关于分析压电,电涡流,光纤三种传感器测量振动时的应用及特点相关资料如下电涡流传感器、速度传感器、加速度传感器主要特点以及优缺点、电满流传感器t.可以直接测量转轴振动,由于是非接触式测量,可以迎免接触测量中产生的“影响2能作静态和动态测量,所以他可以测量2HZ以下的低频振动,而且适用于绝大多数机器的环境条件3、价格比较便,本身价格为速度传感器的15,若考虑置器的投资,则与速度传感器本身的价格相近。4、输出信号与振动位移成正比,对于采用幅描述动状态的大多数机器来说以获得较高的输出信号结构简单可靠尺寸小没有活动部件:针对汽轮机发电机组的振动,它具有的频响应范围,标定较容易。官方除了用于测量振动和部件静态位置外,还可以作为战速和振动相位测量的键相微测量振动物体材料不同会影响传感器线性范围和灵敏度,需要重新标定信需要外加电源,安装比较麻烦必须配前置器二速度传感器1、安装简单可以适用于绝大多数机器的环境条件,对于汽轮机发电机组振动来说,它具有合适的频率响应范围;2不需要外加电源,振动信号可以不经过任何处理传送到需要的地方3、体积,重量较大,活动部件容易损坏,低频响应不好,一般测试15HZ以下的动时,将产生较大的振幅和相位误差,必费时需加补偿电路4,标定较麻,只能做动态测量,价格较贵三、加速度传感器
The application of Micro-Displacement Measurement in Electric Eddy Current Sensors
你好!接近开s关是利用电磁感应原理来工q作的,与b金属物体接触时,磁场作用让电路起振。开s关管接通(或关断),接近开t关只工i作在0、5两种状态;电感式位移传感器也n是电磁感应的原理,但其工t作电路可以8根据电磁感应的强弱,(也g就是靠近物体的远近。来判定磁场的强弱)从1而电路输出变量的模拟信号。电感式位移传感器是线性输出模拟量。iúマまt
厚度传感器 测量材料及其表面镀层厚度的传感器。它在工业生产中常用于材料厚度检验和厚度控制系统的误差测量。在厚度控制系统中通常不要求测量厚度的绝对尺寸,而只要求测量厚度的变化值或与某一标准尺寸的差值,以便控制加工过程。厚度传感器可分为接触式和非接触式两类。接触式厚度传感器通常采用电感式位移传感器、电容式位移传感器、电位器式位移传感器、霍耳式位移传感器等(见位移传感器)进行接触式厚度测量。为了连续测量移动着的材料的厚度,常在位移传b感器的可动端头上安装滚动触头,以减少磨损。还常采用两个相同的位移传感器分别安装于被测材料的上下两面,将两个传感器的测量值平均,以提高测量精度。接触式厚度传感器可测量移动速度较低(小于5米/秒)的材料,精度可达0.1~1%。非接触式厚度传感器它的特点是适于连续快速测量,按工作原理可分为电涡流厚度传感器、磁性厚度传感器、电容厚度传感器、超声波厚度传感器、核辐射厚度传感器、X射线厚度传感器、微波厚度传感器等。电涡流厚度传感器它可用于测量金属材料厚度,特点是测量范围宽、反应快和精度高。可分为低频透射式(见电涡流式传感器)和高频反射式两类。高频反射式也由上下两个线圈(分别位于金属材料两面)和激励电路及测量电路组成,所不同的是线圈磁场并不穿透金属材料,电涡流效应对磁场的减弱程度与线圈至材料表面的距离有关。材料厚度等于两线圈间的距离减去上下两个测量距离之和。因此根据输出电压即可求出材料厚度。磁性厚度传感器用于测量磁性材料的厚度。图1是这种传感器的原理图。由于所测材料是磁性电路的一部分,故绕于铁心上的线圈的电感与材料的厚度有关。图中线圈又是振荡器的组成元件,因此振荡器的频率决定于线圈的电感。通过测量振荡器的频率可确定线圈电感,从而测出材料的厚度。电容厚度传感器用于测量绝缘材料(如绝缘塑料)的厚度。图2是这种传感器的原理图。在被测绝缘材料的两边设置了两块金属电极板,形成一个电容器。由于电容器的容量与介质厚度有关,而电容器又是振荡器的组成元件,因此通过测量振荡器的振荡频率可确定电容值,从而测出材料的厚度。超声波厚度传感器利用超声振动来检测材料的厚度。超声振动是以气体、液体或固体为介质的机械振动,其振动频率超出音频范围,即高于2万赫。超声振动由变送器产生,变送器将振荡器输出的电信号转换为相应的超声振动。超声波变送器分为磁致伸缩型和压电型两种(见超声波传感器)。磁致伸缩型超声波变送器由线圈和磁致伸缩棒(由铁磁材料制成)组成。在线圈产生的交变磁场的作用下,磁致伸缩棒按磁场交变频率而交替伸缩,它的一端被固定,另一端推拉膜片而产生超声波。压电型超声波变送器由压电材料(一般为石英晶体)制成。当加在压电材料上的电压以超声频率交变时,压电材料随之以超声频率伸缩,并带动膜片而产生超声波。图3是用超声波测量材料厚度的原理图。变送器置于材料上面,使超声波可穿过材料而至另一平面。超声波到达另一平面后再反射回到变送器。在相同条件下,超声波在材料内的往返时间取决于材料的厚度。若往返时间恰好等于超声振动的周期,就会产生共振。在共振时,变送器加给振荡器的负荷会突然改变,随之使振荡器电流相应改变。通过指示器记下电流改变时的振荡频率,就可确定超声波往返一次所需的时间,从而测出材料的厚度。核辐射厚度传感器又称同位素厚度传感器,它利用核辐射线进行测量。可分为穿透式和反射式两类。穿透式传感器由同位素核辐射源和核辐射传感器组成(图4)。被测的塑料料板、纸板、橡皮板等材料在辐射源和传感器之间经过。当射线穿过板材时,一些射线被板材吸收,使传感器接收到的射线减弱。对于密度不变的材料,辐射吸收量随厚度变化,因此可测出厚度。传感器的测量范围与材料密度有关,一般按被测表面单位面积所含质量计算,称为质量厚度(均匀材料的厚度与质量厚度正比)。穿透式核辐射传感器的测量范围在500毫克/厘米2以下。若采用γ射线,则可达100克/厘米2。精度为1%。反射式核辐射厚度传感器利用射线的弹性散射特性测量厚度。射线的反射强度是被测材料厚度的函数,因此测量反射强度就可确定厚度。这种传感器还适于测量镀层或涂层的厚度。镀层或涂层与基层物质的原子序数相差越大,界面处反射差异就越大,测量灵敏度也就越高。这种传感器的测量范围在150毫克/厘米2之内,精度可达1%。X射线厚度传感器它的结构类似于核辐射厚度传感器,不同之处是用X射线源代替核辐射源。特点是X射线的强度可控、发射可控,因此比较安全。测量范围大于10克/厘米2,精度可达1%。微波厚度传感器它利用波长为1毫米至1米的无线电波所具有的强辐射性和极小的绕射性制成。微波传感器受烟、尘、光强等外界影响不大,是一种新型厚度传感器。它由微波发生器、终端器、左右环形器、测量电路、调整电路和转换电路组成(图5)。微波信号由终端器向被测材料发射后,碰到材料反射回来又被终端器接收,因此左环形器左边微波路径的长度(称为电长度)与被测材料的厚度有关,而右环形器右边的电长度由可逆电机控制补偿短路器进行调整。当两侧电长度恰好相等时,对补偿短路器进行调整的量,经转换后变为正比于被测材料厚度的电信号。微波厚度传感器的精度可达1%。当厚度小于0.2毫米时,精度为10%。
传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。这是我为大家整理的传感器技术论文 范文 ,仅供参考!传感器技术论文范文篇一 传感器及其概述 摘 要 传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。目前,传感器转换后的信号大多是电信号,因而从狭义上讲,传感器是把外界输入的非电信号转换为电信号的装置。 【关键词】传感器 种类 新型 1 前言 传感器是测试系统的一部分,其作用类似于人类的感觉器官,也可以认为是人类感官的延伸。人们借助传感器可以去探测那些人们无法用或不便用感官直接感知的事物,如用热电偶可以测量炽热物体的温度;用超声波换能器可以测海水深度;用红外遥感器可从高空探测地面形貌、河流状态及植被的分布等。因此,可以说传感器是人们认识自然界事物的有力工具,是测量仪器与被测量物体之间的接口。通常情况下,传感器处于测试装置的输入端,是测试系统的第一个环节,其性能直接影响着整个测试系统,对测试精度有很大影响。 2 传感器的分类 按被测物理量的不同,可以分为位移、力、温度、流量传感器等;按工作的基础不同,可以分为机械式传感器、电气式传感器、光学式传感器、流体式传感器等;按信号变换特征可以分为物性型传感器和结构型传感器;根据敏感元件与被测对象直接的能量关系,可以分为能量转换型传感器与能量控制型传感器。 3 常见传感器介绍 3.1 电阻应变式传感器 电阻应变式传感器又叫电阻应变计,其敏感元件是电阻应变。应变片是在用苯酚,环氧树脂等绝缘材料浸泡过的玻璃基板上,粘贴直径为0.025mm左右的金属丝或金属箔制成。敏感元件也叫敏感栅。其具有体积小、动态响应快、测量精度高、使用简单等优点。在航空、机械、建筑等各行业获得了广泛应用。电阻应变片的工作原理是基于金属的应变效应,即金属导体在外力作用下产生机械形变,其电阻值随机械变形的变化而变化。其可以分为:金属电阻应变片和半导体应变片式两类。金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。它们的主要区别在于:金属电阻应变片式是利用导体形变引起电阻变化,而半导体应变片式则是利用电阻率变化引起电阻的变化。 3.2 电容式传感器 电容式传感器是将被测物理量转换成电容量变化的装置,它实质是一个具有可变参数的电容器。由于电容与极距成反比,与正对面积和介质成正比,因此其可以分为极距变化型、面积变化型和介质变化型三类。极距变化型电容传感器的优点是可进行动态非接触式测量,对被测系统的影响小,灵敏度高,适用于较小位移的测量,但这种传感器有非线性特性,因此使用范围受到一定限制。面积变化型传感器的优点是输出与输入成线性关系,但与极距型传感器相比,灵敏度较低,适用于较大的直线或角位移的测量。介质变化型则多用于测量液体的高度等场合。 3.3 电感式传感器 电感式传感器是将被测物理量,如力、位移等,转换为电感量变换的一种装置,其变换是基于电磁感应原理。电感式传感器种类很多,常见的有自感式,互感式和涡流式三种。 电感式传感器具有以下特点:结构简单,传感器无活动电触点,因此工作可靠寿命长。灵敏度和分辨力高,能测出0.01微米的位移变化。传感器的输出信号强,电压灵敏度一般每毫米的位移可达数百毫伏的输出。线性度和重复性都比较好,在一定位移范围(几十微米至数毫米)内,传感器非线性误差可达0.05%~0.1%。同时,这种传感器能实现信息的远距离传输、记录、显示和控制,它在工业自动控制系统中广泛被采用。但不足的是,它有频率响应较低,不宜快速动态测控等缺点。 3.4 磁电式传感器 磁电式传感器是把被测物理量转换为感应电动势的一种传感器,又称电磁感应式或电动力式传感器。其工作原理是一个匝数为N的线圈,当穿过它的磁通量变化时,线圈产生了感应电动势。磁通量的变化可通过多种方式来实现,如磁铁与线圈做切割磁力线运动、磁路的磁阻变化、恒定磁场中线圈面积的变化,因此可制造出不同类型的传感器用于测量速度、扭矩等。 3.5 压电式传感器 压电式传感器是一种可逆传感器,是利用某些物质的压电效应进行工作的器件。最简单的压电式传感器是在压电晶片的两个工作面上进行金属蒸镀,形成金属膜,构成两个电极。当晶片受压力时,两个极板上聚集数量相等而极性相反的电荷,形成电场。因此压电传感器可以看成是电荷发生器,又可以看作电容器。 4 新型传感器 4.1 生物传感器 生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测 方法 与监控方法,也是物质分子水平的快速、微量分析方法。各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。生物传感器的原理:待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经二次仪表放大并输出,便可知道待测物浓度。 4.2 激光传感器 激光传感器:利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光传感器原理:激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号,并将其转化为相应的电信号。 5 结束语 随着科技的飞速发展,人们不断提高着自身认知世界的能力。传感器在获取自然和生产领域中发挥着巨大上的作用。目前,传感器技术在发展经济、推动社会进步方面起到重要的推动作用。相信未来,传感器技术将会出现一个飞跃。 作者简介 杨天娟(1991-),女,河北省邯郸市人。现为郑州大学本科生,主要研究方向为机械工程及自动化。 作者单位 郑州大学机械工程学院 河南省郑州市 450001 传感器技术论文范文篇二 温度传感器 摘 要:温度传感器是最早开发、也是应用最广泛的一种传感器。据调查,早在1990年,温度传感器的市场份额就大大超出了 其它 传感器。从17世纪初,伽利略发明温度计开始,人们便开始了温度测量。而真正把温度转换成电信号的传感器,是1821年德国物理学家赛贝发明的,也就是我们现在使用的热电偶传感器。随后,铂电阻温度传感器、半导体热电偶温度传感器、PN结温度传感器、集成温度传感器相继而生。也使得温度传感器更加广泛的应用到我们的生产和生活中。本文主要介绍了温度传感器的分类、工作原理及应用。 关键词:温度传感器;温度;摄氏度 中图分类号:TP212 文献标识码:A 文章 编号:1674-7712 (2014) 02-0000-01 温度传感器(temperature transducer),利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。 一、温度的相关知识 温度是用来表征物体冷热程度的物理量。温度的高低要用数字来量化,温标就是温度的数值表示方法。常用温标有摄氏温标和热力学温标。 摄氏温标是把标准大气压下,沸水的温度定为100摄氏度,冰水混合物的温度定为0摄氏度,在100摄氏度和0摄氏度之间进行100等份,每一等份为1摄氏度。热力学温标是威廉汤姆提出的,以热力学第二定律为基础,建立温度仅与热量有关而与物质无关的热力学温标。由于是开尔文 总结 出来的,所以又称为开尔文温标。 二、温度传感器的分类 根据测量方式不同,温度传感器分为接触式和非接触式两大类。接触式温度传感器是指传感器直接与被测物体接触,从而进行温度测量。这也是温度测量的基本形式。其中接触式温度传感器又分为热电偶温度传感器、热电阻温度传感器、半导体热敏电阻温度传感器等。 非接触式温度传感器是测量物体热辐射发出的红外线,从而测量物体的温度,可以进行遥测。 三、温度传感器的工作原理 (一)热电偶温度传感器。热电偶温度传感器结构简单,仅由两根不同材料的导体或半导体焊接而成,是应用最广泛的温度传感器。 热电偶温度传感器是根据热电效应原理制成的:把两种不同的金属A、B组成闭合回路,两接点温度分别为t1和t2,则在回路中产生一个电动势。 热电偶也是由两种不同材料的导体或半导体A、B焊接而成,焊接的一端称为工作端或热端。与导线连接的一端称为自由端或冷端,导体A、B称为热电极,总称热电偶。测量时,工作端与被测物相接触,测量仪表为电位差计,用来测出热电偶的热电动势,连接导线为补偿导线及铜导线。 从测量仪表上,我们观测到的便是热电动势,而要想知道物体的温度,还需要查看热电偶的分度表。 为了保证温度测量结果足够精确,在热电极材料的选择方面也有严格的要求:物理、化学稳定性要高;电阻温度系数小;导电率高;热电动势要大;热电动势与温度要有线性或简单的函数关系;复现性好;便于加工等。根据我们常用的热电极材料,热电偶温度传感器可分为标准化热电偶和非标准化热电偶。铂铑-铂热电偶是常用的标准化热电偶,熔点高,可用于测量高温,误差小,但价格昂贵,一般适用于较为精密的温度测量。铁-康铜为常用的非标准化热电偶,测温上限为600摄氏度,易生锈,但温度与热电动势线性关系好,灵敏度高。 (二)电阻式温度传感器。热电偶温度传感器虽然结构简单,测量准确,但仅适用于测量500摄氏度以上的高温。而要测量-200摄氏度到500摄氏度的中低温物体,就要用到电阻式温度传感器。 电阻式温度传感器是利用导体或者半导体的电阻值随温度变化而变化的特性来测量温度的。大多数金属在温度升高1摄氏度时,电阻值要增加0.4%到0.6%。电阻式温度传感器就是要将温度的变化转化为电阻值的变化,再通过测量电桥转换成电压信号送至显示仪表。 (三)半导体热敏电阻。半导体热敏电阻的特点是灵敏度高,体积小,反应快,它是利用半导体的电阻值随温度显著变化的特性制成的。可分为三种类型:(1)NTC热敏电阻,主要是Mn,Co,Ni,Fe等金属的氧化物烧结而成,具有负温度系数。(2)CTR热敏电阻,用V,Ge,W,P等元素的氧化物在弱还原气氛中形成烧结体,它也是具有负温度系数的。(3)PTC热敏电阻,以钛酸钡掺和稀土元素烧结而成的半导体陶瓷元件,具有正温度系数。也正是因为PTC热敏电阻具有正温度系数,也制作成温度控制开关。 (四)非接触式温度传感器。非接触式温度传感器的测温元件与被测物体互不接触。目前最常用的是辐射热交换原理。这种测温方法的主要特点是:可测量运动状态的小目标及热容量小或变化迅速的对象,也可用来测量温度场的温度分布,但受环境温度影响比较大。 四、温度传感器的应用举例 (一)温度传感器在汽车上的应用。温度传感器的作用是测量发动机的进气,冷却水,燃油等的温度,并把测量结果转换为电信号输送给ECU.对于所有的汽油机电控系统,进气温度和冷却水温度是ECU进行控制所必须的两个温度参数,而其他的温度参数则随电控系统的类型及控制需要而不尽相同。进气温度传感器通常安装在空气流量计或从空气滤清器到节气门体之间的进气道或空气流量计中,水温传感器则布置在发动机冷却水路,汽缸盖或机体上上的适当位置.可以用来测量温度的传感器有绕线电阻式,扩散电阻式,半导体晶体管式,金属芯式,热电偶式和半导体热敏电阻式等多种类型,目前用在进气温度和冷却水温度测量中应用最广泛的是热敏电阻式温度传感器。 (二)利用温度传感器调节卫生间的温度。温度传感器还能调节卫生间内的温度,尤其是在洗澡的时候,能自动调节卫生间内的温度是很有必要的。通过温湿度传感器和气体传感器就能很好的控制卫生间内的环境从而使我们能够拥有一个舒适的生活。现在大部分旅馆和一些公共场所都实现了自动调节,而普通家庭的卫生间都还是人工操作,尚未实现自动调节这主要是一般客户不知道能够利用传感器实现自动化,随着未来人们的进一步了解,普通家庭的卫生间也能实现自动调节。 参考文献: [1]周琦.集成温度传感器的设计[D].西安电子科技大学,2007.
知网什么的有好多 你留个邮箱发给你
电流互感器测量和保护的饱和区别:保护用的绕组主要是在系统有短路故障时起作用,短路故障时电流很大,往往是额定电流的几十倍,在这样大的电流情况下,也要求电流互感器的保护绕组保持一定的测量精度,使保护装置能正确动作,所以保护绕组的准确等级用5P20,10P20等来表示,5P20表示故障电流是额定电流的20倍时,误差只有5%,显然5P20要比10P20准确等级高。测量、计量用的二次绕组,主要保证负荷电流在正常额定电流范围内能保持测量精度就行了,至于当系统出现短路,电流互感器一、二值远远超额定电流时,测量、计量用的二次绕组即使误差很大也没关系,因为短路时间很短暂,保护已经跳闸了。所以,测量、计量用的二次绕组的准确等级的表示方法与保护二次绕组的准确等级表示方法不同。主要靠铁芯材料不同,磁化曲线不同,截面选择方面控制,磁密控制来保证饱和点位置。
电工就是指电力、电气等工程等专业的简称,评定高级电工技师的职称都要写作技术论文。我整理了电工高级技师技术论文,希望能对大家有所帮助!电工高级技师技术论文篇一:《试谈电工技术实验装置常见故障维修》摘 要文章 总结 了电工技术实验装置常见的故障现象、故障原因及维修 方法 ,包括可调直流稳压电源、三相电源、IGBT元器件等常见故障,总结了诊断故障和处理故障问题的一般步骤和方法。并分析了设备维护的若干原则,对日常电工设备的日常维护有较好的借鉴意义。【关键词】电工技术实验装置 故障分析 维修方法1 常用的故障排除方法1.1 常见故障在进行电工技术实验时,经常会碰到一些故障情况。如果对这些故障形式及原因不熟悉,就无法判定故障原因顺利解决故障,从而影响实验的进行和实验结果的准确性。通过对大量的电工技术实验中出现的故障情况进行分析总结,我们发现了以下一些常见的、典型的故障形式:① 电源故障 。这主要表现为电源给电工技术实验装置提供的电压不稳定,偏高或偏低,同时交流电源电流相位不符合要求。②线路故障。在电工技术实验中线路故障比较常见,主要表现在导线连接错误造成的短路和线路接触点接触不良造成的断路。此外,线路故障还有可能形成局部漏电等不良影响。③元器件故障。元器件本身的故障也是造成电工技术实验失败的一个主要原因。有些比较敏感、对实验条件要求比较严格的元器件,一旦其试验方式不符合要求或实验环境达不到标准,就有可能造成元器件出现故障,影响实验进程。1.2 故障的排除步骤通过长期对实验故障形式的分析和研究,并结合实际故障维修中的 经验 ,我们总结出了以下分析、判断和处理电工技术实验中常见故障的方式和步骤:1.2.1 调查研究当我们在电工技术实验中遇到故障时,首先就是要仔细观察出现故障的部位、故障的形式及相应的异常现象状况。例如,如实验装置出现发热、散发刺鼻气味、振动异常剧烈、噪音较大等异常现象时,我们就可以通过自身的感觉器官对故障现象、位置及性质做个大致的分析判定,为后续的分析处理提供参考。1.2.2 故障分析判断在以上对实验故障的情况做了初步判断后,我们就要根据已有的知识和经验对故障原因、位置进行进一步的分析和判断。为此,我们可以运用故障排除法来进行。例如在切断或短接故障电路的某一回路或元器件时,测量该回路或元器件的电流、电压值是否符合理论值,进而一步步分析确定回路故障位置。同时,为了判定某一元器件是否出现故障或异常,可以将其用正常元件代替检测,比较前后回路电压、电流参数是否一致来判断。1.2.3 故障维修通过上述步骤探明故障原因及位置后,就要对故障进行维修处理。如果是由于实验元器件出现故障,必要时就要更换正常元件代替实验。如果是回路短路或断路故障,就要重新连接电路并测试正常后才能继续实验。为了不影响实验的进程和结果,在对实验故障进行维修时要尽量采取直接有效、方便快捷的方式进行。必要时要重新设计电路结构和使用可靠度高的元器件,并在排除的所有故障后才可以重新开始实验。
直接测试的方法是取二次侧的实际负载,从一次侧传入电流,观察二次侧电流,找出电流互感器的饱和点。但对于保护级电流互感器,其饱和点可能超过额定电流的15-20倍。当电流互感器变大时,现场测试将变得困难。此外,电流互感器的饱和点也可以通过伏安特性测试来测量。如前所述,电流互感器的饱和是由于磁芯的磁通密度过大,导致电流互感器饱和电流的计算。伏安特性的测试方法是:初级侧开路,电流通过次级侧,测量次级侧绕组上的压降。由于电流互感器原边是开路的,所以原边电流没有退磁作用,铁芯在小电流的作用下很容易饱和。所以,电流互感器的二次侧在运行期间不得开路。二次侧一旦开路,会因铁损过大、温度过高而烧坏,或二次绕组电压升高,绝缘击穿,可能引起高压触电。因此,在更换仪表时,如更换电流表、有功功率表、无功功率表等。更换计量仪表前应先将电流回路短路。电表调好后,先接二次回路,然后拆下短接线,检查电表是否正常。拆除短接线时,如发现有火花,此时电流互感器开路,应立即重新短接,待发现短路接线无开路时方可拆除。计电路。排除电流互感器短路时,应站在绝缘垫上,考虑关闭电流互感器电路的保护装置。工作完成后,保护装置才能投入运行。当电流互感器二次侧线圈的绝缘电阻小于10-20兆欧时,必须干燥恢复绝缘后方可使用。在电流互感器二次侧的一端,外壳必须可靠接地。
测量是正常值 保护用故障值···
[编辑本段]氧传感器的作用在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOx的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。电喷车为获得高排气净化率,降低排气中(CO)一氧化碳、(HC)碳氢化合物和(NOx)氮氧化合物成份,必须利用三元催化器。但为了能有效地使用三元催化器,必须精确地控制空燃比,使它始终接近理论空燃比。催化器通常装在排气歧管与消声器之间。氧传感器具有一种特性,在理论空燃比(14.7:1)附近它输出的电压有突变。这种特性被用来检测排气中氧气的浓度并反馈给电脑,以控制空燃比。当实际空燃比变高,在排气中氧气的浓度增加而氧传感器把混合气稀的状态(小电动势:O伏)通知ECU。当空燃比比理论空燃比低时,在排气中氧气的浓度降低,而氧传感器的状态(大电动势:1伏)通知(ECU)电脑。ECU根据来自氧传感器的电动势差别判断空燃比的低或高,并相应地控制喷油持续的时间。但是,如氧传器有故障使输出的电动势不正常,(ECU)电脑就不能精确控制空燃比。所以氧传感器还能弥补由于机械及电喷系统其它件磨损而引起空燃比的误差。可以说是电喷系统中唯一有“智能”的传感器。 [编辑本段]氧传感器的组成主氧传感器包括一根加热氧化锆元件的热棒,加热棒受(ECU)电脑控制,当空气进量小(排气温度低)电流流向加热棒加 热传感器,使能精确检测氧气浓度。在试管状态化锆元素(ZRO2)的内外两侧,设置有白金电极,为了保护白金电极,用陶瓷包覆电机外侧,内侧输入氧浓度高于大气,外侧输入的氧浓度低于汽车排出气体浓度。应当指出采用三元催化器后,必须使用无铅汽油,否则三元催化器和氧传感器会很快失效。再注意,氧传感器在油门稳定,配制标准混合时较为重要的作用,而在频繁加浓或变稀混合时,(ECU)电脑将忽略氧传感器的信息,氧传感器就不能起作用。 [编辑本段]氧传感器的工作原理氧传感器是利用陶瓷敏感元件测量各类加热炉或排气管道中的氧电势,由化学平衡原理计算出对应的氧浓度,达到监测和控制炉内燃烧空然比,保证产品质量及尾气排放达标的测量元件,广泛应用于各类煤燃烧、油燃烧、气燃烧等炉体的气氛控制。它是目前最佳的燃烧气氛测量方式,具有结构简单、响应迅速、维护容易、使用方便、测量准确等优点。运用该传感器进行燃烧气氛测量和控制既能稳定和提高产品质量,又可缩短生产周期,节约能源。 氧传感器的工作原理与干电池相似,传感器中的氧化锆元素起类似电解液的作用。其基本工作原理是:在一定条件下(高温和铂催化),利用氧化锆内外两侧的氧浓度差,产生电位差,且浓度差越大,电位差越大。大气中氧的含量为21%,浓混合气燃烧后的废气实际上不含氧,稀混合气燃烧后生成的废气或因缺火产生的废气中含有较多的氧,但仍比大气中的氧少得多。 在高温及铂的催化下,带负电的氧离子吸附在氧化锆套管的内外表面上。由于大气中的氧气比废气中的氧气多,套管上与大气相通一侧比废气一侧吸附更多的负离子,两侧离子的浓度差产生电动势。当套管废气一侧的氧浓度低时,在电极之间产生一个高电压(0。6~1V),这个电压信号被送到ECU放大处理,ECU把高电压信号看作浓混合气,而把低电压信号看作稀混合气。根据氧传感器的电压信号,电脑按照尽可能接近14.7:1的理论最佳空燃比来稀释或加浓混合气。因此氧传感器是电子控制燃油计量的关键传感器。氧传感器只有在高温时(端部达到300°C以上)其特性才能充分体现,才能输出电压。它在约800°C时,对混合气的变化反应最快,而在低温时这种特性会发生很大变化。 [编辑本段]氧传感器的杂波分析概述1.为什么要研究氧传感器波形上的杂波信号呢? 这是因为杂波可能是由于燃烧效率低造成的,只要上流动系统不是处在正确的工作状态下,催化器就不能被精确地测试,氧传感器波形的杂波能警告各个发动机气缸性能的下降,这时废气诊断是最主要的。因为它能发现催化器转换效率的降低和个别气缸的性能降低。杂波信号也妨碍燃油反馈控制系统控制器的正常运行(在发动机控制电脑中的反馈程序运行),“燃油反馈控制系统控制器”专门指起作用的软件程序(从现在起,称之为“反馈控制器”),它是接受氧传感器电压信号并计算正确的即时喷油或混合气控制命令的程序。 通常,反馈控制器程序不是设计成有效地去处理由非正常的系统操作和燃油控制命令所产生的氧传感器信号频率。杂乱的高频变动信号能使反馈控制器失掉控制精度,或失去“反馈节奏”。这里有几个影响,首先,当反馈控制器的操作精度受影响时,燃油混合比就会超出催化剂窗口,这将影响转换器的工作效率和废气排放。其次,当反馈控制器的操作精度受影响时,发动机性能也将受到影响。 杂波可以成为失去控制的废气进入催化剂的判定性指示,经常可发现当杂波存在时,进入催化剂的废气便没有了正确的混合气空燃比,理解氧传感器波形上的杂波对废气排放的修理诊断是很重要的。在一些情况下,杂波是催化转换效率减少的明显信号,随后就是尾气排放超出标准。此外,氧传感器波形上杂波的解释、对发动机性能或行驶能力诊断是一个有价值的工具。杂波是燃烧效率从一缸到另一个缸不平衡指示。对氧传器波形上的杂波的解释和理解对有效地运用氧传感器信号修理验证也是很重要的。 在氧传感强器波形上的杂波表明排气变化从一个缸到另一个缸的不平衡,或者是比较特别地从个别的燃烧过程中没有得到较高的氧的含量。大多数氧传感器当工作正常时能够比较快的反馈各个燃烧过程所产生的电压偏差。杂波的信号限制越大,从各个燃烧过程测得氧成分的差别就越大,在不同行驶方式下看到的杂波不但对确定稳态和瞬态废气试验失效的根本原因是重要的,而且也是有效的可驾驶性能诊断的判断依据。 在加速方式下与BC的峰值毛刺形成一对一废气波形的氧传感器信号杂波是一种非常重要的诊断信号,因为它意味着在有负荷的情况下点火出现断火现象。通常,杂波幅度越大。在排气中氧传感器的成份就越多,所以杂波是由于进入催化器的反馈气平均氧含量升高造成氧化氮排前增加的指示,在浓氧环境中(稀混合气)催化器中的氧化氮不能被减少(化学地)。 综上所述,已知一些反馈类型系统完全正常的氧传感器波形上的杂波信号对废气或发动机性能不产生明显影响。对于少量的杂波可以不去管它,而大量的杂波是重要的。这正说明诊断是一种艺术,要学会判断什么是正常的杂波,什么不是就需要实践,而最好的老师是经验,学习的最好方法是从观察不同行驶里程和不同类型的汽车上观察氧传感器波形。理解什么是正常的杂波,什么是不正常杂波,对有效地进行废气排放修理以及行驶能力诊断是非常有价值的,它值得花时间去学习。 对于大多数普通系统,一个软件波形是绝对有价值的,对正在控制着的系统拥有一张氧传感器参考波形,能判断出什么样的杂波是允许的、正常的,而什么样的杂波是应该关注的,关于好的杂波标准是:如果发动机性能是好的,则应该没有真空泄漏,废气中的碳氢(HC)化合物和氧含量是正常的。 在本部分的试验中将尽可能地给出大量的资料,以便去理解在这个训练中正好有充分的时间和空间来包括所有的关于这个的课题。 2.杂波产生的原因 氧传感器信号的杂波通常由以下原因引起: A.缸的点火不良(各种不同的根本原因,点火系统造成的点火不良,气缸压力造成的点火不良真空泄漏和喷油嘴不平衡造成的点火不良);B.系统设计,例如不同的进气管通道长度等等; C.由于发动机和零部件老化造成的系统设计问题的扩大(由于气缸压力不平衡造成的不同的进气管通道长度问题的扩大); D.系统设计,例如不同的进气管通道等等。 3.由点火不良气缸引起氧传感器波形的杂波,发动机的点火不良是如何引起杂波呢?在点火不良状态下波形上的毛刺和杂波由那些燃烧不完全或根本不燃烧的单个燃烧时间或系列燃烧事件引起,它导致在气缸中有效氧化部分被利用,剩下的多余氧走到排气管中,并经过氧传感器。当传感器发现排气中氧成分变化时,它就非常快地产生一个低压或毛刺,一系列这些高频毛刺就组成称之为“杂波”东西。 4.产生毛刺的不同点火不良类型 a)点火系统造成的点火不良(例如:损坏的火花塞、高压线、分电器盖、分火头、点火线圈或只影响单个气缸或一对气缸的初级点火问题)。通常点火示波器可以用来确定这些问题或排除这些故障); b)送至气缸的混合气浓造成的点火不良(各种可能的原因)对给定的危险混合气空燃比例约为13:1; c)送至气缸的混合气过稀造成的点火不良(各种可能的原因)对给定的危险的混合气空燃比例为17:1; d)由气缸压力造成的点火不良,它是由机械问题造成的,它使得在点火前燃油空气混合气的压力降低,并不能产生足够的热,这就妨碍了燃烧,它增加了排气中的氧含量。(例如气门烧损,活塞环断裂或磨损,凸轮磨损,气门卡住等); e)一个缸或几个缸有真空泄漏造成的不良,这可以通过对所怀疑的真空泄漏区域(进气叶轮、进气歧管垫、真空管等)加入丙烷的方法来确定,看示波器的波形什么时候因加丙烷使信号变多,尖峰消失,当与一个缸或几个缸有关的真空泄漏造成进入气缸的混合气超过17:1时,真空泄漏造成的点火不良就发生了。 f)就喷油嘴喷射不平衡造成的点火不良仅在多点喷射发动机中,一个缸的油浓或稀混合气造成点火不良是因为喷油时每个喷油嘴实际喷射的油量太多了或太少(喷油嘴堵塞或卡住)造成的。当一个气缸或几个汽油中的混合气空燃比超过危险时17:1就产生了稀点火不良,低于13:1也产生浓点火不良,这就造成了喷油嘴喷油不平衡产生的点火不良。 通常,可以用排除由点火系统造成的点火不良、气缸压力的点火不良和单个气缸真空泄漏造成的可能性来判断。喷油不平衡。可以用汽车示波器排除自点火系统和气缸压力造成的点火不良(用发现点火系统造成的点火不良和动力平衡气缸压力问题)。排除与个别气缸有关的真空泄漏,通常采用往可能产生真空泄漏的区域或周围加丙烷(进气歧管、化油器垫等)的方法,同时像从前说过的那样,从示波器上观察氧传感器信号波形的方法达到目的。通常,在多点燃油喷射发动机,如果不能证实a、b、和c类型造成的点火不良,那么不平衡造成氧传感器波形中的严重杂波的可能性就可以确定。 判断氧传感器的杂波的规则 如果氧传感器的信号上有明显的杂波,这种杂波对所判断的那一类系统是不正常的话,通常这将伴随着重复的、可测试出的怠速时的发动机故障(例如:每次气缸点火的的爆震)。通常,如果杂波是明显的,发动机的故障最终将与波形上的各个尖峰有关,没有明显的伴随着发动机故障的杂波是不容易消除的杂波(在某些情况下这是正确的),也就是说当在波形上产生杂波的个别尖峰最终与发动机故障无关时,那么在修理中想要排除它的可能性很小。 综上所说,判断杂泼的规则是:如果可断定进气歧管无真空泄漏,排气的碳氢化合物(HC)和氧的含量正常,发动机的转动或怠速都比较平衡的话,那么杂波或许是可以接收的,或是正常的。许多汽车燃油反馈控制系统中,不但安装一个氧传感器,福特3.8L V6型从1980年制造出来的就装有两个氧传感,为了适应不断加强的EPA的废气控制要求,使用多个氧传感器的系统数量在不断增加。在1988年和更新的汽车上氧传感器的数目在连续地增加。此外,从1994年起一些汽车在催化器前和后各装一个氧传感器,这种结何可以用装在汽车上的OBD-Ⅱ系统来检查催化器的性能,在一定情况下,还可以增加对空燃比控制的精度。在任何情况下,由于氧传感器信号快使其成为最有价值的发动机性能诊断工具之一,氧传感器越多,对检修技术人员越有好处。通常,燃油反馈控制系统的工程逻辑决定,氧传感器在靠近燃烧室的地方,燃油控制的精度越高,这主要是由于排气空气气流的特性确定的:例如气体的速度,通道的长度(气体瞬时太滞后)和传感器的响应的时间等等。许多制造商在每个气缸的每个排气歧管底下安装一个氧传感器,这样就能判定哪一个气缸有问题,这就排除了诊断失误的可能性,在许多情况下靠排除至少一半潜在有问题气缸来减少诊断时间。 用双氧传感器进行催化器监视 一个工作正常的催化转换器,配上正常控制燃油分配系统的燃油反馈控制系统,它可以保证最安全的将有害的排气成份变为相对无害的氧化碳和水蒸气,但是,催化器会因过热而受损(由点火不良等等),这导致催化剂表面减少和孔板金属烧结,这两点都将使催化器永久损坏。当催化剂失效时就能知道,对环境和废气系统修理时,技术人员是十分重要的。OBD-Ⅱ诊断系统的出现,对环境和催化剂的随车监视系统、OBD-II监视系统依据好或坏的催化剂的氧化特征作精确的检测手段。在稳定运行时,催化剂后面好的氧传感器(热的)应比催化剂前的任何一个氧传感器的信号波动少得多,这是由于在转换碳氢化合物和一氧化碳时正常运行的催化剂消耗氧化能力,这就减少了后氧传感器信号的波动。后氧传感器的信号波动比氧传感器的信号波动要小的多。也要注意当催化剂“关断”(或达到运行温度),催化器开始储存和用氧做催化转换时,信号由于在排气中氧越来越少而升高。当催化剂完全损坏时,催化剂的转换效率、以及它的氧储存能力丧失,因此,催化剂后部的排气中氧的含量如果不完全的话,则十分接近催化剂前部的排气中的氧的含量。 [编辑本段]氧传感器的检测装有排气氧传感器的电控燃油喷射发动机,如果在运转中出现怠速不稳、加速无力、油耗增加、尾气超标等故障而供油、点火装置又无其他故障,那么极有可能是氧传感器及相关线路出了问题。大多数发动机的电控系统都有自检功能,当氧传感器或相关部位发生故障时,电脑会自动记下故障内容,维修人员只需用专门的解码器读出故障代码即可发现问题所在。但如果没有专用设备怎么办呢?这里有几个方法可以很快检查出氧传感器的好坏。如果怀疑怠速不稳或加速不良等故障是氧传感器引起的,检修时只需拔下氧传感器接头,如果发动机的故障消失,则说明氧传感器已经损坏,必须更换,如果发动机故障依旧,那么还要从其他地方找原因。利用高阻抗的电压表也可以检查出氧传感器的好坏。把电压表并联在氧传感器的输出端,正常情况下,电压应在0-1V之间变化,中值在500mV左右,如果输出电压长时间保持某一数值而无变化,则表明氧传感器已经损坏。实际上,氧传感器是一个相当耐用的部件,只要燃油质量过关,它可以使用3年或更长的时间。氧传感器的非正常损坏大多是由于燃油中含铅量超标造成的。这一点,驾驶装有三元催化装置汽车的司机务必要加以重视. [编辑本段]氧传感器的表征与故障在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOX的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。目前,实际应用的氧传感器有氧化锆式氧传感器和氧化钛式氧传感器两种。而常见的氧传感器又有单引线、双引线和三根引线之分,;单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器;三根引线的为加热型氧化锆式氧传感器,原则上三种引线方式的氧传感器是不能替代使用的。氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增加,发动机出现怠速不稳、缺火、喘振等故障现象。因此,必须及时地排除故障或更换。氧传感器的常见故障1.氧传感器中毒氧传感器中毒是经常出现的且较难防治的一种故障,尤其是经常使用含铅汽油的汽车,即使是新的氧传感器,也只能工作几千公里。如果只是轻微的铅中毒,接着使用一箱不含铅的汽油,就能消除氧传感器表面的铅,使其恢复正常工作。但往往由于过高的排气温度,而使铅侵入其内部,阻碍了氧离子的扩散,使氧传感器失效,这时就只能更换了。另外,氧传感器发生硅中毒也是常有的事。一般来说,汽油和润滑油中含有的硅化合物燃烧后生成的二氧化硅,硅橡胶密封垫圈使用不当散发出的有机硅气体,都会使氧传感器失效,因而要使用质量好的燃油和润滑油。修理时要正确选用和安装橡胶垫圈,不要在传感器上涂敷制造厂规定使用以外的溶剂和防粘剂等。2.积碳由于发动机燃烧不好,在氧传感器表面形成积碳,或氧传感器内部进入了油污或尘埃等沉积物,会阻碍或阻塞外部空气进入氧传感器内部,使氧传感器输出的信号失准,ECU不能及时地修正空燃比。产生积碳,主要表现为油耗上升,排放浓度明显增加。此时,若将沉积物清除,就会恢复正常工作。3.氧传感器陶瓷碎裂氧传感器的陶瓷硬而脆,用硬物敲击或用强烈气流吹洗,都可能使其碎裂而失效。因此,处理时要特别小心,发现问题及时更换。4.加热器电阻丝烧断对于加热型氧传感器,如果加热器电阻丝烧蚀,就很难使传感器达到正常的工作温度而失去作用。5.氧传感器内部线路断脱。6氧传感器外观颜色的检查从排气管上拆下氧传感器,检查传感器外壳上的通气孔有无堵塞,陶瓷芯有无破损。如有破损,则应更换氧传感器。通过观察氧传感器顶尖部位的颜色也可以判断故障:①淡灰色顶尖:这是氧传感器的正常颜色;②白色顶尖:由硅污染造成的,此时必须更换氧传感器;③棕色顶尖:由铅污染造成的,如果严重,也必须更换氧传感器;④黑色顶尖:由积碳造成的,在排除发动机积碳故障后,一般可以自动清除氧传感器上的积碳。氧传感器的作用电喷车为获得高排气净化率,降低排气中(CO))一氧化碳、(HC)碳氢化合物和(NOX)氮氧化合物成份,必须利用三元催化器。但为了能有效地使用三元催化器,必须精确地控制空燃比,使它始终接近理论空燃比。催化器通常装在排气歧管与消声器之间。氧传感器具有一种特性,在理论空燃比(14/:7)附近它输出的电压有突变。这种特性被用来检测排气中氧气的浓度并反馈给电脑,以控制空燃比。当实际空燃比变高,在排气中氧气的浓度增加而氧传感器把混合气稀的状态(小电动势:O伏)通知ECU。当空燃比比理论空燃比低时,在排气中氧气的浓度降低,而氧传感器的状态(大电动势:1伏)通知(ECU)电脑。ECU根据来自氧传感器的电动势差别判断空燃比的低或高,并相应地控制喷油持续的时间。但是,如氧传器有故障使输出的电动势不正常,(ECU)电脑就不能精确控制空燃比。所以氧传感器还能弥补由于机械及电喷系统其它件磨损而引起空燃比的误差。可以说是电喷系统中唯一有“智能”的传感器。主氧传感器包括一根加热氧化锆元件的热棒,加热棒受(ECU)电脑控制,当空气进量小(排气温度低)电流流向加热棒加热传感器,使能精确检测氧气浓度。在试管状态化锆元素(ZRO2)的内外两侧,设置有白金电极,为了保护白金电极,用陶瓷包覆电机外侧,内侧输入氧浓度高于大气,外侧输入的氧浓度低于汽车排出气体浓度。应当指出采用三元催化器后,必须使用无铅汽油,否则三元催化器和氧传感器会很快失效。再注意,氧传感器在油门稳定,配制标准混合时较为重要的作用,而在频繁加浓或变稀混合时,(ECU)电脑将忽略氧传感器的信息,氧传感器就不能起作用。
技师专业论文工种:汽车维修工题目:凌志LS400轿车故障灯亮故障排除及氧传器系统报警检测姓名:钱亚亮校:西安北汽车修理职业培训校期:200912月3凌志LS400轿车故障灯亮故障排除及氧传器系统报警检测作者:钱亚亮间:200912月3摘要:本文主要介绍部99凌志LS400轿车行驶仪表内发机故障指示灯点亮用仪器读取故障码25或26(25代表混合比稀26代表混合比浓)知供油系故障维修汽车行驶再点亮意味着维修能完全依据故障码修理要全面考虑关键词:故障码;供油系统;氧传器前言:汽车电控制燃油喷射发机机电体化高新技术产物尤其发机控制系统设置传器、执行器电控制元件控制系统工作各种信号相互交叉渗透控制进气、喷油点火发故障则症状界限模糊且系统现故障使电脑控制显示另系统故障码所我必须全面深刻解电控制燃油喷射发机结构原理掌握关功能作用运用科析维修技巧制定切实行维修案文故障现象:辆凌志LS400(UCF10 发机)轿车发机故障灯亮读取故障码25或26故障排除:根据资料知供油系统故障(25代表混合比稀26代表混合比浓)般情况读取故障码显示25或26知供油系统故障步便应先检查油电路即检查火花塞、高压线等点火元件更换汽油滤清器、清洗喷油嘴等做目保证发机点火、通畅供油确喷油些工作做完消除故障码则故障灯灭车辆维修厂行驶200Km左右发机故障灯亮起厂返修读取故障码25或26供油系统应该没问题我仔细查找与点火供油关元件结发现氧传器电压波值明显符合规定要求(标准:输电压低于0.35V或高于0.7V10S内跳4)更换氧传器故障灯便再亮故障析:明明氧传器工作良却显示混合比稀或浓故障码25或26显示氧传器故障21、27或28根据燃油喷射工作原理析知喷油间短电脑依据各控制元件所提供输信号修由于氧传器工作良(并未完全失效)即输电压值符合规定要求电脑氧传器处确电压信号给喷油嘴错误喷油脉冲宽度造喷油量少或混合比稀或浓故障数累计事实电脑便形故障记忆便维修厂行驶200km左右故障灯亮起原种故障给我启示即凌志LS400发机故障灯亮调取故障码显示25或26应先测氧传器否若低于规定电压值定要更换再检查油电路便彻底消除故障总结:情况则恰恰相反即氧传器本身故障电控汽油喷射发机氧传器用于燃料系统闭环控制电器元件主要用测废气氧含量并所测量数据用电压信号形式反馈给ECU控制发机空燃比保持14.7;同种故障信号报警元件氧化锆传器种见氧传器其故障表现表面铅化物或碳化物覆盖使气体能渗透、氧离能扩散导致失效故障灯报警并读取传器故障码必须其进行故障诊断氧传器系统报警定表示传器故障其报警信号受列素影响:①点火系统工作状况;②进所系统密封性能;③排气系统否堵塞;④喷油器工作状况;⑤供油系统油压高低1. 氧传器故障诊断由氧化锆传器特性知:空燃比维持14.7,报警信号基准电压0.4-0.5V;空燃比于14.7,其电压升至0.8-1V,表混合气浓;空燃比于14.7,电压降至0.2V左右,表明混合气稀.诊断氧传器工作状况:(1) 保持发机转速2500r/min左右,预热传器2min.(2) 拔传器插线(加热线圈传器注意插脚位置),用万用表测量反馈电压,检查10S内电压表指针摆数;(1)若电压表指针摆数少于8应再预热传器,并每检查10S内指针摆数.若指针摆8表明氧传器工作;(2)若仍少于8,则应脱传器线束插,再测量其反馈电压;电压于4.5V脱进气管真空管,若压仍于0.45V,说明传器损坏;若于0.45V,说明混合气浓,应燃料\进气或控制系统进行检查.电压于0.45V,拔水温传器插,接4-8KΩ电阻,,若电压仍于0.45V,说明传器损坏;若于0.45V,则表明混合气稀.2.点火系统工作状况检测首先微机控制点火系进行规检查.检查内容包括火花塞、高压线工作状况及火花能量、点火、点火提前角等点火:灯红夹接蓄电池传器接缸高压线点火灯准发机前皮带轮点火标记发机转速升高点火提前角应增用手锤或扳手敲击爆震传器固定螺钉或缸盖四周点火提前角应明显推迟3.进气系统密封性能检查进气歧管接真空表发机怠速运转进气管真空度应57.33-70.66kpa范围内,否则进气系统漏气.若真空表指针逐渐零,则表示排气系统阻塞.4.喷油器性能检查喷油器喷油量取决于喷油脉冲宽度,脉冲宽度定,则取决于喷孔断面喷油压力.喷油器试验台喷油器喷油量、雾化性能、密封性能进行测试其主要性能参数喷油持续间2ms针阀升程0.15mm ,稳定电流2A,电磁线圈电阻3-15 Ω,15S喷油量45-55 ml,各缸差值于5 ml.5.供油系统油压检测发机工作,燃油配管测压孔或节气门体喷射(TBI)燃油压力测试点接油压表测量油压.点应200--350kpa,单点应62--90 kpa;或发机工作,夹住油管,油压应升100 kpa,发机转速升高100r/min,说明供油系统.参考文献:发机传器原理与检测:辽宁科技术版社:主编:张 伟电控汽车维修数据手册:黑龙江科技术版社:主编:张月相 赵英君
传感器在环境检测中可分为气体传感器和液体传感器,这是我为大家整理的传感器检测技术论文,仅供参考!
试述传感器技术在环境检测中的应用
摘要:传感器在环境检测中可分为气体传感器和液体传感器,其中气体传感器主要检测氮氧化合物和含硫氧化物;液体传感器主要检测重金属离子、多环芳香烃类、农药、生物来源类。本文阐述了传感器技术在环境检测方面的应用。
关键词:气体传感器 液体传感器 环境检测
中图分类号:O659 文献标识码:A 文章编号:
随着人们对环境质量越加重视,在实际的环境检测中,人们通常需要既能方便携带,又可以够实现多种待测物持续动态监测的仪器和分析设备。而新型的传感器技术就能够很好的满足上述需求。
传感器技术主要包括两个部分:能与待测物反应的部分和信号转换器部分。信号转换器的作用是将与待测物反应后的变化通过电学或光学信号表示出来。根据检测方法的不同,我们将传感器分为光学传感器和电化学传感器;根据反应原理的不同,分为免疫传感器、酶生物传感器、化学传感器;根据检测对象不同,分为液体传感器和气体传感器。
1气体传感器
气体传感器可以对室内的空气质量进行检测,尤其是有污染的房屋或楼道;也可以对大气环境中的污染物进行检测,如含硫氧化物、氮氧化合物等,检测过程快速方便地。
以含氮氧化物(NOx)为例。汽车排放的尾气是含氮氧化物的主要来源,但随着时代的发展,国内消费水平的提高,汽车尾气的排放量呈逐年上升趋势。通过金属氧化物半导体对汽车尾气及工厂废气中的含氮氧化物进行直接检测。如Dutta设计的传感器,采用铂为电极,氧化钇和氧化锆为氧离子转换器,安装到气体排放口,可以检测到含量为10-4~10-3的NO。含硫氧化物是造成酸雨的主要物质,也是目前环境检测的重点项目,因为在大气环境中的含量低于10-6,需要更高灵敏度的传感器。如高检测的灵敏度的表面声波设备。
Starke等人采用直径为8~16nm的氧化锡、氧化铟、氧化钨纳米颗粒制作的纳米颗粒传感器,对NO和NO2的检测下限可达到10-8,提高反应的比表面积,增加反应灵敏度,且工作温度比常规的传感器大大降低,减少了能源消耗。
2液体传感器
在实际环境检测中,液体传感器大多应用于水的检测。由于水环境中的污染物种类广泛,因此液体传感器比气体传感器的应用更为广泛和重要。水中的污染物除了少量的天然污染物以外,大部分都是人为倾倒的无机物和有机物。无机物中,重金属离子为重点检测对象;有机污染物包括杀虫剂、激素类代谢物、多环芳香烃类物质等。这些污染物的过度超标,会严重影响到所有生物体的健康和安全。
2.1重金属离子检测
采水体中重金属离子的主要来源包括开矿、冶金、印染等企业排放的废水。这些生产废水往往混合了多种废水,所含的重金属离子种类繁多,常见的有汞、锰、铅、镉、铬等。重金属离子会不断发生形态的改变和在不同相之间进行转移,若处置不当,容易形成二次污染。生物体从环境中摄取到的重金属离子,经过食物链,逐渐在高级生物体内富集,最终导致生物体的中毒。因此如果供人类食用的鱼类金属离子超标,将对人类产生严重的影响,因此对于重金属离子的检测显得尤为重要。
Burge等人发明的传感器,可以利用1,2,2联苯卡巴肼和分光光度计,可以检测地下水中的重金属铬浓度是否超标。
除了通过化学反应检测外,采用特殊的生物物质,也可以方便和灵敏地检测重金属离子。如大肠杆菌体内有一种蛋白质可以结合镍离子,有人在这种蛋白质的镍离子结合位点附近插入荧光基团,当蛋白质结合镍离子后,荧光基团会被淬灭,由于荧光的强度与镍离子浓度成反比,从而实现对镍离子的定量检测,检测范围未10-8~10-2mol/L。日方法也可应用于检测Cu2+、Co2+、Fe2+和Cd2+等几种离子中。他们还结合了微流体技术,该技术只需消耗几十纳升体积的待测液体,就可以对100nmol/L以下浓度的Pb2+进行检测。Matsunaga小组将TPPS固定在多孔硅基质中,当环境中存在Hg2+时,随着Hg2+浓度的变化,TPPS的颜色会从橘黄色逐渐转变成绿色,该传感器的检测限为17.5nmol/L,通过加入硅铝酸去除干扰离子Ni2+和Zn2+。
利用传感器技术不仅可以准确测定待测物的浓度,而且由于传感器的微型化技术特点,还可以通过传感器的偶联,进行多项指标的检测。Lau等人设计了基于发光二极管原理的传感器,可以同时检测Cd2+和Pb2+,该传感器对Cd2+和Pb2+的检测限分别为10-6和10-8。
2.2农药残留物质的检测
农药是一类特殊的化学品,它在防治农林病虫害的同时,也会对人畜造成严重的危害。中国是农业大国,每年的农药使用量相当庞大,因此有必要对其进行监测。采用钴-苯二甲蓝染料和电流计就能方便地检测三嗪类除草剂,无需脱氧,直接检测的下限为50Lg/L,如果通过预处理进行样品浓缩后,检测限可以达到200ng/L。
采用带有光纤的红外光谱传感器可以进行杀虫剂的快速检测。将光纤内壁涂覆经非极性有机物修饰的气溶胶材料后,能显著改善光纤中水分子对信号的耗散作用,并且能够提取出溶液中的有机磷类杀虫剂进行光谱分析。此类传感器对于有机溶剂,如苯、甲苯、二甲苯的检测限则可达10-8~8*10-8。
2.3多环芳香烃类化合物的检测
多环芳香烃类物质是另外一大类有害的污染物质,这类物质具有致癌性,但在许多工业生产过程中均会使用或产生此类物质。水体中的多环芳香烃类物质含量非常低,一般在10-9范围内,因此需要借助高灵敏度的检测传感器,Schechter小组发明了光纤光学荧光传感器。在直接检测过程中,待测样本中还可能存在一些如泥土这样的干扰物质,会降低检测信号值,如果用聚合物膜先将非极性的PAH富集,然后对膜上的物质进行荧光检测,从而解决信号干扰问题,报道称这种经膜富集后的传感器技术,对pyrene的检测可达到6*10-11,蒽类物质则可达4*10-10。Stanley等人利用石英晶振微天平作为传感器,在芯片表面固定上蒽-碳酸的单分子膜,检测限可达到2*10-9。
基于免疫分析原理,采用分子印迹的方法,在传感器表面印上能够结合不同待测物质的抗体分子,可以实现多种不同物质的检测。近年来发展起来的微接触印刷技术,也可应用到该领域,这样制备得到的传感器体积可以更加微型化。
2.4生物类污染物质
除了以上的无机和有机合成类污染物质,还有生物来源的一些潜在污染分子。如激素类分子及其代谢物的污染常常会引起生物体生长、发育和繁殖的异常。Gauglitz带领的研究小组采用全内反射荧光生物传感器和睾丸激素抗体,对河流中的睾丸激素直接进行了即时检测,其检测限为0.2ng/L。该技术无需样品的预处理,对于不同地区的自然界水体均可以进行睾丸激素的现场直接检测,检测范围为9~90ng/L。
另外,致病菌和病毒也是被检测的对象,水体中出现某些特定菌种,可以表明水体受到了某种污染,利用传感器技术非常容易检测到这些生物样本的存在,而且选择性非常高,如可以从烟草叶中快速地发现植物病毒烟草花叶病毒,采用QCM可以直接检测到酵母细胞的数量。
3结论和展望
目前,传感器技术已开始应用于各环境监测机构的应急检测,但是实际应用中有诸多的局限性,比如在对大气中的某些有害物质进行检测时,由于其含量往往低于传感器的最低检测限,因此在实际应用过程中,还需要进行气体的浓缩处理,这样就使传感器不容易实现微型化,或者需要借助更高灵敏度的传感器;同样,在野外水体检测时,常常会出现待测水体含有多种复杂干扰成分的情况,无法与实验室的标准化条件相比;在有些以膜分离分析技术为原理的传感器中,其膜的使用寿命往往较短,而频繁更换新膜的价格较为昂贵,因此仍然无法得到广泛的应用。
尽管如此,随着传感器技术的不断发展和完善,仍然有望应用于将来工厂企业排气、排污的现场直接检测和野外环境的动态无人监测,而且其结果能与实验室常规仪器的检测结果相符,这样将大大加快对环境监测和治理的步伐。
参考文献
[1]NaglS,eta.lTheAnalyst,2007,132:507-511.
[2]GuptaVK.Chimia,2005,59:209-217.
[3]HanrahanG,eta.lJournalofenvironmentalmonitoring,2004,6:657-664.
[4]HoneychurchKC,eta.lTrendsinAnalyticalChemistry,2003,22:456-469.
[5]AmineA,eta.lBiosensorsandBioelectronics,2006,21:1405-1423
传感器与自动检测技术教学改革探讨
摘要:传感器与自动检测技术是电气信息类专业重要的主干专业课,传统授课方法侧重于理论知识的传授,而忽略了应用层面的培养。针对此问题试图从教学目的、教学内容、教学形式、教学效果等多个方面进行分析,对该课程的教学方案改革进行探讨,提出一套技能与理论知识相结合、行之有效的教学方案。
关键词:传感器与自动检测技术;教学内容;教学模式;工程思维
“传感器与自动检测技术”是电气信息类专业重要的主干专业课,是一门必修课,也是一门涉及电工电子技术、传感器技术、光电检测技术、控制技术、计算机技术、数据处理技术、精密机械设计技术等众多基础理论和技术的综合性技术,现代检测系统通常集光、机、电于一体,软硬件相结合。
“传感器与自动检测技术”课程于20世纪80年代开始在我国普通高校的本科阶段和研究生阶段开设。本课程侧重于传感器与自动检测技术理论的传授,重知识,轻技能;教师之间也缺乏沟通,教学资源不能得到充分利用,教学效果不理想,学生学习兴趣不高。
一、教学过程中发现的问题及改革必要性分析
笔者在独立学院讲授“传感器与自动检测技术”课程已有四年,最开始沿用了研究型大学的教学计划和教学大纲,由于研究型大学是以培养研究型人才为主,而独立学院是以培养应用型人才为主,在人才培养目标上有较大差异,在逐渐深入的过程中发现传统方案不太符合学院培养应用型人才的定位,存在以下几方面的问题。
1.重理论,轻实践
该课程是应用型课程,其中也有大量的理论知识、数学推导,而传统的研究型教学方法普遍都以理论教学为主,在课堂上大篇幅讲解传感器的原理,进行数学公式推导,相比而言传感器的应用通常只是通过一个实例简单介绍,导致最后大多数学生只是粗略地知道该传感器的结构,而不知道如何用,在哪里用。
2.教学模式单一
该课程传统上以讲授的教学方式为主,将现成的结论、公式和定理告诉学生,学生不能主动地思考和探索,过程枯燥乏味,导致学生产生了厌学情绪。同时理论教学与实训、实践教学脱节问题也很严重。
3.教学实验安排不合理
传统的实验课程安排,验证性实验比例高达80%,综合设计性实验极少,缺少实训、实践环节。然而应用型人才的培养应该以实践教学为核心,重点培养学生的工程思维和实践能力、动手能力,以在学生毕业时达到企业对技术水平与能力的要求,使学生毕业后能尽快适应工作岗位。
二、适合独立学院培养应用型人才的教学方案改革
传统的传感器与自动检测技术课程重理论、轻实践,教学模式单一,教学实验以验证性实验为主,这种方案能够培养研究型人才,但却无法培养合格的应用型人才。在教学过程中,笔者潜心研习,并反复实践,总结出以下几个可以改革的方面。
1.优化教学内容,注重工程思维
本课程一个很重要的内容是各种类型传感器的原理,传统的教学要讲清楚其中的来龙去脉,而本人则认为针对应用型人才培养,充分讲授清楚基本概念、基本原理和基本方法即可,涉及大额数学公式可以选择重要的进行讲解,其他则可作为学生的自学内容,让学生课余自学。同时应该重点讲解该传感器的工程应用实例;另一方面要结合最新实际工程讲解。这样才能激发学生的学习兴趣,培养学生应用型工程学习思维。
2.改革教学方法,改变教学模式
传统的教学是“灌输式”的方法,无论学生是否接受,直接把要讲的内容全部讲述给学生,而这也违背了培养学生分析问题和解决问题的能力以及创新能力的出发点和归宿。笔者认为应该应用工程案例教学,实行启发式、讨论式、研究式等与实践相结合的教学方法,发挥学生在教学活动中的主体地位。
3.与工程实际相结合,与其他课程相结合
教学过程中要从不同行业提取典型的工程应用实例,精简以后作为实例进行讲解。在进行教学时,要培养学生的系统观,让学生明白这不是一门独立的课程,而是与自动控制原理、智能控制理论等课程相融合的,以达到融会贯通的学习效果。
4.实验环节改革
实验教学主要是为了提高学生的动手能力、分析问题和解决问题的能力,加深学生对课堂教学中理论、概念的感性认识。以往该课程的实验内容大部分为原理性、验证性的实验,学生容易感到枯燥无味,毫无学习积极性,很少有学生进行独立思考并发现问题,实验效果极不理想。为了改变这种模式化的教育,笔者将实验内容由传统的验证性实验调整为设计开发型实验。在实验教学中根据客观条件在适当减少验证性实验的基础上,增加了开拓性实验项目以及设计综合性实验。
5.改革教学评价方法,提高课堂教学效率
高效的学习成果反馈机制是促进教学相长的必要手段,目前该课程都是通过课程作业进行学习效果反馈,可以采用每一个章节布置一道设计型题目,让学生更加广泛地查阅资料,并在一定知识广度的基础上深入分析题目中用到的内容,进而从更深的层面分析解决问题,以达到深度、广度相结合的效果。
本文针对传感器与自动检测技术传统研究型大学的方案,提出了三个方面的问题,并根据四年的教学积累,在教学内容、教学模式、实验环节、教学评价及反馈等几个方面进行了探讨分析并提出了一套改革的方法和措施。本方案以实际工程应用实例为核心,在教学内容上侧重于传感器应用方面的讲解,以提出问题、分析问题、解决问题为主线调动学生的学习积极性和主动性,培养学生的工程思维和能力,重视实验环节,以设计性、综合性实验代替验证性实验培养学生将抽象的知识具体化、培养学生的实际应用能力、动手能力和创新能力。
参考文献:
[1]吴建平,甘媛.“传感器”课程实验教学研究[J].成都理工大学学报.
[2]曹良玉,赵堂春.传感器技术及其应用.课程改革初探[J].中国现代教育装备.
[3]李玉华,胡雪梅.传感器及应用.课程教学改革的探讨Ⅱ技术与市场.
传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。这是我为大家整理的传感器技术论文 范文 ,仅供参考!传感器技术论文范文篇一 传感器及其概述 摘 要 传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。目前,传感器转换后的信号大多是电信号,因而从狭义上讲,传感器是把外界输入的非电信号转换为电信号的装置。 【关键词】传感器 种类 新型 1 前言 传感器是测试系统的一部分,其作用类似于人类的感觉器官,也可以认为是人类感官的延伸。人们借助传感器可以去探测那些人们无法用或不便用感官直接感知的事物,如用热电偶可以测量炽热物体的温度;用超声波换能器可以测海水深度;用红外遥感器可从高空探测地面形貌、河流状态及植被的分布等。因此,可以说传感器是人们认识自然界事物的有力工具,是测量仪器与被测量物体之间的接口。通常情况下,传感器处于测试装置的输入端,是测试系统的第一个环节,其性能直接影响着整个测试系统,对测试精度有很大影响。 2 传感器的分类 按被测物理量的不同,可以分为位移、力、温度、流量传感器等;按工作的基础不同,可以分为机械式传感器、电气式传感器、光学式传感器、流体式传感器等;按信号变换特征可以分为物性型传感器和结构型传感器;根据敏感元件与被测对象直接的能量关系,可以分为能量转换型传感器与能量控制型传感器。 3 常见传感器介绍 3.1 电阻应变式传感器 电阻应变式传感器又叫电阻应变计,其敏感元件是电阻应变。应变片是在用苯酚,环氧树脂等绝缘材料浸泡过的玻璃基板上,粘贴直径为0.025mm左右的金属丝或金属箔制成。敏感元件也叫敏感栅。其具有体积小、动态响应快、测量精度高、使用简单等优点。在航空、机械、建筑等各行业获得了广泛应用。电阻应变片的工作原理是基于金属的应变效应,即金属导体在外力作用下产生机械形变,其电阻值随机械变形的变化而变化。其可以分为:金属电阻应变片和半导体应变片式两类。金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。它们的主要区别在于:金属电阻应变片式是利用导体形变引起电阻变化,而半导体应变片式则是利用电阻率变化引起电阻的变化。 3.2 电容式传感器 电容式传感器是将被测物理量转换成电容量变化的装置,它实质是一个具有可变参数的电容器。由于电容与极距成反比,与正对面积和介质成正比,因此其可以分为极距变化型、面积变化型和介质变化型三类。极距变化型电容传感器的优点是可进行动态非接触式测量,对被测系统的影响小,灵敏度高,适用于较小位移的测量,但这种传感器有非线性特性,因此使用范围受到一定限制。面积变化型传感器的优点是输出与输入成线性关系,但与极距型传感器相比,灵敏度较低,适用于较大的直线或角位移的测量。介质变化型则多用于测量液体的高度等场合。 3.3 电感式传感器 电感式传感器是将被测物理量,如力、位移等,转换为电感量变换的一种装置,其变换是基于电磁感应原理。电感式传感器种类很多,常见的有自感式,互感式和涡流式三种。 电感式传感器具有以下特点:结构简单,传感器无活动电触点,因此工作可靠寿命长。灵敏度和分辨力高,能测出0.01微米的位移变化。传感器的输出信号强,电压灵敏度一般每毫米的位移可达数百毫伏的输出。线性度和重复性都比较好,在一定位移范围(几十微米至数毫米)内,传感器非线性误差可达0.05%~0.1%。同时,这种传感器能实现信息的远距离传输、记录、显示和控制,它在工业自动控制系统中广泛被采用。但不足的是,它有频率响应较低,不宜快速动态测控等缺点。 3.4 磁电式传感器 磁电式传感器是把被测物理量转换为感应电动势的一种传感器,又称电磁感应式或电动力式传感器。其工作原理是一个匝数为N的线圈,当穿过它的磁通量变化时,线圈产生了感应电动势。磁通量的变化可通过多种方式来实现,如磁铁与线圈做切割磁力线运动、磁路的磁阻变化、恒定磁场中线圈面积的变化,因此可制造出不同类型的传感器用于测量速度、扭矩等。 3.5 压电式传感器 压电式传感器是一种可逆传感器,是利用某些物质的压电效应进行工作的器件。最简单的压电式传感器是在压电晶片的两个工作面上进行金属蒸镀,形成金属膜,构成两个电极。当晶片受压力时,两个极板上聚集数量相等而极性相反的电荷,形成电场。因此压电传感器可以看成是电荷发生器,又可以看作电容器。 4 新型传感器 4.1 生物传感器 生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测 方法 与监控方法,也是物质分子水平的快速、微量分析方法。各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。生物传感器的原理:待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经二次仪表放大并输出,便可知道待测物浓度。 4.2 激光传感器 激光传感器:利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光传感器原理:激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号,并将其转化为相应的电信号。 5 结束语 随着科技的飞速发展,人们不断提高着自身认知世界的能力。传感器在获取自然和生产领域中发挥着巨大上的作用。目前,传感器技术在发展经济、推动社会进步方面起到重要的推动作用。相信未来,传感器技术将会出现一个飞跃。 作者简介 杨天娟(1991-),女,河北省邯郸市人。现为郑州大学本科生,主要研究方向为机械工程及自动化。 作者单位 郑州大学机械工程学院 河南省郑州市 450001 传感器技术论文范文篇二 温度传感器 摘 要:温度传感器是最早开发、也是应用最广泛的一种传感器。据调查,早在1990年,温度传感器的市场份额就大大超出了 其它 传感器。从17世纪初,伽利略发明温度计开始,人们便开始了温度测量。而真正把温度转换成电信号的传感器,是1821年德国物理学家赛贝发明的,也就是我们现在使用的热电偶传感器。随后,铂电阻温度传感器、半导体热电偶温度传感器、PN结温度传感器、集成温度传感器相继而生。也使得温度传感器更加广泛的应用到我们的生产和生活中。本文主要介绍了温度传感器的分类、工作原理及应用。 关键词:温度传感器;温度;摄氏度 中图分类号:TP212 文献标识码:A 文章 编号:1674-7712 (2014) 02-0000-01 温度传感器(temperature transducer),利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。 一、温度的相关知识 温度是用来表征物体冷热程度的物理量。温度的高低要用数字来量化,温标就是温度的数值表示方法。常用温标有摄氏温标和热力学温标。 摄氏温标是把标准大气压下,沸水的温度定为100摄氏度,冰水混合物的温度定为0摄氏度,在100摄氏度和0摄氏度之间进行100等份,每一等份为1摄氏度。热力学温标是威廉汤姆提出的,以热力学第二定律为基础,建立温度仅与热量有关而与物质无关的热力学温标。由于是开尔文 总结 出来的,所以又称为开尔文温标。 二、温度传感器的分类 根据测量方式不同,温度传感器分为接触式和非接触式两大类。接触式温度传感器是指传感器直接与被测物体接触,从而进行温度测量。这也是温度测量的基本形式。其中接触式温度传感器又分为热电偶温度传感器、热电阻温度传感器、半导体热敏电阻温度传感器等。 非接触式温度传感器是测量物体热辐射发出的红外线,从而测量物体的温度,可以进行遥测。 三、温度传感器的工作原理 (一)热电偶温度传感器。热电偶温度传感器结构简单,仅由两根不同材料的导体或半导体焊接而成,是应用最广泛的温度传感器。 热电偶温度传感器是根据热电效应原理制成的:把两种不同的金属A、B组成闭合回路,两接点温度分别为t1和t2,则在回路中产生一个电动势。 热电偶也是由两种不同材料的导体或半导体A、B焊接而成,焊接的一端称为工作端或热端。与导线连接的一端称为自由端或冷端,导体A、B称为热电极,总称热电偶。测量时,工作端与被测物相接触,测量仪表为电位差计,用来测出热电偶的热电动势,连接导线为补偿导线及铜导线。 从测量仪表上,我们观测到的便是热电动势,而要想知道物体的温度,还需要查看热电偶的分度表。 为了保证温度测量结果足够精确,在热电极材料的选择方面也有严格的要求:物理、化学稳定性要高;电阻温度系数小;导电率高;热电动势要大;热电动势与温度要有线性或简单的函数关系;复现性好;便于加工等。根据我们常用的热电极材料,热电偶温度传感器可分为标准化热电偶和非标准化热电偶。铂铑-铂热电偶是常用的标准化热电偶,熔点高,可用于测量高温,误差小,但价格昂贵,一般适用于较为精密的温度测量。铁-康铜为常用的非标准化热电偶,测温上限为600摄氏度,易生锈,但温度与热电动势线性关系好,灵敏度高。 (二)电阻式温度传感器。热电偶温度传感器虽然结构简单,测量准确,但仅适用于测量500摄氏度以上的高温。而要测量-200摄氏度到500摄氏度的中低温物体,就要用到电阻式温度传感器。 电阻式温度传感器是利用导体或者半导体的电阻值随温度变化而变化的特性来测量温度的。大多数金属在温度升高1摄氏度时,电阻值要增加0.4%到0.6%。电阻式温度传感器就是要将温度的变化转化为电阻值的变化,再通过测量电桥转换成电压信号送至显示仪表。 (三)半导体热敏电阻。半导体热敏电阻的特点是灵敏度高,体积小,反应快,它是利用半导体的电阻值随温度显著变化的特性制成的。可分为三种类型:(1)NTC热敏电阻,主要是Mn,Co,Ni,Fe等金属的氧化物烧结而成,具有负温度系数。(2)CTR热敏电阻,用V,Ge,W,P等元素的氧化物在弱还原气氛中形成烧结体,它也是具有负温度系数的。(3)PTC热敏电阻,以钛酸钡掺和稀土元素烧结而成的半导体陶瓷元件,具有正温度系数。也正是因为PTC热敏电阻具有正温度系数,也制作成温度控制开关。 (四)非接触式温度传感器。非接触式温度传感器的测温元件与被测物体互不接触。目前最常用的是辐射热交换原理。这种测温方法的主要特点是:可测量运动状态的小目标及热容量小或变化迅速的对象,也可用来测量温度场的温度分布,但受环境温度影响比较大。 四、温度传感器的应用举例 (一)温度传感器在汽车上的应用。温度传感器的作用是测量发动机的进气,冷却水,燃油等的温度,并把测量结果转换为电信号输送给ECU.对于所有的汽油机电控系统,进气温度和冷却水温度是ECU进行控制所必须的两个温度参数,而其他的温度参数则随电控系统的类型及控制需要而不尽相同。进气温度传感器通常安装在空气流量计或从空气滤清器到节气门体之间的进气道或空气流量计中,水温传感器则布置在发动机冷却水路,汽缸盖或机体上上的适当位置.可以用来测量温度的传感器有绕线电阻式,扩散电阻式,半导体晶体管式,金属芯式,热电偶式和半导体热敏电阻式等多种类型,目前用在进气温度和冷却水温度测量中应用最广泛的是热敏电阻式温度传感器。 (二)利用温度传感器调节卫生间的温度。温度传感器还能调节卫生间内的温度,尤其是在洗澡的时候,能自动调节卫生间内的温度是很有必要的。通过温湿度传感器和气体传感器就能很好的控制卫生间内的环境从而使我们能够拥有一个舒适的生活。现在大部分旅馆和一些公共场所都实现了自动调节,而普通家庭的卫生间都还是人工操作,尚未实现自动调节这主要是一般客户不知道能够利用传感器实现自动化,随着未来人们的进一步了解,普通家庭的卫生间也能实现自动调节。 参考文献: [1]周琦.集成温度传感器的设计[D].西安电子科技大学,2007.