵分解理论的数学模型,寻找到一个分解过程V≈WH,使WH和V无限逼近,即尽可能缩小二者的误差。在确保逼近的效果,定义一个相应的衡量标准,这个衡量标准就叫作目标函数。目标函数一般采用欧氏距离和散度偏差来表示。在迭代过程中,采用不同的方法对矩阵W和H进行初始化,得到的结果也会不同,算法的性能主要取决于如何对矩阵W和H进行初始化。传统的非负矩阵算法在对矩阵W和H赋初值时采用随机方法,这样做虽然简单并且容易实现,但实验的可重复性以及算法的收敛速度是无法用随机初始化的方法来控制的,所以这种方法并不理想。许多学者提出改进W和H的初始化方法,并发展出专用性比较强的形式众多的矩阵分解算法,主要有以下几种:局部非负矩阵分解(Local Non-negative Matrix Factorization,LNMF)、加权非负矩阵分解(Weighted Non-negative Matrix Factorization,WNMF)、Fisher非负矩阵分解(Fisher Non-negative Matrix Factorization,FNMF)、稀疏非负矩阵分解(Sparse Non-negative Matrix Factorization,SNMF)、受限非负矩阵分解(Constrained Non-negative Matrix Factorization,CNMF)、非平滑非负矩阵分解(Non-smooth Non-negative Matrix Factorization,NSNMF)、稀疏受限非负矩阵分解(Nonnegative Matrix Factorization with Sparseness Constraints,NMF-SC)等理论方法,这些方法针对某一具体应用领域对NMF算法进行了改进。

本书尝试应用MATLAB工具箱中NNMF程序与改进的稀疏非负矩阵分解(SNMF)对研究区11项指标(同PMF数据)进行分解,得到各元素在综合成分中的得分H,初始W0,H0采用随机法取初值。r为分解的基向量个数,合适的r取值主要根据试算法确定,改变r值观察误差值变化情况,本书利用SMNF算法计算时,r分别取2,3,4,采用均方误差对迭代结果效果进行评价,结果显示当r取2,4时误差值为0.034,取3时误差值为0.016,因此r=3是较合理的基向量个数。采用NNMF算法进行计算时,利用MATLAB工具箱提供的两种计算法分别进行计算,乘性法则(Multiplicative Update Algorithm)计算结果误差项比最小二乘法(Alternating Least-squares Algorithm)计算误差值小且稳定,但总体NNMF计算误差较大,改变初始W0,H0取值和增加迭代次数误差均未明显减小,调整r取值,随着r值的增大误差逐渐减小。

对比SNMF和NNMF算法所得权值结果,两种方法所得权值趋势一致,但得分值有所不同,由于SNMF算法对矩阵进行了稀疏性约束,计算结果中较小的权值更趋近于0,两次结果中在三个基向量上总体权值较大的元素项为T-Hard、 、Mg2+、Ca2+、 ,从盲源分离的角度来看该几种元素对地下水具有较大的影响,但从地下水水质影响因素来看,该方法对数据的分析偏重于突出局部数据的特征,在各因素相关性较大但含量不高的情况下,容易忽略了关键的影响因素。从权值得分来看,SNMF法解析的第一个基向量上的元素包括EC、T-Hard、NH4—N、 、 、TDS;第二基向量主要有Na+、Mg2+、Cl-;第三个基向量 、Ca2+,从结果可以看出该方法进行矩阵分解并未得到可合理解释的源项结果,方法有待进一步研究及验证。

逆矩阵的求法及应用论文答辩

矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用.2.初等变换法3.伴随阵法例:此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大。4.分块矩阵求逆法4.1.准对角形矩阵的求逆例:4.2.准三角形矩阵求逆其它公式:此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.

逆矩阵的求法:

1、利用定义求逆矩阵

设A、B都是n阶方阵, 如果存在n阶方阵B 使得AB=BA=E, 则称A为可逆矩阵, 而称B为A的逆矩阵。

2、运用初等行变换法

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=(A,I])对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。

3、增广矩阵法

如果要求逆的矩阵是A,则对增广矩阵(A E)进行初等行变换,E是单位矩阵,将A化到E,此时此矩阵的逆就是原来E的位置上的那个矩阵,原理是 A逆乘以(A E)= (E A逆)初等行变换就是在矩阵的左边乘以A的逆矩阵得到的。

4、待定系数法

待定系数法顾名思义就是对未知数进行求解。用一个新的包含未定因子的多项式来表达多项式,从而获得一个恒等式。接着,利用恒等式的特性,推导出一类系数必须满足的方程或方程,再由方程组或方程组得到待确定的系数,或确定各系数之间的对应关系,称为待定系数法。

一般用初等行变换,来求,对增广矩阵A|E,同时施行初等行变换,化成E|A^-1;

在原矩阵的右侧接写一个四阶单位矩阵,然后对扩展矩阵施行初等行变换,使前面的四阶矩阵化为单位矩阵,则右侧的单位矩阵就化为了原来前面的逆矩阵。

扩展资料:

逆矩阵求法:

求逆矩阵的初等变换法

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵

对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A。

如求

的逆矩阵A-1。

故A可逆并且,由右一半可得逆矩阵A-1=

初等变换法计算原理

若n阶方阵A可逆,即A行等价I,即存在初等矩阵P1,P2,...,Pk使得

,在此式子两端同时右乘A-1得:

比较两式可知:对A和I施行完全相同的若干初等行变换,在这些初等行变化把A变成单位矩阵的同时,这些初等行变换也将单位矩阵化为A-1。

如果矩阵A和B互逆,则AB=BA=I。由条件AB=BA以及矩阵乘法的定义可知,矩阵A和B都是方阵。再由条件AB=I以及定理“两个矩阵的乘积的行列式等于这两个矩阵的行列式的乘积”可知,这两个矩阵的行列式都不为0。也就是说,这两个矩阵的秩等于它们的级数(或称为阶,也就是说,A与B都是方阵,且rank(A) = rank(B) = n)。

换句话说,这两个矩阵可以只经由初等行变换,或者只经由初等列变换,变为单位矩阵[2] 。

伴随矩阵法

如果矩阵可逆,则

注意:

中元素的排列特点是的第k列元素是A的第k行元素的代数余子式。

要求得

即为求解的余因子矩阵的转置矩阵。

A的伴随矩阵为,其中Aij=(-1)i+jMij称为aij的代数余子式。

参考资料:百度百科-逆矩阵

矩阵及特殊矩阵的实例毕业论文

很多应用啊。。。比如工程上的,控制上的。你可以多看看书,上面都有应用的例子。比如应用数值线性代数,控制论中的矩阵计算等等。。

告诉你拟就会写吗。不如我给你写得了

矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

一类特殊对称矩阵的特征值与特征向量陆全 徐仲 【摘要】:【作者单位】:西北工业大学西北工业大学【关键词】:矩阵的特征值正交特征向量特征值与特征向量对称矩阵实对称阵特征问题矩阵A正交变换《线性代数》正交阵【分类号】:O151【DOI】:CNKI:SUN:XUSJ.0.1997-04-013【正文快照】:同济大学《线性代数》第130页例10要求一个正交变换.把二次型化为标准形,其中需要求矩阵的特征值与单位正交特征向量。事实上,这个矩阵R是一种具有特殊对称性的矩阵。这类矩阵的特征问题有如下的一般结论。考虑如下的特殊对称矩阵其中A、B均为m阶实对称阵,u是m维列向量,

相关百科

热门百科

首页
发表服务