首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

简易计算器的设计方案毕业论文

发布时间:

简易计算器的设计方案毕业论文

不是说百度啥都 有的

#include /*DOS接口函数*/#include /*数学函数的定义*/#include /*屏幕操作函数*/#include /*I/O函数*/#include /*库函数*/#include /*变量长度参数表*/#include /*图形函数*/#include /*字符串函数*/#include /*字符操作函数*/#define UP 0x48 /*光标上移键*/#define DOWN 0x50 /*光标下移键*/#define LEFT 0x4b /*光标左移键*/#define RIGHT 0x4d /*光标右移键*/#define ENTER 0x0d /*回车键*/void *rar; /*全局变量,保存光标图象*/struct palettetype palette; /*使用调色板信息*/int GraphDriver; /* 图形设备驱动*/int GraphMode; /* 图形模式值*/int ErrorCode; /* 错误代码*/int MaxColors; /* 可用颜色的最大数值*/int MaxX, MaxY; /* 屏幕的最大分辨率*/double AspectRatio; /* 屏幕的像素比*/void drawboder(void); /*画边框函数*/void initialize(void); /*初始化函数*/void computer(void); /*计算器计算函数*/void changetextstyle(int font, int direction, int charsize); /*改变文本样式函数*/void mwindow(char *header); /*窗口函数*/int specialkey(void) ; /*获取特殊键函数*/int arrow(); /*设置箭头光标函数*//*主函数*/int main(){ initialize();/* 设置系统进入图形模式 */ computer(); /*运行计算器 */ closegraph();/*系统关闭图形模式返回文本模式*/ return(0); /*结束程序*/}/* 设置系统进入图形模式 */void initialize(void){ int xasp, yasp; /* 用于读x和y方向纵横比*/ GraphDriver = DETECT; /* 自动检测显示器*/ initgraph( &GraphDriver, &GraphMode, "" );/*初始化图形系统*/ ErrorCode = graphresult(); /*读初始化结果*/ if( ErrorCode != grOk ) /*如果初始化时出现错误*/ { printf("Graphics System Error: %s\n", grapherrormsg( ErrorCode ) ); /*显示错误代码*/ exit( 1 ); /*退出*/ } getpalette( &palette ); /* 读面板信息*/ MaxColors = getmaxcolor() + 1; /* 读取颜色的最大值*/ MaxX = getmaxx(); /* 读屏幕尺寸 */ MaxY = getmaxy(); /* 读屏幕尺寸 */ getaspectratio( &xasp, &yasp ); /* 拷贝纵横比到变量中*/ AspectRatio = (double)xasp/(double)yasp;/* 计算纵横比值*/}/*计算器函数*/void computer(void){ struct viewporttype vp; /*定义视口类型变量*/ int color, height, width; int x, y,x0,y0, i, j,v,m,n,act,flag=1; float num1=0,num2=0,result; /*操作数和计算结果变量*/ char cnum[5],str2[20]={""},c,temp[20]={""}; char str1[]="1230.456+-789*/Qc=^%";/* 定义字符串在按钮图形上显示的符号 */ mwindow( "Calculator" ); /* 显示主窗口 */ color = 7; /*设置灰颜色值*/ getviewsettings( &vp ); /* 读取当前窗口的大小*/ width=(vp.right+1)/10; /* 设置按钮宽度 */ height=(vp.bottom-10)/10 ; /*设置按钮高度 */ x = width /2; /*设置x的坐标值*/ y = height/2; /*设置y的坐标值*/ setfillstyle(SOLID_FILL, color+3); bar( x+width*2, y, x+7*width, y+height ); /*画一个二维矩形条显示运算数和结果*/ setcolor( color+3 ); /*设置淡绿颜色边框线*/ rectangle( x+width*2, y, x+7*width, y+height ); /*画一个矩形边框线*/ setcolor(RED); /*设置颜色为红色*/ outtextxy(x+3*width,y+height/2,"0."); /*输出字符串"0."*/ x =2*width-width/2; /*设置x的坐标值*/ y =2*height+height/2; /*设置y的坐标值*/ for( j=0 ; j<4 ; ++j ) /*画按钮*/ { for( i=0 ; i<5 ; ++i ) { setfillstyle(SOLID_FILL, color); setcolor(RED); bar( x, y, x+width, y+height ); /*画一个矩形条*/ rectangle( x, y, x+width, y+height ); sprintf(str2,"%c",str1[j*5+i]); /*将字符保存到str2中*/ outtextxy( x+(width/2), y+height/2, str2); x =x+width+ (width / 2) ; /*移动列坐标*/ } y +=(height/2)*3; /* 移动行坐标*/ x =2*width-width/2; /*复位列坐标*/ } x0=2*width; y0=3*height; x=x0; y=y0; gotoxy(x,y); /*移动光标到x,y位置*/ arrow(); /*显示光标*/ putimage(x,y,rar,XOR_PUT); m=0; n=0; strcpy(str2,""); /*设置str2为空串*/ while((v=specialkey())!=45) /*当压下Alt+x键结束程序,否则执行下面的循环*/ { while((v=specialkey())!=ENTER) /*当压下键不是回车时*/ { putimage(x,y,rar,XOR_PUT); /*显示光标图象*/ if(v==RIGHT) /*右移箭头时新位置计算*/ if(x>=x0+6*width) /*如果右移,移到尾,则移动到最左边字符位置*/ { x=x0; m=0; } else { x=x+width+width/2; m++; } /*否则,右移到下一个字符位置*/ if(v==LEFT) /*左移箭头时新位置计算*/ if(x<=x0) { x=x0+6*width; m=4; } /*如果移到头,再左移,则移动到最右边字符位置*/ else { x=x-width-width/2; m--; } /*否则,左移到前一个字符位置*/ if(v==UP) /*上移箭头时新位置计算*/ if(y<=y0) { y=y0+4*height+height/2; n=3; } /*如果移到头,再上移,则移动到最下边字符位置*/ else { y=y-height-height/2; n--; } /*否则,移到上边一个字符位置*/ if(v==DOWN) /*下移箭头时新位置计算*/ if(y>=7*height) { y=y0; n=0; } /*如果移到尾,再下移,则移动到最上边字符位置*/ else { y=y+height+height/2; n++; } /*否则,移到下边一个字符位置*/ putimage(x,y,rar,XOR_PUT); /*在新的位置显示光标箭头*/ } c=str1[n*5+m]; /*将字符保存到变量c中*/ if(isdigit(c)||c=='.') /*判断是否是数字或小数点*/ { if(flag==-1) /*如果标志为-1,表明为负数*/ { strcpy(str2,"-"); /*将负号连接到字符串中*/ flag=1; } /*将标志值恢复为1*/ sprintf(temp,"%c",c); /*将字符保存到字符串变量temp中*/ strcat(str2,temp); /*将temp中的字符串连接到str2中*/ setfillstyle(SOLID_FILL,color+3); bar(2*width+width/2,height/2,15*width/2,3*height/2); outtextxy(5*width,height,str2); /*显示字符串*/ } if(c=='+') { num1=atof(str2); /*将第一个操作数转换为浮点数*/ strcpy(str2,""); /*将str2清空*/ act=1; /*做计算加法标志值*/ setfillstyle(SOLID_FILL,color+3); bar(2*width+width/2,height/2,15*width/2,3*height/2); outtextxy(5*width,height,"0."); /*显示字符串*/ } if(c=='-') { if(strcmp(str2,"")==0) /*如果str2为空,说明是负号,而不是减号*/ flag=-1; /*设置负数标志*/ else { num1=atof(str2); /*将第二个操作数转换为浮点数*/ strcpy(str2,""); /*将str2清空*/ act=2; /*做计算减法标志值*/ setfillstyle(SOLID_FILL,color+3); bar(2*width+width/2,height/2,15*width/2,3*height/2); /*画矩形*/ outtextxy(5*width,height,"0."); /*显示字符串*/ } } if(c=='*') { num1=atof(str2); /*将第二个操作数转换为浮点数*/ strcpy(str2,""); /*将str2清空*/ act=3; /*做计算乘法标志值*/ setfillstyle(SOLID_FILL,color+3); bar(2*width+width/2,height/2,15*width/2,3*height/2); outtextxy(5*width,height,"0."); /*显示字符串*/ } if(c=='/') { num1=atof(str2); /*将第二个操作数转换为浮点数*/ strcpy(str2,""); /*将str2清空*/ act=4; /*做计算除法标志值*/ setfillstyle(SOLID_FILL,color+3); bar(2*width+width/2,height/2,15*width/2,3*height/2); outtextxy(5*width,height,"0."); /*显示字符串*/ } if(c=='^') { num1=atof(str2); /*将第二个操作数转换为浮点数*/ strcpy(str2,""); /*将str2清空*/ act=5; /*做计算乘方标志值*/ setfillstyle(SOLID_FILL,color+3); /*设置用淡绿色实体填充*/ bar(2*width+width/2,height/2,15*width/2,3*height/2); /*画矩形*/ outtextxy(5*width,height,"0."); /*显示字符串*/ } if(c=='%') { num1=atof(str2); /*将第二个操作数转换为浮点数*/ strcpy(str2,""); /*将str2清空*/ act=6; /*做计算模运算乘方标志值*/ setfillstyle(SOLID_FILL,color+3); /*设置用淡绿色实体填充*/ bar(2*width+width/2,height/2,15*width/2,3*height/2); /*画矩形*/ outtextxy(5*width,height,"0."); /*显示字符串*/ } if(c=='=') { num2=atof(str2); /*将第二个操作数转换为浮点数*/ switch(act) /*根据运算符号计算*/ { case 1:result=num1+num2;break; /*做加法*/ case 2:result=num1-num2;break; /*做减法*/ case 3:result=num1*num2;break; /*做乘法*/ case 4:result=num1/num2;break; /*做除法*/ case 5:result=pow(num1,num2);break; /*做x的y次方*/ case 6:result=fmod(num1,num2);break; /*做模运算*/ } setfillstyle(SOLID_FILL,color+3); /*设置用淡绿色实体填充*/ bar(2*width+width/2,height/2,15*width/2,3*height/2); /*覆盖结果区*/ sprintf(temp,"%f",result); /*将结果保存到temp中*/ outtextxy(5*width,height,temp); /*显示结果*/ } if(c=='c') { num1=0; /*将两个操作数复位0,符号标志为1*/ num2=0; flag=1; strcpy(str2,""); /*将str2清空*/ setfillstyle(SOLID_FILL,color+3); /*设置用淡绿色实体填充*/ bar(2*width+width/2,height/2,15*width/2,3*height/2); /*覆盖结果区*/ outtextxy(5*width,height,"0."); /*显示字符串*/ } if(c=='Q')exit(0); /*如果选择了q回车,结束计算程序*/ } putimage(x,y,rar,XOR_PUT); /*在退出之前消去光标箭头*/ return; /*返回*/}/*窗口函数*/void mwindow( char *header ){ int height; cleardevice(); /* 清除图形屏幕 */ setcolor( MaxColors - 1 ); /* 设置当前颜色为白色*/ setviewport( 20, 20, MaxX/2, MaxY/2, 1 ); /* 设置视口大小 */ height = textheight( "H" ); /* 读取基本文本大小 */ settextstyle( DEFAULT_FONT, HORIZ_DIR, 1 );/*设置文本样式*/ settextjustify( CENTER_TEXT, TOP_TEXT );/*设置字符排列方式*/ outtextxy( MaxX/4, 2, header ); /*输出标题*/ setviewport( 20,20+height+4, MaxX/2+4, MaxY/2+20, 1 ); /*设置视口大小*/ drawboder(); /*画边框*/}void drawboder(void) /*画边框*/{ struct viewporttype vp; /*定义视口类型变量*/ setcolor( MaxColors - 1 ); /*设置当前颜色为白色 */ setlinestyle( SOLID_LINE, 0, NORM_WIDTH );/*设置画线方式*/ getviewsettings( &vp );/*将当前视口信息装入vp所指的结构中*/ rectangle( 0, 0, vp.right-vp.left, vp.bottom-vp.top ); /*画矩形边框*/}/*设计鼠标图形函数*/int arrow(){ int size; int raw[]={4,4,4,8,6,8,14,16,16,16,8,6,8,4,4,4}; /*定义多边形坐标*/ setfillstyle(SOLID_FILL,2); /*设置填充模式*/ fillpoly(8,raw); /*画出一光标箭头*/ size=imagesize(4,4,16,16); /*测试图象大小*/ rar=malloc(size); /*分配内存区域*/ getimage(4,4,16,16,rar); /*存放光标箭头图象*/ putimage(4,4,rar,XOR_PUT); /*消去光标箭头图象*/ return 0;}/*按键函数*/int specialkey(void){ int key; while(bioskey(1)==0); /*等待键盘输入*/ key=bioskey(0); /*键盘输入*/ key=key&0xff? key&0xff:key>>8; /*只取特殊键的扫描值,其余为0*/ return(key); /*返回键值*/}

1 KM-1 键混器的设计 1 Sw3204V监控器的设计 1 基于射频遥控型(单片机)交通灯的设计1 Sw802V视频切换器的设计 1 无线数控多相位灯从机的设计1 基于RS232遥控型交通灯的设计1 Sw802A音频切换器的设计1 Sw6408V监控器的设计 1 KM-3键混器的设计1 无线数控多相位灯主机的设计1 SW162V数字视频切换器的设计1 基于RS232监控切换器1 SW401V 数字视频切换器的设计1 基于单片机的多路数据采集系统1 RS485转RS232的模块设计1 基于LCD显示的波形发生器的设计1 4-20mA转RS-485模块的设计 1 基于RS232流量计的设计 1 基于PTR2000的交通灯控制器主机的设计1 基于RS485量水仪的设计1 压力采集控制器的设计 1 数字量转4-20mA模拟量输出的模块设计1 正弦波形发生器的设计1 基于PTR2000的交通灯控制器从机的设计1 基于RS485视频切换器的设计1 LCD车速里程表电路设计1 LED车速里程表电路设计1 MSK通信系统的仿真设计1 员工信息管理系统 1 计算机文化基础考试系统的设计和开发1 人事工资管理系统1 员工信息管理系统设计1 超市进销存管理系统的VB实现1 基于单片机的多波形发生器的应用1 基于单片机电动自行车控制器设计1 个人理财管理系统1 基于CAN总线火灾监控系统的研究1 基于DSP平台的FIR滤波器设计1 于Matlab的FIR数字滤波器设计与仿真1 基于TMS320VC5402-DSP的最小系统硬件设计1 基于单片机的热水控制器 1 基于单片机的路灯控制系统的设计1 于单片机远程控制家用电器系统的设计1 基于液晶显示的乘法口诀测试仪的设计1 实验室设备管理系统毕业设计开题报告1 用AT89C51做PLC.doc1 洗衣机全自动控制.doc1 数显频率计的设计.doc1 数控车间温度湿度控制系统设计.doc1 三角波斜率测试仪设计.doc1 人脸几何特征提取1 全自动洗衣机的控制程序设计.doc1 乞丐论文.doc1 教学楼毕业设计.doc1 建立海上风电场的技术要求分析与探讨.doc1 基于凌阳61A的数字式温湿度检测仪.doc1 基于几何匹配和分合算法的人脸识别.doc1 基于单片机数字钟的设计.doc1 基于单片机数据通用采集器的设计.doc1 基于单片机数据采集器.doc1 基于单片机的自动报警器的设计.doc1 基于单片机的终端设计.doc1 基于单片机的路灯控制系统控制系统的设计.doc1 基于单片机的交通灯的设计.doc1 基于单片机的简易计算器的设计.doc1 基于单片机的家用安保系统的设计.doc1 基于VHDL的数字频率计.doc1 基于SystemView的OFDM系统仿真设计.doc1 基于SystemView的OFDM系统仿真设计1.doc1 基于PLC的烧结配料控制系统设计.doc1 基于MSP430的温度检测系统设计1.doc1 基于MATLAB工具箱的数字滤波器设计.doc1 基于MATLAB的扩频通信系统仿真研究.doc1 基于GSM短信息通信方式的路灯无线监控系统.doc1 基于FPGA的信号源设计.doc1 基于EPP协议的AVR与PC并行通信系统的设计0.doc1 单片机交通灯.doc1 单片机多点温度巡回检测系统的设计.doc1 单片机的温湿度检测系统A.doc1 单路口交通信号PLC控制系统的设计.doc1 城市路口多相位自寻优交通信号控制设计.doc1 陈洁(螺旋瓶盖的设计).doc1 八路竞赛抢答器.doc1 matlab信号与系统.doc1 GSM系统的研究与SystemView仿真.doc1 蒯申红智能语音报站系统设计5.301 MT8888在家庭安全电话报警系统中的应用设计1 基于FPGA的频率与功率因数在线测量1 基于FPGA的误码测试仪如果需要定做的话系 Q 273546756

简易计算器毕业论文

1 KM-1 键混器的设计 1 Sw3204V监控器的设计 1 基于射频遥控型(单片机)交通灯的设计1 Sw802V视频切换器的设计 1 无线数控多相位灯从机的设计1 基于RS232遥控型交通灯的设计1 Sw802A音频切换器的设计1 Sw6408V监控器的设计 1 KM-3键混器的设计1 无线数控多相位灯主机的设计1 SW162V数字视频切换器的设计1 基于RS232监控切换器1 SW401V 数字视频切换器的设计1 基于单片机的多路数据采集系统1 RS485转RS232的模块设计1 基于LCD显示的波形发生器的设计1 4-20mA转RS-485模块的设计 1 基于RS232流量计的设计 1 基于PTR2000的交通灯控制器主机的设计1 基于RS485量水仪的设计1 压力采集控制器的设计 1 数字量转4-20mA模拟量输出的模块设计1 正弦波形发生器的设计1 基于PTR2000的交通灯控制器从机的设计1 基于RS485视频切换器的设计1 LCD车速里程表电路设计1 LED车速里程表电路设计1 MSK通信系统的仿真设计1 员工信息管理系统 1 计算机文化基础考试系统的设计和开发1 人事工资管理系统1 员工信息管理系统设计1 超市进销存管理系统的VB实现1 基于单片机的多波形发生器的应用1 基于单片机电动自行车控制器设计1 个人理财管理系统1 基于CAN总线火灾监控系统的研究1 基于DSP平台的FIR滤波器设计1 于Matlab的FIR数字滤波器设计与仿真1 基于TMS320VC5402-DSP的最小系统硬件设计1 基于单片机的热水控制器 1 基于单片机的路灯控制系统的设计1 于单片机远程控制家用电器系统的设计1 基于液晶显示的乘法口诀测试仪的设计1 实验室设备管理系统毕业设计开题报告1 用AT89C51做PLC.doc1 洗衣机全自动控制.doc1 数显频率计的设计.doc1 数控车间温度湿度控制系统设计.doc1 三角波斜率测试仪设计.doc1 人脸几何特征提取1 全自动洗衣机的控制程序设计.doc1 乞丐论文.doc1 教学楼毕业设计.doc1 建立海上风电场的技术要求分析与探讨.doc1 基于凌阳61A的数字式温湿度检测仪.doc1 基于几何匹配和分合算法的人脸识别.doc1 基于单片机数字钟的设计.doc1 基于单片机数据通用采集器的设计.doc1 基于单片机数据采集器.doc1 基于单片机的自动报警器的设计.doc1 基于单片机的终端设计.doc1 基于单片机的路灯控制系统控制系统的设计.doc1 基于单片机的交通灯的设计.doc1 基于单片机的简易计算器的设计.doc1 基于单片机的家用安保系统的设计.doc1 基于VHDL的数字频率计.doc1 基于SystemView的OFDM系统仿真设计.doc1 基于SystemView的OFDM系统仿真设计1.doc1 基于PLC的烧结配料控制系统设计.doc1 基于MSP430的温度检测系统设计1.doc1 基于MATLAB工具箱的数字滤波器设计.doc1 基于MATLAB的扩频通信系统仿真研究.doc1 基于GSM短信息通信方式的路灯无线监控系统.doc1 基于FPGA的信号源设计.doc1 基于EPP协议的AVR与PC并行通信系统的设计0.doc1 单片机交通灯.doc1 单片机多点温度巡回检测系统的设计.doc1 单片机的温湿度检测系统A.doc1 单路口交通信号PLC控制系统的设计.doc1 城市路口多相位自寻优交通信号控制设计.doc1 陈洁(螺旋瓶盖的设计).doc1 八路竞赛抢答器.doc1 matlab信号与系统.doc1 GSM系统的研究与SystemView仿真.doc1 蒯申红智能语音报站系统设计5.301 MT8888在家庭安全电话报警系统中的应用设计1 基于FPGA的频率与功率因数在线测量1 基于FPGA的误码测试仪如果需要定做的话系 Q 273546756

我们是10分钟哦,今天刚答辩完没得啥子,好好讲自由发挥就是了10分钟讲自己论文的写作、选题、内容==老师提的问...哎,看对于哪个老师了,我们3个老师,一个很轻松就回答了,一个很难。。。

GPU光线跟踪算法加速结构研究摘要:基于GPU的光线跟踪算法是当前图形学研究的一个热点,也是将来用于广告、电影、游戏等娱乐产业的关键技术。本文论述了如何对基于GPU的光线跟踪算法进行实现,以及利用各种加速结构,加速算法实现,提高算法执行效率,并对各种加速结构的效果进行了比较研究。关键词:GPGPU 光线跟踪 BVH KD-Tree1.引言近年来,CPU无论在运算能力,还是在可编程性上都得到了大幅的提高,GPU已经在需要大量运算的密集运算领域发挥了举足轻重的作用。各种基于CPU的密集运算被移植到GPU上,以利用GPU巨大的运算能力,加速整个算法的运算过程。光线跟踪算法是生成真实感图形的一种非常重要的方法,在电影、游戏、广告等产业,获得广泛的应用,而光线跟踪算法也是典型的密集运算算法,利用原始的基于CPU的光线跟踪渲染一幅图片是非常耗时的操作。因此,如果能够将CPU上的光线跟踪算法,映射到CPU上,加速光线跟踪算法的执行时间,将会带来巨大的经济效益。因此,基于CPU的光线跟踪算法已成为国内外科研人员的研究热点。2.基于GPU的光线跟踪2.1 相关工作当前,主要由两种方法利用CPU来加速光线跟踪算法。第一种是Carr等人提出来的,将CPU转换为一个蛮力的执行光线一三角形求交的计算器,而将任何的光线生成以及着色过程在CPU上完成。这就需要CPU依然执行绝大部分的渲染工作。C arr等人指出,在ATI Radeon 8500上,每秒最快能够执行1亿2千万次的光线一三角形求交。同时,作者也指出,由于GPU的单精度浮点的限制,图片上依然存在一些不太真实的地方。第二种方法由Purcell等人提出的,改种方法将整个光线跟踪器都移植到CPU上进行实现。从光线的产生,加速结构的遍历,到最后的着色过程都在GPU上执行。此后,有很多相同的项目都是基于Purcell的模型上进行的。2.2 GPU上的光线跟踪算法的映射方式将传统的CPU上执行的光线跟踪算法,映射成为一个GPU协助的,或者基于GPU的光线跟踪器有众多方法。下面重点介绍Purcell提出的映射模型,以及在本文的实现中提出的一个基于CPU的Whitted模型的光线跟踪器。该光线跟踪器的布局如图2.1所示:在Purcell的论文中,它将光线一三角形求交,以及遍历过程分离成两个独立的遍历内核和求交内核。本文的实现中,也按照上述模型图,将光线跟踪算法分解成光线生成,光线一三角形求交,着色这三个步骤。在对光线进行跟踪之前,需要生成从视点指向屏幕的原始光线( primary ray)。在一个GPU上,能够使用光栅器的插值的能力,在一个单一的内核调用中,产生所有的原始光线。给定观察矩形(被采样用于产生图片的投影平面的一部分)的四个角,以及视点,首先计算出这个视锥体的四条边线。如果让光栅器在这4条光线之间,按照512×512规格,在这四条光线之间按照方向进行插值,最终就可以获得能够产生一幅512×512图片(一个像素一个采样点)的所有原始光线的方向。同时能够将这些方向存储在一个纹理里,并把它作为求交内核的输入。所有的原始光线具有相同的起始点,但是仍然把它存储在一个同方向纹理具有相同维度的纹理内。因为当生成阴影光线或者反射光线的时候,光线的原点会发生改变。求交内核把光线的原点,方向,以及场景的描述作为输入数据。在内核被调用数次之后,我们对于每一个像素输出一个击中记录。如果一条光线击中了场景中的某个三角形,返回击中点的3个重心坐标,以及相关的被击中的三角形。此外,还将输出被发现的交点沿光线的距离,以及被击中三角形的材质。这就需要使用5个浮点数值组成一个击中记录。纹理只能够支持4个颜色通道( RCBA),所以,如果能把击中记录裁减到4个值,那么将是非常有益的。观察发现,只需要3个重心坐标的两个,因为在三角形内部,它们相加的和总是1。这就使得在一个单独的RGBA纹理中存储交点记录是可行的,并且它的维度同其它两个光线纹理的维度相同。Moller和Trumbore提出了一个高效的光线一三角形求交算法,使用这个算法,并利用CPU在向量计算上的优势来进行求交计算。下面列出了求交的代码,这个代码也展示了如何利用向量指令来提高效率。当所有的原始光线都已经计算出了相交的状态的时候,就能够查询着色过程所需要的表面法线和材质的信息。每一个击中记录都存储了一个指向材质纹理的索引,这个材质纹理包含了三角形的法线,材质颜色以及类型。三个顶点的法线根据击中记录的中心坐标进行了插值。最终的颜色能够按(N-L)C进行计算,此处Ⅳ是法线,L是光源的方向,G是三角形的颜色。现在根据击中的三角形所具有的材质的类型(漫反射材质,或者镜面反射材质),需要产生二次光线,以此来计算阴影和反射。1)如果一条光线射出场景之外,像素就被赋予全局的背景颜色。2)如果一条光线击中了一个漫反射材质表面,就发射一条阴影射线( shdow ray)。这些光线的起始点在击中点,方向为从击中点指向光源。3)如果一条光线击中了一个镜面反射材质表面。就发射一条镜面反射光线。镜面发射光线的起始点也在击中点,但是它的方向是在击中点处关于入射光线和插值后的法线对称的方向。一个真正的Whitted类型的光线跟踪器也支持透明材质,从而能够产生折射光线。但由于主要是研究加速结构,所以在本文的实现中,没有考虑折射光线。4)如果阴影光线击中了某个几何体,这就说明在光源和击中点之间,存在某个几何体,所以这个像素就应该是黑色(处于阴影中)。当跟踪阴影光线的时候,不关心最近的那个击中点,更加关心的是是否存在这样的击中点。因此,当有一个交点被发现,就可以停止整个求交过程,从而加速算法的处理过程。在本文的实现中,以相同的方式跟踪阴影光线和反射光线,因此,就没有使用到这个优化策略。已经对每一个像素产生了正确二次光线,如果需要,就能够执行另外一趟遍历/求交过程,对上述的二次光线进行跟踪。每一次调用着色程序就能够对每一个像素返回一个颜色值和一条新的光线。着色内核也可以将前一次着色程序的输出当作本次着色程序的输入。这就使得能够在跟踪连续的光线的时候合并这些连续的镜面反射的颜色。同Carr等人的程序不同,本文所采用的程序不存在浮点精度太低的问题,因为Ceforce 7300在整个管线中支持真正的32位浮点操作。3.加速结构的实现和比较3.1均匀栅格均匀栅格是第一个在GPU上实现的加速结构。Purcell给出了很多选择均匀栅格作为加速结构的理由,但是Purcell没有详细的说明为什么均匀网格对于硬件实现而言比其它的加速结构要更加的简单。当在探讨了均匀栅格的一些主要特性的时候,更加清晰的知道了均匀栅格为什么会成为一个好的GPU机速结构。首先,只用使用简单的算术运算,就能够对于每个体素的遍历在常量时间能被定位和存取。这就消除了对树的遍历的需要,以及重复的纹理查找工作,而纹理查找是相当耗时的。其次,体素的遍历是通过递增算术运算来完成的。这就消除了对堆栈的需要,使得我们能够从光线的起始点开始,以距离递增的顺序访问体素成为可能。再其次,由于对于体素的访问是沿着光线,以距离递增的方式遍历的,所以,一旦在一个被访问的体素中报道发现有一个交点,就可以停止这条光线对体素的遍历过程,从而提高整个遍历过程的速度。最后,用于遍历的代码非常适合用向量编写,而向量形式的编码风格又非常适合GPU的指令集。然而,均匀栅格的缺点就是由于它是空间细分结构的一种特殊情况,多个体素可能包含相同三角形的多个引用。由于无法使用mailbox技术,这就意味着需要对于相同的光线和三角形之间进行不止一次的相交测试。3.2 KD-tree最近,Havran等人对基于CPU的光线跟踪算法的加速结构进行了比较,得出的结论是对于众多不同类型的测试场景,平均而言,KD-tree是最快的。所以,有必要考察一下对于基于KD-tree的GPU光线跟踪算法,是否也会有相似的结论。就像均匀栅格一样,KD-tree也是一种空间细分结构。同均匀网格不同的是,KD-tree利用一个二叉树将场景表示成一个层次结构。在二叉树中,我们将内部节点和叶子节点区分开。叶子节点用来表示体素和与之相关的保存在该体素内的三角形的引用。一个内部节点用来表示空间区域的某个部分。所以,内部节点包含一个分裂面的两个子树的引用,而叶子节点只包含一个三角形列表。KD-tree的创建过程从上而下,根据一个评价函数,通过放置一个分离平面,递归的将场景分离成两个体素。我们能够以递归的方式遍历KD-tree,但是由于GPU没有堆栈结构,所以无法应用递归的策略。取而代之的是,我们能够通过记住我们沿着光线前进了多远来向上或者向下遍历树。这种策略消除了需要堆栈的限制,使得用CPU来完成对KD-tree结构的遍历成为可能。当使用GPU对KD-tree进行遍历的时候,KD-tree像均匀栅格那样被表示成一个纹理的集合。这就意味着有一个保存树数据的纹理,一个保存三角形列表的纹理,和一个保存实际的三角形数据的纹理。GPU的遍历首先调用一个初始化内核,然后按照需要,多次调用合并后的遍历和求交内核。3.3 包围体层次(BVH)给定一些随机的光线,通过计算遍历包围体层次的平均花费,就可以测量出该包围体层次的质量。迄今为止,还没有构建最优的包围体层次的算法,也就是说,如何准确的测量一个包围体层次的平均遍历时间还不是很明显。Goldsmith和Salmon提出了一个评价函数,通常被称为表面积启发式函数。他们通过父节点和孩子节点的表面积之比来形式化的表述这个关系,此评价函数如下所示:此处,hit(n)是光线击中节点n的情况,Sn是节点n的表面积,c和p分别表示父节点和孩子节点。这个评价函数给出了,当用一条随机的光线同层次结构求交的时候,成本上的估计。由于没有最优的方法去有效的构造一个最优的BVH,提出了不同的构造技巧。下面,将列出比较通用的方法。在实践中,对于包围体应用的最广泛的就是轴对齐包围盒(AABB)。AABB易于实现,并且同光线的求交测试非常快。大多数有关BVH的论文在描述BVH的创建的时候,通常分别以Kay和Kajiya,或者Goldsmith和Salmon这两种基本的想法为基础。Kay和Kajiaya建议以自上而下递归的方式进行BVH的创建。Goldsmith和Salmon提出了一个更加复杂的自底向上的构造方式。Goldsmith和Salmon指出,BVH的质量同作为输入传人的三角形的顺序有关。因此,他们建议在构造BVH之前,随机打乱三角形的顺序。下述算法就是利用Kay/Kajiya的思想创建某个场景的包围体层次的方法:4.结束语本文成功的在GPU上实现了用于光线跟踪算法中的各种加速结构,并对这些加速结构在GPU上的加速效果进行了比较。均匀栅格作为第一个在CPU上实现的光线跟踪器的加速结构,也被证明是最慢的,除非是只包含一个单独的物体的场景的情况。均匀栅格不适合几何体的密度非常高的场景。另外,对于均匀栅格的CPU上的遍历表示,也需要大量的数据。Foley和Sugerman认为,对于大多数场景,KD-tree的效率要比均匀栅格高。但是,在KD-tree的遍历过程中,无论是重置阶段还是回退阶段,片元程序都非常的复杂,但这种复杂性也使得其能够在场景的几何体的密度改变的时候做出适当的调整。本文实现的BVH被证明在加速效果上要超过均匀栅格和KD-tree,在现阶段,BVH是在GPU上实现的最快的加速结构。并且在GPU上实现BVH加速结构要比实现其他加速结构更加的简单。参考文献:[1]Randima Femado编,姚勇,王小琴译.GPU精粹一实时图形编程的技术,技巧和技艺[M].北京:人民邮电出版社,2006.[2] Matt Pharr编著,龚敏敏译.GPU精粹2-高性能图形芯片和通用计算编程技巧[M].北京:清华大学出版社.[3]昊恩华,柳有权.基于图形处理器(GPU)的通用计算叨.计算机辅助设计与图形学学报,2004,16(5): 601-[4] Philip J.Schneider,David H.Eberly著,周长发译,计算机图形学几何工具算法详解[M].北京:电子工业出版社,2005.[5] Martin Christen. Implementing ray tracing on GPU. Master´sthesis, University of Applied Sciences Basel,

#include float numA = 0;float numB = 0;float temp = 0;void calc(){ printf("\n"); printf("======欢迎使用计算器====="); printf("\n"); printf("请输入第一个数:"); scanf("%lf",&numA) printf("请输入第二个数:"); scanf("%lf",&numB); printf("请输入你的选择:\n1加法运算\n,2减法运算\n,3乘法运算\n,4除法运算\n,5求余运算\n,6退出系统\n"); char choose = 0;scanf("%c",choose); temp = 0; switch (choose) { case '1': temp = numA + numB; break; case '2': temp = numA - numB; break; case '3': temp = numA * numB; break; case '4': temp = numA / numB; break; case '5': temp = (int)numA % (int)numB; break; case '6': .printf("已经成功退出系统!"); break; default: printf("输入错误,请重新输入!"); print("\n"); calc(); break; } }void login(){ printf("请系统登录输入密码:"); char password [100]=""; scanf("%s",&password) if (password=="admin") { calc(); }else{ printf("你输入的系统密码不正确,请重新输入!\n"); printf("\n"); login(); } } void main() { login(); printf("结果是:%lf",temp); }

简易计分器毕业论文

随着社会主义的不断进步和发展,计算机的应用渗透到了社会的各行各业,计算机也越来越多的出现在了人们的生活中,在工作中人们也需要计算机方面的人才。下面是我为大家整理的计算机毕业论文,供大家参考。

摘要:计算机应用基础在现在生活、学习、工作中的作用越来越大,但高校计算机应用基础课程教学存在一些问题,已经不能适应现实的需求。本文深化高校计算机应用基础课程教学改革的意义作为切入点,分析了高校计算机应用基础课程教学存在的问题,最后提出了高校计算机应用基础课程教学改革的策略。

关键词:计算机应用;教学;改革

一、深化高校计算机应用基础课程教学改革的意义

伴随着资讯化的发展,计算机已经成为了日常生活、工作的最基本的技能。但在高校高校计算机应用基础课程教学中学校、教师对计算机应用基础课程不够重视,学时较少,教学模式和教学效果等方面都不尽如意,对于大学生计算机的应用能力的培养具有一定的影响,因此,深化高校计算机应用基础课程教学改革是一项势在必行的工作,对于推进高校发展,培养大学生计算机应用能力等方面具有重要的现实意义。

二、高校计算机应用基础课程教学存在的问题

一对计算机应用基础课程重视度不高。学校、教师、学生普遍认为计算机应用基础课程是一门公共课程,只要考试过关即可,教师和学生的重视度不高。一方面教师认为对于非计算机专业的学生,对于计算机的要求要求不高,只要上课随便讲讲就可以了,因此对学生的要求也不高,导致学生的学习计算机应用基础课程的积极性较低。另一方面,部分大学生认为学习计算机只要学会上网聊天、浏览网页、看电视电影、玩游戏等娱乐活动,就是掌握了计算机的基本知识。也有一部分学生认为自己在大学时已经掌握了计算机应用的基础知识,大学时没有必要再重复学习了,只要把自己的专业课学好就可以了。

二学生水平不一致,教学不能因材施教。在高校中,学生来自不同的地方,对于计算机基础的掌握程度也不尽相同。但反观高校计算机应用基础课程的设定,还在使用统一的教学大纲,统一的教学内容,这就导致了计算机应用基础课程对部分学生的吸引力不大。而基础较差的学生则无法掌握教师教授的内容。因此,高校计算机应用基础课程的教学计划很难完成。

三讲授时间与实践操作时间分配不合理。随着资讯网路的不断进步与发展,计算机应用基础课程的教学内容和范围不断增加,知识点也越来越细,这就要求教师的教学内容不断更新和扩充,计算机不断发展和应用范围的扩大,要求我们不断的更新和扩充教学内容,但是高校中计算机应用基础的课时基本在50到70个之间,这样教师为了完成教学内容,会压缩学生的“上机”实践操作时间,这样就导致学生不断地学习新的知识点,但是无法“上机”练习,易造成“纸上谈兵”的现象。

四教学方式较为落后。高校计算机应用基础课程的教学方式主要是采用教师操作计算机和投影仪的方式,教师将知识点一股脑的输入给学生,与学生之间的互动也较少,有的学生听的迷迷糊糊,但是又不敢打断老师。另外,教师先讲解知识点,等到下堂课才会组织学生“上机”操作,有时两堂课之间是一个星期有时甚至是两个星期,这样学生对知识点的掌握已经很模糊了,这样就造成了计算机应用基础课程的教学效果不佳。

五评价方式简单。高校计算机应用基础课程对学生的评价方式较为简单,大部分高校主要采用试卷和上机考试相结合的方式,对于计算机这种应用型的科目,试卷很难反应学生的实际操作能力。而且上机考核系统存在一些局限性,也不能很好的评价学生的实际水平。

三、高校计算机应用基础课程教学改革策略研究

一各方应加大对计算机应用基础课程的重视程度。目前,计算机已经成为了日常生活、工作中最普遍的应用工具。高校作为系统教授计算机应用基础知识的单位,学校各方应当重视计算机应用基础课程,一是合理安排计算机应用基础课程。增加关于计算机应用的最基础、最先进、最实用的知识点,增加学生的“上机”时间。培养学生的实践按操作能力。二是作为教师,要对教学计划、教学内容等做出合理的安排,保证学生既能掌握书本上的知识点,又具备熟练的操作能力。三是学生要从思想上认识到计算机应用基础课程的重要性,保证出勤率,课下复习书本上的知识点,又注重去机房的实际操作。

二根据学生的层次,实施因材施教。高校中学生来“自四面八方、五湖四海”,对于计算机应用基础的掌握程度也不尽相同,为了保证所有学生都能“学有所成”,高校应当根据学生的不同层次,因材施教。一是在大学生入学时,组织关于计算机应用基础知识的考试,大概掌握学生对于计算机知识的了解情况。根据考核情况将学生分为不同的班级,一个是拥有计算机基础的班级,另一个为较少具备计算机基础知识的班级。学校根据不同的班级制定不同的教学计划、教学内容、教学目标,实施因材施教,保证所有的学生都能学到“新鲜、实用”的计算机应用基础知识。

三根据专业需求,安排教学内容。计算机应用基础知识的设计面十分广泛,教师不可能教授所有的知识点,学生也不可能掌握所有的知识点,因此,为了保证学生掌握更多实用的内容,教师可以根据专业需求,安排不同的教学内容。例如,土木建筑类专业的学生,走向工作岗位,要设计施工方案,CAD软体的应用十分广泛,因此,在安排土木建筑专业学生的教学内容时,可以适当地偏重此方面的教学。而对于英语、法学等文科专业的学生,对于计算机应用基础课程的具体要求可以适当降低。这样既可以增加学生学习的兴趣,又可以保证学生“学有所用”。

四创新教学方法,加强实践教学。计算机应用基础课程是一门实用性、操作性很强的课程,教师应当创新教学方法,改变传统的“满堂灌”的方式。高校可以将计算机应用基础课程搬到“机房”,采用“一堂课,一个案例”的方式,通过教师采用多媒体教学方式讲解后,学生自己参见实践、研究案例的完成方案,这样可以理论教学与实践操作紧密结合起来,以实践来带动整个教学内容,也充分调动了学生学习的积极性与主动性。

五改革考核方式,采用无纸化考试。针对计算机应用基础课程的操作性强的特性,“纸质考试”无法体现学生学习的实际状况,为了保证考试能够真实地放映出教学的效果,高校在计算机应用基础课程中应采用“无纸化”考核方式,具体而言,高校研发专门的计算机应用基础课程线上考试平台,实现线上考试和线上自测的功能,并附有题库。同时,为突出计算机应用基础的实践学习的重要,还要增加实验报告,在考核中所占的比重。

四、结论

计算机应用基础课程是高校中重要的公共基础课程之一,针对其存在的问题,高校应当高度重视,不断地改进教学理念、教学方式,重视计算机的应用性和实际操作性,保证学生能够学到更多、更实用的计算机应用基础知识。

参考文献

[1]钟晓旭.我国高校计算机应用教学存在的主要问题及对策[J].合肥师范学院学报,20135.

[2]赵婵婵.高校《计算机文化基础》课程教学改革探析[J].大学教育,20136.

[3]田永战.大学计算机应用基础课程的教学方法研究[J].计算机光碟软体与应用,20132.

[4]尕旦木草.我国高校公共计算机教学模式改革探讨[J].资讯与电脑,200912.

[5]徐坚.高等院校计算机公共课教学的改革与实践[J].电脑知识与技术,20095.

[6]刘倩.改革《大学计算机基础》教学方法的探讨与建议[J].软体导刊,20084.

[7]徐坚.高等院校计算机公共课教学的改革与实践[J].电脑知识与技术,20095.

【摘要】在《计算机应用基础》课程学习效果的评价中采取机试的形式,具有改卷效率高、改卷过程公平、防止舞弊等优点,已为很多高校所采用。但在使用过程中,在硬体、软体方面也存在这样那样的问题,如果不加以注意,其优点也会转化为缺点,影响到大家使用的积极性。本文总结了我们在使用考试系统中遇到的问题及积累的经验教训,希望对大家今后的工作能有所帮助。

【关键词】计算机应用基础机试问题与对策

一、引言

《计算机应用基础》课程是一门计算机入门级课程,教学目的主要是促进大学一年级学生了解计算机发展的历史、现在以及未来,帮助他们初步掌握在今后的学习中要经常使用的系统软体、应用软体尤其是办公软体等。该课程的考试形式,从最初的试卷考试,到现在的机试,经过不断变革,变化很大。然而我们在采用机试的过程中,从不熟悉到熟悉,走过弯路,有过教训,也积累了经验,我们在此把这些经验教训加以总结,列出我们遇见的问题,并给出了采用的对策,期望能帮助后续采用机试的兄弟院校。

二、问题及对策

机试中遇到的问题,总体上分为硬体的问题和软体的问题,我们分别进行介绍,并给出对应策略。

一硬体的问题及对策

考试系统软体执行在计算机硬体之上,硬体是基础,如果硬体中存在问题,势必影响到考试的顺利进行。首先需要考虑计算机的计算速度和并发能力,该指标决定了同时能支援多少学生进行考试,即需要考虑当有一个学生、十个学生、一百个学生、五百个学生、一千个学生同时考试时,其计算速度是否能够应付得了?其次要考虑计算机的储存能力,即硬碟能够储存多少份试卷。再者要考虑计算机的稳定性和突发事件对考试系统的影响,即要求计算机的稳定性要非常高,不能在考试期间发生宕机现象,同时要考虑到停电对伺服器的影响。对于硬体的效能问题,通常考试系统的开发者会在多次测试的基础上给出该系统需要的硬体引数。采用考试系统的单位只需要派技术人员按照这些引数去正规厂家采购,一般不会发生问题。

二软体的问题及对策

通常考试系统软体包括命题子系统、考生管理子系统、考试子系统、组卷子系统、改卷子系统等,在使用这些子系统时如果操作不当,也会带来不小的问题。

1、命题子系统的问题及对策

命题子系统中最难也是最容易发生问题的地方是知识点难度的区分,通常会把知识点分为简单、中等、困难等三类,在每一类中问题的难度应该相似,这样,不同的学生抽到的题目虽然不同,但难易程度相似,也能够最大限度地实现考试的公平。问题在于,如果命题教师有多个,可能各个老师对知识点的难易程度理解不同,这样就容易出现同一个类别中出现难度不同的题目。如何解决这个问题呢?由于这是个仁者见仁、智者见智的问题,可能有不同的方法,我们采取的是把不同的知识点分给不同的老师,对某个知识点,只有一个老师负责,让该老师来把握这个知识点的分类情况,如果该老师认真负责,以一个标准来命题,那么同一类里面的难度应该就最大限度的保持相似了。

2、考生管理子系统的问题及对策

在该系统中容易出现的问题是考生的姓名问题,对于汉族学生来说,姓名一般不会太长,以三字姓名居多,也有个别复姓的,但通常不会超过20个字元,但是对于新疆少数民族的学生,其名字不仅长,其中还有其他字元,比如‘•’,如表2所示。表2中列出了两个维族学生的学号和姓名,跟汉族的有很大不同。在模拟考试时,刚开始时,让这两个学生按照表1的内容输入,其中一个学生在键盘输入法中竟然不能自主地找到‘•’,耽误了不少时间。所以在录入学生姓名的时候,要特别注意长名字学生的姓名,我们采取的措施是用学生的学号替代名字,由于学号是唯一的,因此可以用以区分学生。

3、考试子系统的问题及对策

在考试过程中,最容易发生问题的地方是学生对考试软体不太熟悉,因为通常情况下,一个学校部署一套考试系统,学生只有在选修计算机应用基础课程时才会用到,而平时忙于完成教师布置的作业,并不会过多的练习考试子系统的用法,所以会略显生疏。我们采取的对策是,在最后一次上机课,让学生专心练习使用考试子系统,同时在安排监考时,让计算机应用基础教师去监考,能在学生遇到软体问题时给予操作方面的帮助。

4、组卷子系统的问题及对策

在组卷时,组卷老师不仅要熟悉考试大纲,也要熟悉试题库中题目的分布情况,尽量选取试题多的知识点命题,这样可以使得相邻座位学生抽取到的题目尽可能的不同。也能有效地减少作弊的发生。5、改卷子系统的问题及对策我们之所以采用当前使用的考试系统作为计算机应用基础课程的考试平台,是因为该平台具有一个吸引人的特点,能够对操作类题目自动判分,比如word、excel、ppt,自动判分有下面的优点:*自动判分,采用统一尺度,对学生更公平*自动判分,拒绝教师参与,防止教师舞弊,为关系学生加分*自动判分,速度快,提高工作效率该子系统存在的问题是,每道题必须有明确的判分原则,每一步给多少分要合情合理,不能出现复杂操作给分少而简单操作给分多的现象。因此这一步其实是跟命题子系统密不可分的,在命题时就需要认真把握各步的评分标准。而人脑的思维有时跟计算机程式的运算过程不同,人们一个简单的想法,可能改卷子系统并不能实现,因此在给评分标准时,一定按照计算机改卷子子系统的思维来思考。

三、总结

本文,我们讨论了计算机应用基础课程机试过程中容易出现的问题,并给出了解决的方法,希望后续采用机试的同行能够从中吸取经验教训、少走弯路。在今后的使用过程中,我们将进一步开发使用现有的考试系统,将平时作业、练习和最终考试三方面的成绩综合起来,以评定学生的最终成绩,在教授学生知识的同时,以保持教育过程中的公平。

参考文献:

[1]马海凤,陈琦.浅谈计算机教育与现代大学生能力素质培养研究[J].价值工程,2014,1:221-221,222..

[2]徐晓飞.本科生院体制下计算机教育的改革与创新[J].中国大学教学,2012,4:20-22..

[3]WangTT,SuXH,MaPJ,etal.Ability-training-orientedautomatedasses *** entinintroductoryprogrammingcourse[J].puters&Educa-tion,2011,561:220-226.

[4]孙志岗,车万翔,王宇颖.用计算机技术改进计算机教育[J].计算机教育,200919:10-11.

天下没有免费的午餐

需要论文的话可以百度找一个嘛,应该不少的,期间遇到不懂的问题,再来具体提问。

大学是干嘛的地方?无论多高的学历和职称,不会设计、制造教具,不会设计、制造教学仪器,不会维修仪器和设备;用你父母的钱进口教学仪器模仿了委托工厂仿制就是佼佼者;用你父母的钱请校外的人来维修设备、从校外采购配件;用你父母的钱请教学仪器生产企业提供教学实验讲义,将作者填上他们的名字就有教学突出成就奖;教你背诵的公式和外语,永远也比不上美国麻省理工学院在网上公开的教材内容。学生也不要埋怨学费贵,除了上面教师的原因,你们自己的基础实验、专业课就上的迷迷糊糊的,高额投资下的创新实验项目、挑战杯、科技竞赛、毕业论文、商业开发,都见不得阳光,将真金白银变成了一堆堆的垃圾!!!!

省煤器的设计计算毕业论文

[摘 要]火电厂辅机设备的状态检修技术开发是电厂状态检修整体技术的重要部分,热工研究院开发采用的离线状态监测+在线系统安全性监测+在线系统经济性监测+综合故障诊断与维修决策支持模式,是一个具有自主知识产权的新尝试。在福建电厂的成功实施表明,这种新模式比较适合中国电厂实际情况和需求,实现了创新性和实用性相结合的开发要求。 一、背景 随着电力体制改革的深入,发电厂对发电成本的控制越来越严格,如何合理的减少维修费用,同时有效提高运行安全性己是当务之急。汽轮机、锅炉等主机虽然是关键设备,但其制造技术已较成熟,监测技术也较完善,故其可靠性都比较高,由于火电厂系统复杂,而一些辅机设备往往是火电厂设备状态监测的薄弱环节,是造成机组非计划停机的主要原因之一,保证辅机设备的安全运行是电厂日常维护和维修的重要内容。同时,任何一个系统或主要辅机设备的故障都会影响电厂的经济性,造成发电成本的增加。因此,开展火电厂辅机状态监测工作,保证火电机组主要辅机设备良好的运行状态,达到优化检修的目的,具有十分重要的意义。近年来,针对辅机部件的状态监测和诊断技术的发展十分迅速,辅机部件(电动机和转动部件等)的状态监测技术已经成熟。主要的技术包括: 1. 振动诊断技术; 2. 油液分析技术; 3. 红外线设备诊断技术; 4. 超声波泄漏监听技术。振动监测技术主要是应用在线和便携式振动监测仪器,对设备的振动频谱进行连续或经常性检测,以分析设备的振动特性,判断运行状态变化趋势,为设备的运行和维修提供信息。油液分析主要是对润滑油的成分、污染度、机器磨损状况进行检测,以掌握润滑油的变质情况,判断磨损状态变化趋势,为设备的运行和维修提供信息。红外线设备诊断技术主要是使用便携式红外线检测仪,对电机设备的外壳超温状况进行检测,以发现设备的超温部位,采取及时维修措施。声波泄漏监听装置,也是利用超声波的特性,对设备发出的微小泄漏声音进行检测,以找出设备的泄漏部位,采取及时维修措施。国外辅机部件状态监测技术的发展已经成熟,监测装置和分析软件也比较先进,在国内电厂的应用越来越普遍。但在应用中发现,这些监测技术往往是独立的,主要是针对具体部件点的状况,并不能够全面监测辅机系统的状况;一般不能够全面综合的分析设备变化趋势,即不具有综合诊断故障功能。如何给出设备的整体状态诊断结果,为维修决策提供更全面的支持依据,有必要进行进一步的研究。二、 辅机状态检修关键技术研究简介该研究项目是国家电力公司状态检修课题的子项目,并作为与福建省电力有限公司、福建省电力试验研究院和厦门华夏国际电力发展有限公司合作课题,列为福建省电力公司2000年研究课题。主要研究内容包括:? 辅机状态检修模式的探讨;? 辅机状态监测技术的选择与实施;? 系统安全性监测技术的开发;? 系统运行经济性监测技术的开发;? 辅机状态综合诊断系统的开发;? 依托工程电厂实施;通过3年的努力。福建实施项目已经基本完成,并通过了福建省科委组织的鉴定。太仓电厂实施项目仍在进行中。 1. 辅机状态检修基本模式的探讨研究表明,辅机的维修类型主要包括:设备故障导致功能下降而维修,系统安全性下降导致的维修,系统性能(经济性)下降导致的维修等三个方面。以往的监测技术,主要注重辅机部件点的状态变化,而在系统层面上的变化没有给以重视,显然是不合理的。目前在国内推行的辅机振动状态监测方式包括在线和离线两种,在线方式费用高,信息量大,已在山东等一些电厂采用。而离线监测方式实际上早已在电厂普遍采用,近年来随着监测仪器的性能提高,离线监测的准确性已相当高,完全可以满足设备状态监测的需要,因而没有必要采用在线方式,同样可以达到满意效果。为此,热工研究院设计了辅机设备离线与在线相结合,安全性监测与经济性监测相结合,设备监测与系统监测相结合的新模式,即:离线设备状态监测+ 在线系统安全性监测+ 在线系统运行经济性监测+ 综合故障诊断与维修决策支持该模式充分考虑到中国电厂辅机运行状况和状态检修技术需求,力图提供一个完整的中国电厂辅机状态检修整体解决方案。 2. 辅机状态监测技术的选择与应用该课题在厦门华夏国际电力公司300MW 1、2号机组主要辅机上进行试点。采用国外成熟的振动监测、油液分析、电机马达监测和红外热成像等多种监测技术,定期对电厂主要辅机(旋转机械设备)的状态进行离线监测,包括有送、引风机、一次风机,给水泵、凝结水泵、循环水泵等。监测的主要内容包括辅机设备的振动、润滑油品质、电机的运行状况,转子笼条断裂、定子和转子间的机械偏心,设备的热像图(温度分布图)等。经过各方两年多的共同努力,监测工作己逐步走向规范,取得了阶段性成果。在振动监测方面,1A引风机开始监测时,其1号瓦(电机外伸端)、2号瓦(电机联轴器端)的轴向振动逐步增大,超过合格值4.5mm/s,最大分别为10.13 mm/s和5.52 mm/s,尤其是1号瓦振动接近危险值,严重影响机组的安全运行。根据分析,1号瓦轴承垂直和水平振动均在合格范围内,为 1.2 mm/s和 3.3 mm/s,说明引起轴向振动偏大的原因不是由于激振力大引起,分析其频谱图,主要是3倍频和5倍频的分量为主,而且2号瓦存在同样的问题,初步分析为风机转子止推轴承工作游隙过大引起的振动异常。由于1A引风机轴承自投用以来5年没有更换,决定在2002年4月的小修中对1、2号轴承及风机的止推轴承解体检查,确认止推轴承工作游隙过大。经更换1、2号轴承并调整好止推轴承工作间隙后,故障消除,其振动均在合格范围内。2001年5月,采用电机故障诊断仪对辅机设备进行监测,成功地诊断出2号机组电动给水泵电机出现的笼条断裂故障,电厂据此对电机进行及时的检修,避免事故的进一步恶化。2001年11月 5日和 12月 10日在电厂 1号机辅机,包括引风机润滑和液压系统、一次风机、送风机、凝结水泵、汽动给水泵、电动给水泵、循环水泵共计14台设备的轴承润滑油系统进行取样分析时,发现1A、1B引风机电机润滑油箱内存在大量可见的悬浮硬颗粒,1A、1B循环水泵在推力轴承故障后没有进行彻底清理而残留大量的磨损颗粒,颗粒度检测结果均超过NAS12级。由于大量颗粒超过滤芯精度,将会引起滤芯失效和破损,同时滤芯的堵塞会造成供油不稳,影响轴承转动面油膜的厚度,引起润滑不良;另外大颗粒进入轴承转动面间,还会引起磨料切削磨损,加剧了轴承磨损,缩短使用寿命,影响辅机运行稳定性。同时,由于颗粒度基数太大,不仅会掩盖轻度磨损的检测,而且还会堵塞传感器,损坏仪器。为此及时向电厂提出处理建议。进行油箱滤油处理,跟踪内部颗粒度变化情况。在红外监测方面,对主要辅机电机轴承进行监测。2001年5月大修后不久发现1A引风机轴承温度偏高。经检查发现由于轴承方向放置不当引起轴的轴向位移导致导油环和甩油环之间严重的磨损,2002年4月份机组小修时更换轴承,故障排除,截至 2002年11月,1A引风机的轴承温度有所下降。 3. 系统安全性监测技术的开发辅机系统的安全时电厂关心的重要方面,为此开发了烟风系统、泵组的安全监测系统。如电站风机尤其是轴流式风机,其本身具有较大的失速区,当风机运行在该区域时,风机内气流压力波动剧烈,当气流压力波动频率与叶片本身固有频率成整数倍时,容易引起风机叶片谐振、导致断裂,同时亦造成一次、二次风压及炉膛负压剧烈波动,影响燃烧、导致机组跳机。各种风机因其叶型不同,其失速区范围亦不同,我们通过冷态试验进行标定,同时建立实时失速报警系统,则当运行点接近失速区时,可提前采取措施。 图1 轴流风机实时特性曲线 4. 系统运行经济性监测技术的开发电站风机实际运行状况体现了锅炉运行的烟风阻力特性。而锅炉的烟风系统的阻力特性是随着机组的运行时间的延长而变化的,可通过电站风机的实际运行参数描绘锅炉不断变化的烟风阻力特性,同时显示出风机运行效率的变化,检测表盘开度与实际开度的偏差,为锅炉大修和风机改造提供依据。反映泵组性能的特征参数主要有温度、压力、流量、功率、电流、电压和转速等。对采集到的状态参数,通过分析计算给出泵组的性能参数,如效率、扬程等,并且与设计参数相比较,分析性能欠佳的主要原因,指出运行调整的方法和步骤。图4 风机状态监测主界面图5 泵组状态监测软件主界面 5. 辅机状态综合诊断系统的开发包括电站风烟系统故障诊断系统和电站泵组故障诊断系统两部分。电站风机故障预测及诊断维修的关键在于当设备的振动水平超过设定的报警值后能快速、准确地诊断出振动原因,并根据综合分析结果给出相应的处理方案。电站风机的振动故障主要表现在:轴承损坏、质量不平衡、弯轴、联轴器不对中、机械松动等问题。泵组故障诊断的主要内容有轴系振动、轴承温度、油液分析等,采用轴系振动、轴承温度和液力偶合器工作油温度等状态参数,分析评价泵组的运行水平,预测和诊断泵组故障,及时消除隐患,提高设备可用率。热工研究院开发了通用诊断平台,并在此基础上构建了辅机故障诊断软件,可实现包括振动在内的综合故障分析和诊断,并给出解决的措施。专家可以通过诊断平台建立诊断规则,并利用建立的规则模拟专家思维,对设备实现状态诊断,并可在电厂方便的进行规则修订。系统由知识获取、系统诊断和接口设计三部分构成。其主要特点有:图6 可视化的图形专家规则编辑器? 系统体现了电厂专用辅机设备监测的特点,弥补了电厂DCS和MIS系统中辅机运行状态监测的一些功能盲点,增加系统安全性、经济性监测功能,为维修和设备安全运行提供决策支持;? 根据电厂设备类别,内置了所需要的计算公式和分析模型,集成了电力专家的知识库,具有诊断功能,? 具有一定的组态功能;? 采用了当前比较先进的多层分布软件开发技术,提高软件的运行速度;? 系统实施方便,稳定可靠、操作方便、扩展性强、界面友好,维护量小。同时,开发的故障诊断和维修决策支持系统具有远程诊断功能,可采用就地管理+远程管理的二级管理的模式,在电厂设立一级状态监测工作站,根据不同设备和不同监测技术进行具体的监测工作,并将采集的离线数据输入到故障诊断和维修决策支持系统,这项工作由经过培训的电厂点检人员完成。远程设立设备状态监测中心,通过广域网远程访问发电厂侧的状态监测工作站,对辅机设备的运行状态进行远程监测,利用故障分析和诊断系统对设备的异常数据进行分析和诊断,判断设备状态的发展趋势,并向电厂定期提交短、中长期趋势分析和诊断报告。 三、 结束语通过三年的研究开发,热工研究院在辅机状态检修关键技术方面取得突破,主要包括以下几个方面: 1. 通过实际应用,提出并确定了中国电厂实施辅机状态检修的一种新模式; 2. 将多种监测技术如振动监测、油液分析、电机马达监测和红外热成像等集成在一起,实现对主要辅机的运行状态综合离线监测,效果比在线监测好,费用少。 3. 开发的系统安全性监测系统在线监测辅机整体的安全性,开阔了监测的范围,弥补了单个设备监测的不足,实现了硬故障和软故障的同时监测,具有创新性; 4. 开发的系统经济性监测系统在线监测辅机整体的性能,确立了监测经济性而完善维修决策的方法,实现了安全性和经济性综合监测以合理安排检修时间和检修周期新模式,具有创新性; 5. 开发的通用诊断平台软件具有先进性,适合主机、辅机的诊断软件构建,满足预知性维修的需求,同时提供远程诊断功能; 6. 设立远程诊断中心,建立辅机状态监测数据库,将多种监测数据集成在统一的数据库下,便于数据的管理和应用。实现电厂、研究院二级管理模式。

作用:水冷壁---水汽转换、省煤器--给水继续加热、过热器--饱和汽加热为过热汽、再热器--高排汽继续加热再做功;特点就不是一句两句说清楚了,锅炉原理类基本书籍上都有!

电专动力系的吧

摘要: 高炉煤气的利用方式很多,目前我国最主要的利用方式是高炉煤气发电项目(包括燃烧高炉煤气和高炉煤气、煤粉混烧)。分析燃煤锅炉掺烧高炉煤气和全烧高炉煤气后的工况变化,并提出改造措施,对钢铁行业的燃煤锅炉改造具有借鉴意见。 更多高炉煤气论文请进:教育大论文下载中心关键词:高炉煤气;燃煤锅炉;掺烧 在钢铁企业的生产过程中,消耗大量的煤炭、燃油和电力能源的同时,还产生诸如高炉煤气、焦炉煤气和转炉煤气等二次能源,所产生的这类能源,除了满足钢铁生产自身的消耗外,剩余部分用于其他行业或民用。高炉煤气是炼铁的副产品,是高炉中焦炭部分燃烧和铁矿石部分还原作用产生的一种煤气,无色无味、可燃,其主要可燃成分为CO,还有少量的H2,不可燃成分是惰性气体、CO2及N2。CO的体积分数一般在21%-26%,发热量不高,一般低位发热值为2760-3720kJ/m3。高炉煤气着火温度为600℃左右,其理论燃烧温度约为1150℃,比煤的理论燃烧温度低很多。燃烧温度低,使得高炉煤气难以完全燃烧,且燃烧的稳定性差。由于高炉煤气内含有大量氮气和二氧化碳,燃烧温度低、速度慢,燃用困难,使得许多钢铁企业高炉煤气的放散率偏高。利用高炉煤气发电,由于燃料成本低,系统简单,减少了燃料运输成本及基建费用,可以缓解企业用电紧张局面,减少CO对环境的污染,取得节能、增电、改善环境的双重效果,既能为企业创造可观的经济效益,又能创造综合社会效益。根据现在钢铁行业中高炉煤气的主要利用方式,本文对燃煤锅炉掺烧高炉煤气和燃煤锅炉改造为全燃高炉煤气锅炉做了理论分析和相应的改造措施。1 掺烧高炉煤气对锅炉性能的影响1.1 对炉膛内燃烧特性的影响燃煤锅炉中掺烧高炉煤气时,由于高炉煤气的低位发热量很低(2760-3720kJ/m3),而一般的烟煤的低位发热量约为18000kJ/kg,因此,炉膛中的理论燃烧温度必定下降,导致煤粉燃烧的稳定性变差,煤粉颗粒的不完全燃烧量增多,从而增加飞灰含碳量,机械不完全燃烧损失增加,锅炉效率降低。另一方面,掺烧高炉煤气后,送入炉膛内的吸热性介质增多,烟气的热容量增大,火焰中心的温度水平下降,火焰中心位置上移,导致煤粉在炉膛内的停留时间缩短,也造成煤粉的不完全燃烧,飞灰含碳量增加。第三,掺烧高炉煤气后,炉膛内烟气量增加(表1),炉膛内的烟气流速增加,从而缩短了煤粉颗粒在炉膛内的停留时间,也造成了煤粉的不完全燃烧。第四,掺烧高炉煤气后,高炉煤气中存在的氮气等大量的惰性气体阻碍可燃成分与空气的充分混合,减少发生燃烧反应的分子间发生碰撞的几率,导致燃烧不稳定,煤粉颗粒燃烧不完全,增加了飞灰含碳量。可见,掺烧高炉煤气后,飞灰的含碳量增加,锅炉效率降低。试验证明[1],从飞灰含碳量的角度来看,如果不提高炉膛的温度水平,高炉煤气的最佳掺烧率应该在25%以内。表1燃料产生1MJ燃烧热的烟气量众所周知,固体的辐射能力远远大于气体,燃高炉煤气产生的烟气中所含有的具有辐射能力的三原子气体所占的份额远远低于燃煤,在燃气中占很大一部分的N2等双原子气体不具备辐射能力,而且,高炉煤气燃烧产生烟气中三原子气体主要是CO2和少量的H2O,CO2的辐射能力要低于H2O,因此,掺烧高炉煤气后,炉膛内火焰辐射能力减弱,更多的热量流往后面的过热器和尾部烟道。掺烧锅炉煤气后,炉膛内的热交换能力下降,对于以炉膛水冷壁为主要蒸发受热面的锅炉,如果锅炉结构不做调整,则锅炉的蒸发量下降。1.2 对炉膛后烟道的传热特性影响以对流换热为主的过热器系统,吸收烟气热量主要取决于传热温压和传热系数。对于燃煤和掺烧高炉煤气的锅炉来说,两者的炉膛出口烟温相差不大[2],因而其传热温压也相差不大。但是掺烧高炉煤气锅炉的烟气体积流量要比燃煤锅炉大,对流受热面的烟气流速增加,因此提高了传热系数,使得过热器吸热量增加,导致过热器出口温度过热。同样,烟气量增加,如果炉膛后的受热面不改变,则布置在炉膛后烟道中的过热器,省煤器,空气预热器吸热量增多,但是不足以使得排烟温度降低到以前的温度水平,因而排烟温度升高,排烟热损失增加。2 全烧高炉煤气对锅炉性能的影响2.1 对炉膛内燃烧特性的影响高炉煤气中大量的惰性气体N2、CO2等在燃烧时不参与燃烧反应,相反,还吸收大量可燃气体燃烧过程中释放的热量,使得高炉煤气的燃烧温度偏低。虽然高炉煤气是气体燃料,理论燃烧温度(-1150℃)要远低于煤粉颗粒(1800℃-2000℃),但是高炉煤气中含有的大量惰性气体会阻碍火焰传播,使火焰的传播速度变慢(例如层流火焰传播速度仅为0.3-1.2m/s),因此,要保证燃烧的稳定性,必须提高燃烧温度。高炉煤气中几乎不含灰分,燃烧时,火焰基本上不产生辐射能量,只有燃烧产生的烟气中的三原子气体具有辐射能力,高炉煤气中大量的氮气不具备辐射能力,所以燃高炉煤气的锅炉,炉膛中的烟气辐射传热能力要低于燃煤锅炉。因此,炉膛内水冷壁的吸热量降低,导致锅炉蒸发量减少。2.2 对炉膛后烟道的传热特性的影响由于高炉煤气中几乎不含有灰尘,所以,燃烧高炉煤气产生的烟气中的飞灰可以忽略不计,因此,对流受热面的污染系数ξ很低,只有0.0043,而对于燃煤锅炉,当烟气流速为10m/s时,污染系数ξ为0.019[3],可见,燃烧高炉煤气后,对流受热面的热有效系数增大,使得对流受热面的吸热量增多。高炉煤气中含有大量的惰性气体,产生相同燃烧能量的高炉煤气生成的烟气量要大于纯燃煤时产生的烟气量,因此流经对流受热面的烟气量增大,烟气流速增加,导致对流传热的传热系数变大,对流吸热量增大,因此,吸收对流受热面热量的过热蒸汽温度升高。同样,烟气量增加,如果炉膛后的受热面不改变,则布置在炉膛后烟道中的过热器,省煤器,空气预热器吸热量增多,但是还不足以使得排烟温度降低到以前的温度水平,排烟温度升高,排烟热损失增加。3 掺烧高炉煤气后的改造措施由以上的分析,为了解决掺烧高炉煤气后出现的一系列问题:炉膛温度下降;过热蒸汽温度升高;飞灰含碳量增加;排烟温度变大等,提出下面的解决方案。3.1 改造燃烧器高炉煤气燃烧器一般布置在煤粉燃烧器的下部,当高炉煤气燃烧器具有充当锅炉启动燃烧器的功能时,这种布置可以获得燃烧和气温调节两方面的好处。如果以高炉煤气借助煤的燃烧来稳燃的话,则只对气温调节有利。由于混烧高炉煤气后,炉膛中火焰的中心位置上移,造成煤粉燃烧不完全,排烟温度升高等问题,因此,可以采取让燃烧器位置尽量下移,燃烧器喷嘴向下倾斜等方法,降低火焰中心位置,增加燃料在炉膛内的停留时间。选用能强化煤粉燃烧的燃烧器,如稳燃腔煤粉燃烧器[4],加强煤粉颗粒的燃烧,减少飞灰含碳量,提高锅炉效率。3.2 改造过热器掺烧高炉煤气后,炉膛内辐射吸热量减少,对流吸热量增加,因此在实际允许的情况下,增加较多的屏式过热器,相应的减少对流过热器受热面,这样,可以照顾到全烧煤和掺烧高炉煤气工况下过热器的调温性能,避免过大的增加减温水量。3.3 改造省煤器掺烧高炉煤气后,炉膛内的辐射吸热量减少,直接影响了锅炉蒸发量下降,导致锅炉出力降低,另外,掺烧高炉煤气后,烟气量变大,排烟温度升高,因此,在炉后烟道内增加省煤器换热面积,采用沸腾式省煤器,要保证其沸腾度不超过20%,否则因省煤器内工质容积和流速增大,使省煤器的流动阻力大幅增大,影响锅炉经济性。增加省煤器换热面积,提高了省煤器的吸热量,降低了过高的排烟温度,减小了排烟损失,提高了锅炉效率。4 全烧高炉煤气后的改造措施4.1 炉膛改造燃煤锅炉的炉膛内辐射传热能量很大,炉膛内配置了相应的大量的水冷壁吸收辐射热,改燃高炉煤气后,炉膛内辐射能量减少,过多的水冷壁吸收大量的辐射热能会使得炉内的温度进一步下降,加剧了高炉煤气燃烧的不稳定,因此,敷设卫燃带,降低燃烧区下部炉膛的吸热量,进一步提高燃烧区炉膛温度,改善高炉煤气燃烧的稳定性。增加了卫燃带后,减少了水冷壁的面积,锅炉蒸发量减少,为了保证锅炉的蒸发量,就必然要提高高炉煤气量,提高炉膛的热负荷,但是,高的炉膛热负荷也提高了烟气量和炉膛出口温度,导致过热蒸汽超温和排烟温度升高,锅炉效率下降,因此不可能通过无限制的提高炉膛热负荷来提高锅炉的蒸发量。锅炉改烧高炉煤气后,炉膛内的热交换能力显著下降,对于以炉膛水冷壁作为其全部蒸发受热面的锅炉,如果锅炉的结构不允许做较大的改动,蒸发量必定下降。4.2 燃烧器改造对于高炉煤气来讲,动力燃烧即无焰燃烧其火焰长度短、燃烧速度快、强度大、温度高,是一种比较合适的燃烧方式,但因其体积大、以回火、噪音高、负荷调节不灵活,且流道复杂,成本高,实际中采用很少。而采用扩散燃烧不但火焰太长,而且混合不好,燃烧不完全,不适合高炉煤气。实际中大多数采用预混部分空气的燃烧方式,这种形式的燃烧器结构简单、不易回火、负荷调节灵敏,在煤气的热值和空气的预热温度波动的情况下能保持稳定的工作,调节范围宽广,在锅炉最低负荷至最高负荷时,燃烧器都能稳定工作。燃烧器的布置主要考虑以下几点:火焰应处于炉膛几何中心区域,使火焰尽可能充满炉膛,使炉膛内热量得以均匀分配,受热面的负荷均匀,不会形成局部受热引起内应力增大,防止受热不均匀。对于布置高度,在不影响火焰扩散角的情况下,燃烧器低位布置,有利于增加煤气燃烧时间,保持炉温均匀。4.3 过热器的改造改燃高炉煤气后,烟气量增大引起过热蒸汽超温,可以通过适当减少过热器的面积来控制过热蒸汽的温度在规定范围之内。也可以通过增加减温器的调温能力,来控制过热蒸汽的温度。4.4 增加煤气预热装置加装煤气预热器一方面可以进一步降低排烟温度,提高锅炉效率,另外一方面,可以增加入炉能量,提高燃烧温度,增强火焰的辐射能力,改善高炉煤气的着火和燃尽条件。研究证明[5],高炉煤气温度每提高10℃,理论燃烧温度可以高4℃。但是由于高炉煤气的易燃性和有毒性,要求与烟气之间的换热过程严密而不泄露,理论上只能采用分离式热管换热器。4.5 省煤器的改造改烧高炉煤气后,排烟温度升高,锅炉蒸发量下降,因此,增加省煤器面积,采用沸腾式省煤器可以提高省煤器的吸热量,降低过高的排烟温度,减小排烟损失,提高锅炉效率。另一方面,高炉煤气锅炉炉内火焰黑度和炉内温度低,故不宜单纯以增加敷设受热面的面积来提高锅炉蒸发量,而采用沸腾式省煤器来弥补锅炉蒸发量的减少,这是提高锅炉出力的有效措施。4.6 尾部烟道的改造由于高炉煤气发热量低,惰性气体含量高,因此燃用高炉煤气时,锅炉的烟气量及阻力都讲增加,为此,一般须考虑扩大尾部烟道流通面积降低流动阻力及增加引风机的引风能力。4.7 燃气安全防爆措施从安全方面考虑,有必要建立燃气锅炉燃烧系统,包括自动点火、熄火保护、燃烧自动调节、必要的连锁保护方面的自动化控制。同时为了减轻炉膛和烟道在发生爆炸时的破坏程度,燃气锅炉的炉膛和烟道上应设置防爆装置。此外燃气系统应装设放散管,在锅炉房燃气引入口总切断阀入口侧、母管末端、管道和设备的最高点、燃烧器前等处应布置放散点。采取了以上安全措施后,可以确保锅炉处在安全运行之中。参考文献:[1]湛志钢,煤粉、高炉煤气混烧对煤粉燃尽性影响的研究[D].[硕士学位论文].武汉:华中科技大学,2004.[2]姜湘山,燃油燃气锅炉及锅炉房设计[M].北京:机械工业出版社,2003.[3]范从振,锅炉原理[M].北京:中国电力出版社,1986.[4]陈刚、张志国等,稳燃腔煤粉燃烧器试验研究及应用[J].动力工程,1994(12).[5]刘景生、王子兵,全燃高炉煤气锅炉的优化设计[J].河北理工学院学报.

温度传感器设计方案毕业论文

网上找一个51的例程,套上PIC指令搞定

温度传感器原理及应用论文参考文献

温度传感器原理及应用论文参考文献,温度传感器是温度测量仪表的核心部分,是指能感受温度并转换成可用输出信号的传感器,品种繁多,也是用处比较广的工具。以下分享温度传感器原理及应用论文参考文献。

一、温度传感器工作原理–恒温器

恒温器是一种接触式温度传感器,由两种不同金属(如铝、铜、镍或钨)组成的双金属条组成。

两种金属的线性膨胀系数的差异导致它们在受热时产生机械弯曲运动。

一、温度传感器工作原理–双金属恒温器

恒温器由两种热度不同的金属背靠背粘在一起组成。当天气寒冷时,触点闭合,电流通过恒温器。当它变热时,一种金属比另一种金属膨胀得更多,粘合的双金属条向上(或向下)弯曲,打开触点,防止电流流动。

有两种主要类型的双金属条,主要基于它们在受到温度变化时的运动。有在设定温度点对电触点产生瞬时“开/关”或“关/开”类型动作的“速动”类型,以及逐渐改变其位置的较慢“蠕变”类型随着温度的变化。

速动型恒温器通常用于我们家中,用于控制烤箱、熨斗、浸入式热水箱的温度设定点,也可以在墙上找到它们来控制家庭供暖系统。

爬行器类型通常由双金属线圈或螺旋组成,随着温度的变化缓慢展开或盘绕。一般来说,爬行型双金属条对温度变化比标准的按扣开/关类型更敏感,因为条更长更薄,非常适合用于温度计和表盘等。

二、温度传感器工作原理–热敏电阻

热敏电阻通常由陶瓷材料制成,例如镀在玻璃中的镍、锰或钴的氧化物,这使得它们很容易损坏。与速动类型相比,它们的主要优势在于它们对温度、准确性和可重复性的任何变化的响应速度。

大多数热敏电阻具有负温度系数(NTC),这意味着它们的电阻随着温度的升高而降低。但是,有一些热敏电阻具有正温度系数 (PTC),并且它们的电阻随着温度的升高而增加。

热敏电阻的额定值取决于它们在室温下的电阻值(通常为 25 o C)、它们的时间常数(对温度变化作出反应的时间)以及它们相对于流过它们的电流的额定功率。与电阻一样,热敏电阻在室温下的电阻值从 10 兆欧到几欧姆不等,但出于传感目的,通常使用以千欧为单位的那些类型。

温度传感器类毕业论文文献有哪些?

1、[期刊论文]一种高稳定性双端出纤型光纤光栅温度传感器

期刊:《声学与电子工程》 | 2021 年第 002 期

摘要:针对双端出纤型光纤光栅温度传感器线性度较差、温度测量精度低的问题,文章首先对传感器内部结构进行了优化,使光纤光栅在整个温度测量区间内不受结构件热胀冷缩的应力影响,从而提升传感器的稳定性、实验验证,采用新工艺封装的.光纤光栅温度传感器在5~65°C的范围内温度精度达到0、1°C,且重复性良好,适用于自然环境下的温度传感、

关键词:光纤光栅;温度传感器;应力;测温精度

链接:、zhangqiaokeyan、com/academic-journal-cn_acoustics-electronics-engineering_thesis/0201290086379、html

2、[期刊论文]某型温度传感器防护套弯折疲劳试验的寿命研究

期刊:《环境技术》 | 2021 年第 001 期

摘要:由于动车组轴端温度传感器的大多数已达到三级修、四级修的修程,检修的数量和成本逐年增加,检修发现出现防护套破损的情况较多,需要大量更换,本文通过对温度传感器的防护套进行弯折疲劳试验,对数据结果进行统计分析,确认导致防护套弯折老化的主要原因、

关键词:防护套;破损;弯折疲劳

链接:、zhangqiaokeyan、com/academic-journal-cn_environmental-technology_thesis/0201288850019、html

3、[期刊论文]进气压力温度传感器锡晶须的分析

期刊:《机械制造》 | 2021 年第 004 期

摘要:对进气压力温度传感器的结构进行了介绍,对进气压力温度传感器产生锡晶须问题进行了分析,并在分析锡晶须生长机理的基础上提出了抑制方法、

关键词:传感器;锡晶须;分析

链接:、zhangqiaokeyan、com/academic-journal-cn_machinery_thesis/0201288850874、html

4、[期刊论文]一种具有±0、5℃精度的CMOS数字温度传感器

期刊:《电子设计工程》 | 2021 年第 001 期

摘要:该文设计了一种基于0、35μm CMOS工艺的采用双极型晶体管作为感温元件的数字温度传感器、该温度传感器主要由正温度系数电流产生电路、负温度系数电流产生电路、一阶连续时间Σ-Δ调制器、计数器和I2C总线接口等模块组成、为提高温度传感器的测量精度

该文深入分析了在不采用校准技术的情况下工艺漂移对温度传感器精度的影响,并在此基础上提出了简单的校准电路设计、根据电路仿真结果,在加入校准电路之后,温度传感器在-40~120℃温度范围内的精度可以达到±0、5℃、

关键词:数字温度传感器;CMOS工艺;双极型晶体管;校准

链接:、zhangqiaokeyan、com/academic-journal-cn_electronic-design-engineering_thesis/0201286451032、html

5、[期刊论文]柴油机冷却水温度传感器断裂故障分析

期刊:《内燃机与配件》 | 2021 年第 004 期

摘要:针对柴油机冷却水温度传感器断裂的问题,通过对该测点管路流腔进行CFD仿真计算,分析了流腔内部速度和压力场的变化情况,确定了传感器的断裂原因。计算结果表明:传感器位置处流速较大,导致传感器下部受振荡力,且发生了空蚀,使传感器失效。

本文针对此次传感器断裂故障提出了解决措施:对传感器的位置进行了优化布置;对传感器的结构形式进行了改进。通过改进,传感器随整机验证时间超过1500h,未再发生同类断裂故障,保证了柴油机的安全运行,为以后类似故障的分析和解决提供参考。

关键词:柴油机;温度传感器;流速;受力

链接:、zhangqiaokeyan、com/academic-journal-cn_internal-combustion-engine-parts_thesis/0201288594662、html

常见温度传感器

温度是与人类生活息息相关的物理量,在工业生产自动化流程中,温度测量点要占全部测量点的一半左右。它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用相当广泛。

温度传感器对温度敏感具有可重复性和规律性,是利用一些金属、半导体等材料与温度相关的特性制成的。现在来介绍一些温度传感器的工作原理。

铂容易提纯,其物理、化学性能在高温和氧化介质中非常稳定。铂电阻的输入-输出特性接近线性,且测量精度高,所以它能用作工业测温元件,还能作为温度计作基准器。

铂电阻在常用的热电阻中准确度最高,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为13.5033℃~961.780℃标准温度计来使用。铂电阻广泛用于-200℃~850℃范围内的温度测量,工业中通常在600℃以下。

PN结温度传感器是利用PN结的结电压随温度成近似线性变化这一特性实现对温度的检测、控制和补偿等功能。实验表明,在一定的电流模式下,PN结的正向电压与温度之间具有很好的线性关系。

根据PN结理论,对于理想二极管,只要正向电压UF大于几个kbT/e(kb为波尔兹曼常数,e为电子电荷)。其正向电流IF与正向电压UF和温度T之间的关系可表示为

由半导体理论可知,对于实际二极管,只要它们工作的PN结空间电荷区中的复合电流和表面漏电流可以忽略,而又未发生大注入效应的电压和温度范围内,其特性与上述理想二极管是相符合的[6]。实验表明,对于砷化镓、

锗和硅二极管,在一个相当宽的温度范围内,其正向电压与温度之间的关系与式(1-3)是一致的,如图1-1所示。

实验发现晶体管发射结上的正向电压随温度的上升而近似线性下降,这种特性与二极管十分相似,但晶体管表现出比二极管更好的线性和互换性。

二极管的温度特性只对扩散电流成立,但实际二极管的正向电流除扩散电流成分外,还包括空间电荷区中的复合电流和表面漏电流成分。这两种电流与温度的关系不同于扩散电流与温度的关系,因此,实际二极管的电压—温度特性是偏离理想情况的。

由于三极管在发射结正向偏置条件下,虽然发射结也包括上述三种电流成分,但是只有其中的扩散电流成分能够到达集电极形成集电极电流,而另外两种电流成分则作为基极电流漏掉,并不到达集电极。因此,晶体管的

所以表现出更好的电压-温ICUBE关系比管的IFUF关系更符合理想情况,

度线性关系。根据晶体管的有关理论可以证明,NPN晶体管的基极—发射极电压UBE与温度T和集电极电流Ic的函数关系式与二极管的UF与T和IF函数关系式(1-3)相同。因此,在集电极电流Ic恒定条件下,晶体管的基极—发射极电压UBE与温度T呈线性关系。但严格地说,这种线性关系是不完全的,因为关系式中存在非线性项。

集成温度传感器是将温敏晶体管及其辅助电路集成在同一芯片的集成化温度传感器。这种传感器的优点是直接给出正比于绝对温度的理想的线性输出[7]。目前,集成温度传感器已广泛用于-50℃~+150℃温度范围内的温度检测、控制和补偿等。集成温度传感器按输出形式可分为电压型和电流型两种。

进气温度传感器工作原理是什么?

进气温度传感器的工作原理是:进气温度传感器在工作状态下,内部安装了一个具有负温度电阻系数的热敏电阻,通过这个负温度热敏电阻感知温度变化,进而调节电阻的大小改变电路电压。

以下是关于进气温度传感器的详细介绍:

1、原理:进气温度传感器就是一个负温度系数的热敏电阻,当温度升高的时候电阻阻值会变小,当温度降低的时候电阻值会增大,汽车的电压会随着汽车电路中电阻的变化而变化,从而产生不一样的电压信号,可以完成汽车控制系统的自动操作。

2、作用:汽车的进气温度传感器就是检测汽车发动机的进气温度,将进气温度转变为电压信号输入为ecu作为喷油修正的信号使用。

相关百科

热门百科

首页
发表服务