首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

极限的求解方法毕业论文

发布时间:

毕业论文极限的求解方法

首先说下我的感觉,  假如高等数学是棵树木得话,那么 极限就是他的根,  函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,  可见这一章的重要性。

为什么第一章如此重要?   各个章节本质上都是极限,  是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面

首先  对  极限的总结  如下

极限的保号性很重要   就是说在一定区间内  函数的正负与极限一致

1  极限分为   一般极限   ,  还有个数列极限,  (区别在于数列极限时发散的, 是一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)

1 等价无穷小的转化,   (只能在乘除时候使用,但是不是说一定在加减时候不能用  但是前提是必须证明拆分后极限依然存在) e的X次方-1   或者 (1+x)的a次方-1等价于Ax  等等 。  全部熟记

(x趋近无穷的时候还原成无穷小)

2落笔他 法则   (大题目有时候会有暗示  要你使用这个方法)

首先他的使用有严格的使用前提!!!!!!

必须是  X趋近 而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,  当然n趋近是x趋近的一种情况而已,是必要条件

(还有一点  数列极限的n当然是趋近于正无穷的  不可能是负无穷!)

必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x),  没告诉你是否可导, 直接用无疑于找死!!)

必须是  0比0  无穷大比无穷大!!!!!!!!!

当然还要注意分母不能为0

落笔他 法则分为3中情况

1 0比0   无穷比无穷  时候  直接用

2   0乘以无穷   无穷减去无穷   ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后   这样就能变成1中的形式了

3  0的0次方    1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法,  这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , (  这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0  当他的幂移下来趋近于无穷的时候  LNX趋近于0)

3泰勒公式    (含有e的x次方的时候  ,尤其是含有正余旋  的加减的时候要 特变注意  !!!!)

E的x展开   sina  展开   cos  展开   ln1+x展开

对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则    最大项除分子分母!!!!!!!!!!!

看上去复杂处理很简单 !!!!!!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式  ,放缩和扩大。

7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)

8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)

可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下,  xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化

10 2 个重要极限的应用。  这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值   。  地2个就如果x趋近无穷大 无穷小都有对有对应的形式

(地2个实际上是 用于  函数是1的无穷的形式  )(当底数是1 的时候要特别注意可能是用地2 个重要极限)

11 还有个方法  ,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!

x的x次方 快于  x!   快于  指数函数   快于   幂数函数   快于        对数函数 (画图也能看出速率的快慢)  !!!!!!

当x趋近无穷的时候  他们的比值的极限一眼就能看出来了

12 换元法  是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中

13假如要算的话  四则运算法则也算一种方法 ,当然也是夹杂其中的

14还有对付数列极限的一种方法,

就是当你面对题目实在是没有办法  走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。

15单调有界的性质

对付递推数列时候使用  证明单调性!!!!!!

16直接使用求导数的定义来求极限 ,

(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,    看见了有特别注意)

(当题目中告诉你F(0)=0时候  f(0)导数=0的时候     就是暗示你一定要用导数定义!!!!)

16 种求极限的方法,相信肯定对你有帮助。1、等价无穷小的转化只能在乘除时候使用,但是不是说一定在加减时候不能用 ,前提是必须证明拆分后极限依然存在 ,e 的 X 次方-1 或者(1+x) 的 a 次方-1 等价于 Ax 等等。全部熟记(x 趋近无穷的时候还原成无穷小2、洛必达法(大题目有时候会有暗示要你使用这个方法 )。首先他的使用有严格的使用前提!必须是 X 趋近而不是N 趋近!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然 n 趋近是 x 趋近的一种情况而已,是必要条件(还有一点数列极限的 n 当然是趋近于正无穷的, 不可能是负无穷 !)必须是函数的导数要存在 !(假如告诉你 g(x), 没告诉你是否可导,直接用,无疑于找死 !!)必须是 0 比 0 无穷大比无穷大 !当然还要注意分母不能为 0。洛必达法则分为 3 种情况: 0 比 0 无穷比无穷时候直接用 ;0 乘以无穷, 无穷减去无穷 (应为无穷大于无穷小成倒数的关系 )所以无穷大都写成了无穷小的倒数形式了。 通项之后这样就能变成第一种的形式了 ;0的 0 次方, 1 的无穷次方,无穷的 0 次方。对于 (指数幂数 )方程方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成 0 与无穷的形式了, (这就是为什么只有3 种形式的原因, LNx 两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候, LNX 趋近于 0)。3、泰勒公式(含有 e 的 x 次方的时候 ,尤其是含有正余弦的加减的时候要特变注意 !)E 的 x展开 sina ,展开 cosa, 展开 ln1+x, 对题目简化有很好帮助。4、无穷大比上无穷大面对无穷大比上无穷大形式的解决办法 ,取大头原则最大项除分子分母 !!!看上去复杂 ,处理很简单 !5、无穷小于有界函数无穷小于有界函数的处理办法 ,面对复杂函数时候 ,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需 要知道它的范围结果就出来了!6、夹逼定理主要对付的是数列极限 !这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7、等比等差数列公式应用对付数列极限 (q 绝对值符号要小于1)8、各项的拆分相加(对付数列极限 )例如知道 Xn 与 Xn+1 的关系,已知 Xn 的极限存在的情况下,xn 的极限与 xn+1 的极限时一样的,因为极限去掉有限项目极限值不变化。9、求左右极限的方式(对付数列极限 )例如知道 Xn 与 Xn+1 的关系,已知 Xn 的极限存在的情况下,xn 的极限与 xn+1 的极限时一样的,因为极限去掉有限项目极限值不变化。10、两个重要极限的应用这两个很重要 !对第一个而言是 X 趋近 0 时候的 sinx 与 x 比值。第 2 个就如果 x 趋近无穷大,无穷小都有对有对应的形式 (第 2 个实际上是用于函数是 1 的无穷的形式 )(当底数是 1 的时候要特别注意可能是用地两个重要极限 )11、趋近于无穷大还有个方法,非常方便的方法 ,就是当趋近于无穷大时候 ,不同函数趋近于无穷的速度是不一样的 !x 的 x 次方快于 x!快于指数函数, 快于幂数函数, 快于对数函数(画图也能看出速率的快慢 )!!当 x 趋近无穷的时候,他们的比值的极限一眼就能看出来了。12、换元法换元法是一种技巧 ,不会对单一道题目而言就只需要换元,而是换元会夹杂其中。13、四则运算假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。14、数列极限还有对付数列极限的一种方法,就是当你面对题目实在是没有办法,走投无路的时候可以考虑转化为定积分。一般是从0 到 1 的形式。15、单调有界单调有界的性质,对付递推数列时候使用证明单调性!16、导数的定义直接使用求导数的定义来求极限, (一般都是 x 趋近于 0 时候,在分子上 f(x 加减某个值 )加减 f(x) 的形式 ,看见了要特别注意 )(当题目中告诉你 F(0)=0 时候 f(0) 导数=0 的时候,就是暗示你一定要用导数定义 !【求极限的一般题型】1、求分段函数的极限,当函数含有绝对值符号时,就很有可能是有分情况讨论的了 !当 X 趋近无穷时候存在 e 的 x 次方的时候,就要分情况讨论应为E的x 次方的函数正负无穷的结果是不一样的 2、极限中含有变上下限的积分如何解决嘞?说白了,就是说函数中现在含有积分符号,这么个符号在极限中太麻烦了你要想办法把它搞掉!解决办法:1、求导,边上下限积分求导,当然就能得到结果了,这不是很容易么?但是有 2 个问题要注意 !问题 1:积分函数能否求导 ?题目没说积分可以导的话,直接求导的话是错误!!!问题 2:被积分函数中既含有 t 又含有 x 的情况下如何解决?解决 1 的方法:就是方法 2 微分中值定理 !微分中值定理是函数与积分的联系!更重要的是他能去掉积分符号!解决 2 的方法:当 x 与 t 的函数是相互乘的关系的话, 把 x 看做常数提出来, 再求导数 !!当 x 与 t 是除的关系或者是加减的关系,就要换元了 !(换元的时候积分上下限也要变化 !)3、求的是数列极限的问题时候 :夹逼或者分项求和定积分都不可以的时候, 就考虑 x 趋近的时候函数值 ,数列极限也满足这个极限的 ,当所求的极限是递推数列的时候 :首先:判断数列极限存在极限的方法是否用的单调有界的定理。判断单调性不能用导数定义!数列是离散的 ,只能用前后项的比较 (前后项相除相减 ),数列极限是否有界可以使用归纳法最后对 xn 与 xn+1 两边同时求极限 ,就能出结果!4、涉及到极限已经出来了让你求未知数和位置函数的问题。解决办法:主要还是运用等价无穷小或者是同阶无穷小。因为例如 : 当 x 趋近 0 时候 f(x) 比 x=3 的函数 ,分子必须是无穷小,否则极限为无穷,还有洛必达法则的应用 ,主要是因为当未知数有几个时候,使用洛必达法则 ,可以消掉某些未知数,求其他的未知数。

求极限的方法归纳:1. 代入法,分母极限不为零时使用。先考察分母的极限,分母极限是不为零的常数时即用此法。2. 倒数法,分母极限为零,分子极限为不等于零的常数时使用。3. 消去零因子(分解因式)法,分母极限为零,分子极限也为零,且可分解因式时使用。4. 消去零因子(有理化)法,分母极限为零,分子极限也为0,不可分解,但可有理化时使用。可利用平方差、立方差、立方和进行有理化。5. 零因子替换法,利用第一个重要极限:lim[x-->0]sinx/x=1,分母极限为零,分子极限也为零,不可分解,不可有理化,但出现或可化为sinx/x时使用,常配合利用三角函数公式。6. 无穷转换法,分母、分子出现无穷大时使用,常常借用无穷大和无穷小的性质。

参考资料

清华大学数学科学系《微积分》编写组.《微积分》.北京:清华大学出版社,2003

百度百科.百度百科[引用时间2017-12-20]

极限的求解方法毕业论文

Robbie rules for the use of the limit of Notes Summary of a dollar in the function of the limits of computing, including the limits of a class of infinitive can not be used "to the limit equal to the limit to" the rule of law and Robbie is the calculation of such an effective way to limit infinitive. Robbie reached the limits of the law to provide a new computing possibilities, it also brings a great convenience. However, if the blind use of sub-rule will lead to error. Robbie rules of this article will use some of the problems encountered in the analysis of research, pointed out that in the process of using the Notes and the scope of application of the limit order to enrich the way up to Robbie and to promote the application of the law, given Romania than the law of series in order to limit and isolate the type of singular point at the time of application, are summarized in the mathematical analysis and complex variable function with Robbie similar rules of law, so that we can be more convenient to determine the isolated singular point. Keywords Limit; infinitive; Robbie of law

方法一:都是幂指数的形式,可以提出最高次项,极限值就是最高次项的系数之比,如下图所示。

方法二:可以用洛必达法则求极限。具体做法是同时对分子分母求导,然后借助方法一或者直接代入,可以得到答案。

扩展资料

必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法 。众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。洛必达法则便是应用于这类极限计算的通用方法。

参考资料:百度百科洛必达法则

下面的表格是本人的总结:

浅谈极限的求解方法毕业论文下载

极限的计算方法总结如下:

1、抽象数列求极限这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。

2、具体的求极限,可以用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。

3、如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。

4、若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。

5、若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。

6、若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。

7、求n项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。

极限:

极限是微积分和数学分析的其他分支最基本的概念之一,连续和导数的概念均由其定义。它可以用来描述一个序列的指标愈来愈大时,序列中元素的性质变化的趋势,也可以描述函数的自变量接近某一个值的时候,相对应的函数值变化的趋势。

对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的影响趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。

极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。

极限求解方法总结整理如下:

首先对极限的总结如下。极限的保号性很重要就是说在一定区间内函数的正负与极限一致。1、极限分为一般极限,还有个数列极。限(区别在干数列极限时发散的,是一般极限的一种)。

2、解决极限的方法:

1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记。(x趋近无穷的时候还原成无穷小)。

2)洛必达法则(大题目有时候会有暗示要你使用这个方法)。

首先他的使用有严格的使用前提。必须是X趋近而不是N趋近。(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。

还有一点数列极限的n当然是趋近干正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你a(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

其他方法:

1、还有个方法,非常方便的方法。就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的。x的x次方快于x!快于指数函数快于幂数函数快于对数函数(画图也能看出速率的快慢)。当x趋近无穷的时候他们的比值的极限一眼就能看出来了。

2、换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中。

3、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。

4、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法走投无路的时候可以考虑转化为定积分。一般是从0到1的形式。

5、单调有界的性质。对付递推数列时候使用证明单调性。

6、直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x)加减某个值)加减f(x)的形式,看见了有特别注意)(当题目中告诉你F(O)=0时候f(0)导数=0的时候就是暗示你一定要用导数定义!)。

7、单调有界的性质。对付递推数列时候使用证明单调性。

毕业论文极限的求解

其实我觉得你用软件翻译就ok啦~~

函数的极限求解方法如下:

1、利用函数连续性。

limf(x)=f(a)x->a(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)

2、恒等变形。

当分母等于零时,就不能将趋向值直接代入分母,可以通过几个小方法解决,因式分解,通过约分使分母不会为零。若分母出现根号,可以配一个因子使根号去除。

以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)

函数极限的定义

函数极限的定义是某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”的过程中,此变量的变化,被人为规定为“永远靠近而不停止”,其有一个“不断地极为靠近A点的趋势”。

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

如图所示:

特别注意:

1、函数在一点有极限与这点是否有定义无关.但是函数在这点的邻域一定要有定义;

2、一般地,函数在一点有极限,是指函数在这点存在双侧极限,且相等,只有区间端点,是单侧极限。

对数法。此法适用于指数函数的极限形式,指数越是复杂的函数,越能体现对数法在求极限中的简便性,计算到最后要注意代回以e为底,不能功亏一篑。

定积分法。此法适用于待求极限的函数为或者可转化为无穷项的和与一个分数单位之积,且这无穷项为等差数列,公差即为那个分数单位。

扩展资料:

极限性质:

1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。

2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。

但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”

3、保号性:若  (或<0),则对任何  (a<0时则是  ),存在N>0,使n>N时有  (相应的xn

[Abstract] limit thought method throughout the mathematical analysis, some basic concepts such as differential and integral definition is closely linked with the limit, so there is said the important concepts in mathematical analysis, is the most basic mathematical analysis is the most important content. Thus mastered the limit is the key to learn mathematics analysis, this paper summarizes the limit of 10, and specific examples to illustrate.

求极限的若干方法毕业论文

极限的求法有很多中:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值2、利用恒等变形消去零因子(针对于0/0型)3、利用无穷大与无穷小的关系求极限4、利用无穷小的性质求极限5、利用等价无穷小替换求极限,可以将原式化简计算6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限7、利用两个重要极限公式求极限8、利用左、右极限求极限,(常是针对求在一个间断点处的极限值)9、洛必达法则求极限 其中,最常用的方法是洛必达法则,等价无穷小代换,两个重要极限公式。 在做题时,如果是分子或分母的一个因子部分,如果在某一过程中,可以得出一个不为0的常数值时,我们常用数值直接代替,进行化简。另外,也可以用等价无穷小代换进行化简,化简之后再考虑用洛必达法则。

怎么求函数极限,数学中怎样求一个函数的极限呢

求极限的方法总结如下:1. 代入法:将极限中的变量替换为一个趋近于极限值的数值,然后计算函数值,逐渐逼近极限值。2. 夹逼定理法:通过夹逼定理,将极限转化为两个已知的极限的比较,从而求出极限值。3. 分子分母分别求极限法:将极限分式化简,分别求分子和分母的极限,然后将结果带回原式计算。4. 极限换元法:通过变量替换,将原函数转化为一个新函数,使得新函数的极限更容易求解。

5. L'Hopital法则:当极限形式为0/0或∞/∞时,可以使用L'Hopital法则,将极限转化为函数导数的极限,从而求出极限值。

6. 泰勒展开法:将函数在某个点处展开成泰勒级数,然后求出级数的极限,从而求出原函数的极限。7. 极限比较法:将原函数与一个已知的函数进行比较,从而确定极限的上下界,进而求出极限值。

一、利用极限四则运算法则求极限

函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则

lim[f(x)±g(x)]=limf(x)±limg(x)=A±B

lim[f(x)・g(x)]=limf(x)・limg(x)=A・B

lim==(B≠0)

(类似的有数列极限四则运算法则)现以讨论函数为例。对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有:

1.直接代入法

对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。

2.无穷大与无穷小的转换法

在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。

(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。

(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。

3.除以适当无穷大法

对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。

4.有理化法

适用于带根式的极限。

二、利用夹逼准则求极限

函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>N)有定义,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),则g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(类似的可以得数列极限的夹逼定理)利用夹逼准则关键在于选用合适的不等式。

三、利用单调有界准则求极限

单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。

四、利用等价无穷小代换求极限

常见等价无穷小量的例子有:当x→0时,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。

等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。

五、利用无穷小量性质求极限

在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。

六、利用两个重要极限求极限

使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。

七、利用洛必达法则求极限

如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。

相关百科

热门百科

首页
发表服务