无忧在线有很多数学建模论文,你去搜一下就行
统计学是一门抽象难懂的学科,非统计学专业毕业人员一般很难做到精通。下文是我为大家整理的关于统计类论文投稿的范文,欢迎大家阅读参考!
医学统计学方法应用的错误解析
一、引 言
医学由于其研究的复杂性和系统性,常需要应用严谨的统计学方法,由于有些作者对医学科研的统计学理论和方法的应用缺乏深刻了解,在医学论文中错误应用统计学方法的现象时有发生。统计学方法应用的错误直接导致统计结果的错误。例如统计学图表、统计学指标、统计学的显著性检验等。因此,正确应用统计学方法,并将所获得的结果进行正确的描述有助于单篇论著的质量提高,现将医学论文中统计学方法应用及其常见结果的错误解析如下。
二、医学论文统计学方法应用概况
医学论文的摘要是全文的高度浓缩[1],主要由目的、方法、结果、结论组成。一般要求要写明主要的统计学方法、统计学研究结果和P值。一篇医学论文的质量往往通过摘要的统计学结果部分就能判断。统计学方法的选择和结果的表达直接影响单篇论著的科研水平。
(一)材料与方法部分
正文中,材料与方法部分必须对统计学方法的选择、应用、统计学显著性的设定进行明确说明。通过对统计学方法的描述,读者应该清楚论著的统计学设计思路。材料部分要清楚说明样本或病例的来源、入组和排除标准、样本量大小、研究组和对照组的设定条件、回顾性或者前瞻性研究、调查或者实验性研究、其他与研究有关的一般资料情况,其目的是表明统计学方法应用的合理性和可靠性,他人作相关研究时具备可重复性。方法部分应详细叙述研究组和对照组的不同处理过程、观察的具体指标、采用的测量技术,要具备可比较性和科学性,
方法部分还要专门介绍统计分析方法及其采用的统计软件。不同的数据处理要采用不同的方法,必须清楚的说明计数或者计量资料、两组或者多组比较、不同处理因素的关联性研究。常用的有两组间计量资料的t检验,多组间计量资料的F检验,计数资料的卡方检验,不同因素之间的相关分析和回归分析。有些遗传学研究方法还有专门的统计学方法,要在这里简要说明并给出参考文献,还要简单叙述统计方法的原理。统计学软件要清楚的说明软件的名称和版本号,如基于家系资料研究的FBAT1.7.3版本。
(二)论文结果部分
论文结果部分要显示应用统计学方法得到的统计量[2],所采用的统计学指标较多时,往往分开叙述。分组比较多时还要借助统计图表来准确表达统计结果。对于数据的精确度,除了与测量仪器的精密程度有关外,还与样本本身的均数有关,所得值的单位一般采用紧邻均数除以三为原则。均数和标准差的有效位数要和原始数据一致。标准差或标准误差有时需要增加一个位数,百分比一般保留一个小数。在统计软件中,分析结果往往精确度比较高,一般要采用四舍五入的方法使其靠近实验的实际情况,否则还会降低论文的可信度和可读性。
结果部分的统计表采用统一的“三线”表,表题中要注明均数、标准差等数据类型。表格中的数值要按照行和列进行顺序放置,要求整齐美观,不能出现错行现象。要明确标注观察的例数,得到的检验统计量。统计图可以直观的表达研究结果,如回归和相关分析的散点图可以显示个体值的散布情况。曲线图表达个体均值在不同组别随时间变化的情况或者不同条件下重复测量的结果。误差条图由均数加减标准误绘出,描述的是67%的置信区间,不是95%,提倡在误差条图采用95%的置信区间。
关于统计量,一般采用均数与标准差两个指标,均数不宜单独使用。使用均数的时候要明确变异指标标准差或者精确性指标标准误。关于百分比,分母的确定必须要符合逻辑,过小的样本会导致分母过小而出现百分比过大的情况。百分率的比较要写清两者中不同的变化,可以采用卡方检验。
1.假设检验的结果中,常见只写P值的情况,有时候会误导读者,也会隐藏计算失误的情况,因此写出具体的统计值,如F值、t值,可以增强可信度。对于率、相关系数、均数这类描述统计量,要清楚写明进行过统计学检验并将结果列出。P值一般取0.05与0.01作为检验显著性,对于结果的计算要求具体的P值,如P=0.23或P=0.02。
2.在对论文进行讨论时,作为统计学方法产生的结果往往要作为作者的主要观点支持其科学假设,对统计结果的正确解释至关重要。P值很大表明两组间没有差别属于大概率事件,P值很小表明两组间没有差别的概率很小。当P<0.05,表明差异具有统计学意义。P值与观察的样本量的大小有关联,当样本量小的时候,数据之间的差别即使很大,P值也可能很大;当样本量大时,数据之间的差别即使很小,P值也可能显示有显著性差异。相关系数统计学意义的显著性也与相关系数的大小没有绝对的关联,有统计学意义的样本相关系数可能很小。因此,有统计学差异的描述并不一定意味着两组间差别很大,错判的危险性很大,显著性的检验为定性的结果,结合统计量大小方可判断是否具有专业意义。
变量间虚假的相关关系与变量随时间变化而变化相关,统计学意义的关联并不表示变量间一定存在因果关系。因果关系的确定要根据专业知识和采用的研究方法的不同来考量。使用回归方程进行分析,当两变量间具有显著性关系,但是从自变量推测因变量仍然不会很精确。相关或回归系数不能预测推测结果的精确程度,而只是预测一个可信区间。诊断性检验应用于人群发病率很低的疾病,灵敏度、特异度的高低对于明确疾病诊断并不能很肯定。“假阳性率”与“假阴性率”根据实际的需要不同要求并不一致,在疾病患病率很低时,出现假阳性也是正常的,要确诊疾病必须要与临床症状体征相结合。因此,这两个率的计算方法必须交待清楚。
三、医学论文统计学方法应用的常见错误分析
(一)“材料与方法”中的统计学方法应用的常见错误
“材料与方法”中统计学方法常见的问题主要为:对样本的选择或者研究对象的来源和分组描述很少或者过于简单。例如,临床入组病例分组只采用简单的随机分组,未描述随机分组的方法,未描述是否双盲双模拟,未设置空白对照组,分组后对性别、年龄、文化程度的描述未进行统计学检验,对于特殊的统计学方法没有详细交代;动物实验分组的随机化原则描述过于简单,没有具体说清完全随机、配对或分层随机分组等;统计分析方法没有任何说明采用的分析软件,有的只说明采用的分析软件而不交代在软件中采用的统计方法;没有说明原因的情况下出现样本量过于小等情况。
(二)“结果”统计学方法应用的常见错误
1.应用正确的统计学方法出现的结果表达并不一定正确。例如前文所述数据的精确度要求。医学论文常见错误中包括均数、标准差、标准误等统计学指标与原始数据应保留的小数位数不同;对于率、例数、比值、比值比、相对危险度等统计学指标保留的小数点位数过多;罕见疾病的发病率、患病率、现患率等指标没有选择好基数,导致结果没有整数位;相关系数、回归系数等指标保留的小数位数过多或者过少;常用的一些检验统计量,如F值、t值保留的位数不符合要求。
2.对统计学指标进行分析和计算时,一般采用计数资料和计量资料进行区分。计量资料常用三线表,在近似服从正态分布的前提下采用均数、标准差进行说明,如果不符合正态分布时,可以采用加对数或其他的处理方式使其近似正态分布,否则只能采用中位数和四分位数间距等指标进行描述。医学论文中常见未对数据进行正态分布检验的计算,影响统计结果的真实性和可信度。对于率、构成比等常用的计数资料指标,常见样本量过小的问题,采用率进行描述会影响统计结果的可靠性,采用绝对数进行说明会显得客观一些。还有一些文献将构成比误用为率,也是不可取的。
3.在判断临床疗效之一指标时,两组平均疗效有差别并不意味着两组的每一个个体都有效或无效,必须通过计算有效率进行计算。如比较某药物治疗糖尿病的疗效,服药一周后,研究组和对照组的对血糖降低值分别为6.7 ±2.4 和1.2 ±0.6 ( P = 0.000 1) 。按空腹血糖值低于7.7mmol/L的疗效判定有效率,研究组和对照组的有效率分别为75.6%和12.4% ,尽管平均疗效相差较多,但也要注意到该药物对部分患者无效(24.4%)。对假设检验结果的统计学分析结果,P 值的表达提倡报告精确P值,如P = 0.015或P = 0.321等。目前的统计学分析软件均可自动计算精确的P 值。例如常用的SAS,SPSS等,只要提供原始数据,就可以计算出t值、F值和相应的自由度,并可获得精确的P值。
四、小 结
提高医学论文中统计学方法的使用质量是编辑部值得重视的一项长期而又艰巨的工作[3],医学论文中统计方法应用和统计结果的表达正确与否,不仅体现了论文的科学性和严谨性,而且对于提高期刊整体的学术质量,促进医学科学的发展和传播也有着重要作用[4]。
参考文献:
[1] 李敬文,吕相征,薛爱华.医学期刊评论性文章摘要的添加对期刊被引频次的影响[J].编辑学报,2011(23).
[2] 陈长生.生物医学论文中统计结果的表达及解释[J].细胞与分子免疫学杂志,2008(24).
[3] 潘明志.新时期复合型医学科技期刊编辑应具备的素质和能力[J].中国科技期刊研究,2011 (22).
统计学专业毕业现状分析与对策研究
本科毕业论文是高等学校人才培养计划的重要组成部分,是本科教学过程中最后一个重要的教学实践环节,是学士学位授予的一个重要依据。[1,2]然而,相较于其他教学环节,毕业论文没有受到足够的重视,从而导致该环节存在着一些问题。[3]本文将以中央民族大学统计学专业毕业论文为例,在分析其现状的基础上,找到问题并提出相应的建议。
中央民族大学统计学本科专业设置于2003年,目前已有六届毕业生。经过学院和学校层面的努力,统计学专业作为新办专业取得了较快发展,所培养的学生具有较好的专业能力和综合素质,近四成学生继续读研深造,就业的学生大都在专业对口的工作岗位上,就业率一直在85%左右。
本科毕业论文环节在培养方案中是6个学分。学生在第七学期开始选择指导教师以确定毕业论文题目。经过前6个学期的系统理论学习,统计学专业学生已基本掌握了统计学的基础理论和基本方法,具备了正确的统计思想和较强的统计软件应用能力,以及运用所学的理论和方法解决实际问题、文献检索和资料查询等综合能力。本科毕业论文的写作就是统计学专业学生将上述基础和能力进一步深化与升华的重要过程,从而培养学生的创新能力和实践能力,使学生的知识、技能和素质得到进一步的充实和提高,同时也是衡量学校教学质量和办学水平的重要指标。因此对如何提高毕业论文质量进行研究是必要和有意义的。[4]
一、统计学专业毕业论文质量的现状分析
从论文完成情况来看,每届的毕业论文基本都能达到论文教学环节的要求,通过对中央民族大学统计学专业2007~2011年四届毕业生的毕业论文进行分析,发现毕业论文及格率为99.18%。
从毕业论文研究的类型来看,主要分为两大类:理论研究型论文和实证型论文,理论研究型论文表现为总结和论述现有统计理论问题,表述理论研究的成果,或应用理论对现实问题进行分析、说明,并提出自己的思考;实证型论文主要表现为针对某一特定的实际目的或目标,运用所学统计的理论和方法,对经济、管理、金融、医学、生物、工程、环境等领域进行统计调查、统计信息管理、数量分析等。
从论文知识点范围的分析来看,学生论文绝大多数是统计专业问题,极少数是其他数学分支的问题。从中央民族大学历届统计学专业学生的毕业论文情况分析,发现毕业论文中研究其他数学分支的问题占总数的6.50%,主要包括:一是其他科目的应用研究(数学分析、常微分方程、运筹学及空间解析几何等),占总数的1.63%。二是数学专业教育和数学思维的研究,占总数的4.87%。研究统计学专业问题的毕业论文占绝大部分,比例为93.50%,选题内容广泛且多为社会热点问题,涉及经济、社会、医疗卫生、教育发展、旅游、基础设施建设等多领域,由于受学校人文环境影响,很大比例的学生对少数民族地区的经济、社会、民生等问题进行了统计分析,约占总学生人数的30.08%。所使用的分析方法主要集中于抽样调查、回归分析、多元统计方法、聚类分析、判别分析等常用统计方法。
此外,统计分析显示学生成绩普遍偏高,统计学专业学生的毕业论文,尤其是实证类论文,存在着可以大量使用背景介绍和统计软件分析结果的特点,因此,一些论文没有创新性和学术含量,但具有较大的篇幅,与理学院其他专业的毕业论文成绩比较,其平均成绩相对较高,约80.42分。
二、统计学专业毕业论文存在的问题
毕业论文的质量问题关系到本科人才的培养规格和目标,直接体现了学生本科阶段的学习成果,是衡量教学水平、学生毕业与学位资格认证的重要依据。通过对论文和考评结果的具体分析,发现学生的毕业论文在创新性、理论深度及论文写作常识多方面存在问题。具体表现为:
1.创新性不够
学生的毕业论文表现为理论性研究非常少,大都是实证型论文,并且多是简单的统计方法应用,缺少创新性研究和思考。从中央民族大学历届统计学专业学生的毕业论文来看,理论研究型论文只占4.89%,与实证型论文的比例为1︰19.45,比例悬殊,体现了学生在毕业论文大的选题过程中,避重就轻,缺乏创新的特点。如每年都有一定数量的学生选择“我国人均GDP的预测”这类针对某经济指标进行预测的题目,论文的主要内容就是利用ARMA、灰色预测或者趋势外推方法等一种或多种方法对时间序列数据做简单建模和分析,论文没有对指标本身的意义以及国内国际的社会经济形势进行综合分析。这种方法简单套用性质的论文占有很大的比重。
2.选题过大、内容空泛,缺乏深入研究,存在抄袭、拼凑现象
有些学生在选择研究课题时,往往不能根据自身的专业知识结构特点和社会实践情况进行准确定位,只是一味的盲目的选择一些过大过空的社会热点问题,因此难以看到所要研究的问题的本质。如有的学生针对CPI做研究,没有深入了解问题的实质,只是收集了一些文献,很难提出自己的观点或研究角度,造成了材料堆积且过于散乱,论文变成了一些材料的简单拼凑。有些论文针对某一社会经济问题进行研究,论文的主题只是针对现有数据利用简单的统计方法进行分析,对数据的质量和可靠性以及方法的适用性不做针对性讨论,对所得的结论也不结合社会经济现实情况进行分析,导致论文质量不高。
3.相对前沿的分析方法利用较少
前沿的分析方法利用较少,通过毕业 论文的 写作, 统计分析能力没有实质性提升。学生论文使用的统计方法主要集中于回归分析、聚类分析、判别分析、相关性分析等,其中回归分析方法占有非常大的比例,约41.46%,其他各统计方法使用的比例分别为:聚类分析为5.69%,判别分析为7.32%,相关性分析为14.63%,多元统计方法为2.44%,时间序列分析为3.25%,极少有学生使用教科书外的相对前沿的分析方法。
4.论文写作上存在结构不合理、没有相关研究介绍、创新点表述不清、参考文献不会正确标注等问题
从学生的毕业论文来看,论文写作不规范,专业性差。主要存在论文形式不规范、结构不合理、题目含糊、有些论文杂乱无章、口语化严重、可读性差等问题。
三、存在问题的原因分析
针对上述问题,统计学系通过对论文进行详细审查以及 组织指导教师和学生座谈,发现毕业论文出现以上问题的主要原因包括以下几方面:
1.学生对论文不够重视
部分学生由于忙于考研学习而无暇顾及毕业论文的研究,还有部分学生由于忙于外出找 工作、 实习而无心认真撰写论文。论文撰写所需的必要时间难以得到保障,因此学生应付了事,从而无法保证论文的深度。此外,还有部分学生认为毕业论文只是一个教学环节,与考研的好坏无关,存在只要写了论文,教师都会让自己通过的侥幸 心理,在思想上没有引起足够的重视。
2.缺乏指导教师的针对性指导
指导教师所带毕业生人数过多,使得导师的工作量呈现超负荷状态,无法保证每个学生毕业论文的质量,从而致使部分学生的论文规范性较差,没有对存在的问题反复修改,使得学生论文存在诸多问题。
3.学生的专业训练还不够
大部分本科生没有经历过论文的写作训练,写作水平较低,不了解学术论文的规范性及其格式,不知如何从科研的角度构思文章、组织材料、安排结构,使得相当一部分学生的毕业论文表达的观点不够准确清楚,论据亦不能很好地支持论点。另外,一些同学为了完成任务,直接将在 网络中搜索到的资料不假思索的拼凑在一起,使得内容不成体系,观点混乱。
四、提高毕业论文质量的建议和 实践
1.加强毕业论文重要性的宣传,提高学生的重视度
加强对毕业论文重要性的认识有助于提高本科生毕业论文的质量。通过讲座、课堂传授等形式,让学生意识到毕业论文的实践性和综合性是任何教学环节都不能替代的,是提高发现问题、分析问题、解决问题能力的有效途径,更是进行个人综合素质提高的必不可少的重要环节,[4]从而使学生在思想上认识到毕业论文的重要性,投入更多精力进行毕业论文设计。
2.选题和教师的科研项目相结合,提高论文的创新性
在选择课题时,为了能充分发挥学生的主观能动性,可以让学生根据自身的特点,与指导教师协商,结合导师的研究方向制定课题方案。统计学专业的教师一般除了 申请国家自然科学基金和国家 社会科学基金这类对理论性和创新性要求较高的项目以外,很多教师还主持或参加有相应的 应用研究类项目。应用类项目大都需要实地调研(以及问卷涉及和数据分析)或者大量的数据分析和建模。引导学生参加这类项目来设计和完成自己的本科毕业论文,能够激发学生的科研热情和创新潜力。此外,鼓励和引导一些成绩较好,如让具备保研资格的学生参加教师的科研讨论班或者课题组,选择一些具有一定难度的理论问题进行研究,可以使学生了解本学科的 发展方向和最新动态。最近两年,越来越多的学生,特别是具备了保研资格的学生,在大四上学期就能投入到项目和毕业论文的写作中。
3.重视平时实践教学环节,培养学生的实践能力、发现问题以及解决问题的能力
为了提高学生的学习兴趣以及对问题的分析、解决能力,广泛开展了丰富多彩的社会实践活动,使学生尽可能早地接触与本专业有关的实际工作,切身 体会到如何将理论与实际相结合,了解本学科的实际业务,从而提高自主学习能力,加强专业知识的把握。结合学校的实际情况,积极鼓励学生在大二和大三阶段参加校级和国家级的全国大学生数学建模竞赛,申请“中央民族大学本科生研究训练 计划项目”、“北京市大学生科学研究计划项目”和“国家大学生创新性试验计划项目”。项目的申请和实施以及研究 报告的写作,对学生来说都是一个很好的锻炼。目前,统计学专业本科生的参与率在70%以上。此外,建立专业实习基地可以提高学生利用专业知识分析和解决实际问题的能力。这些环节的设计和实施都有力地保障了学生本科毕业论文的水平和质量。
4.加强学生科技论文写作训练
加强平时课堂上大作业的规范化,潜移默化培养学生科技论文的写作能力。通过平时的实践活动,如学生数学建模以及大学生创新实践等各类实践性项目来提高学生的 论文 写作能力。
5.实施激励措施,激发学生的兴趣和主动性
针对那些参与实际课题的学生,学院鼓励指导教师根据学生的完成情况以劳务费的形式给予其奖励,另外积极鼓励毕业论文质量优秀的学生进行投稿 发表。此外,还需对答辩程序和评分标准进行规范化,建立优秀毕业论文指导教师和优秀毕业论文奖励制度,以形成积极的导向作用,充分调动指导教师和学生的积极性。
6.加强教师责任心,建立完善的机制
加强学生毕业论文的过程 管理,从开题到中期检查严格执行,指导教师严格把关。为了保证学生与教师之间的沟通,学校可以通过建立师生信息反馈机制改善师生分离状态,为师生提供便利的沟通渠道,同时设置适当的教师激励制度,中央民族大学目前对教师指导本科毕业论文有额外的课时补贴。
数理统计法在论文中要实际分析解决问题。
论文思路:
数学统计是使用数学统计分析方法解决实际问题的学科。它们是数学研究领域的一类分支,可以观察事物以确定基本规律这些规律是现象的根源,并利用统计数据作出预测。
数学统计已成为各种学科发展的一个重要因素,通过选择适当的统计分析方法,可以深入分析试验产生的元数据,从中提取模式,并将其用作监测活动的指南。通过数据分析,可以获得详细的产品信息,并在生产过程中严格控制多个不同的链接。要将数学统计学科应用于现实。
概率论与数理统计是随机数学的重要理论分支,具有深厚的实际应用背景,是数学建模的重要理论之一。
鉴于我国高校对应用型和创新型人才培养的实际需求,以该课程部分知识点的实际教学为例,介绍在“概率论与数理统计”课堂教学中,将数学模型思想融入课程,即将实际问题结合于理论知识,以达到使学生了解数学理论的实际应用,同时加深对基础知识的理解与记忆的目的。实践表明教学效果显著。
数理统计起源发展:
数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效的收集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或预测,为采取某种决策和行动提供依据或建议。
数理统计起源于人口统计、社会调查等各种描述性统计活动。
公元前2250年,大禹治水,根据山川土质,人力和物力的多寡,分全国为九州;殷周时代实行井田制,进行了土地与户口的统计;春秋时代常以兵车多寡论诸侯实力,可见已进行了军事调查和比较;汉代全国户口与年龄的统计数字有据可查;明初编制了黄册与鱼鳞册,黄册乃全国户口名册,鱼鳞册系全国土地图籍,绘有地形,完全具有现代统计图表的性质。
可见,我国历代对统计工作非常重视,只是缺少系统研究,未形成专门的著作。
在西方各国,统计工作开始于公元前3050年,埃及建造金字塔,为征收建筑费用,对全国人口进行普查和统计,到了亚里士多德时代,统计工作开始往理性演变。这时,统计在卫生、保险、国内外贸易、军事和行政管理方面的应用,都有详细的记载,统计一词,就是从意大利一词逐步演变而成的。
数理统计的发展大致可分为古典时期、近代时期和现代时期三个阶段。
数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。
Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。
5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。
7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。
8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司A.K.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。
9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。
数学建模全国优秀论文相关 文章 :
★ 数学建模全国优秀论文范文
★ 2017年全国数学建模大赛获奖优秀论文
★ 数学建模竞赛获奖论文范文
★ 小学数学建模的优秀论文范文
★ 初中数学建模论文范文
★ 学习数学建模心得体会3篇
★ 数学建模论文优秀范文
★ 大学生数学建模论文范文(2)
★ 数学建模获奖论文模板范文
★ 大学生数学建模论文范文
在统计学中,统计模型是指当有些过程无法用理论分析 方法 导出其模型,但可通过试验或直接由工业过程测定数据,经过数理统计法求得各变量之间的函数关系。下文是我为大家整理的关于统计模型论文的 范文 ,欢迎大家阅读参考!
统计套利模型的理论综述与应用分析
【摘要】统计套利模型是基于数量经济学和统计学建立起来的,在对历史数据分析的基础之上,估计相关变量的概率分布,并结合基本面数据对未来收益进行预测,发现套利机会进行交易。统计套利这种分析时间序列的统计学特性,使其具有很大的理论意义和实践意义。在实践方面广泛应用于个对冲基金获取收益,理论方面主要表现在资本有效性检验以及开放式基金评级,本文就统计套利的基本原理、交易策略、应用方向进行介绍。
【关键词】统计套利 成对交易 应用分析
一、统计套利模型的原理简介
统计套利模型是基于两个或两个以上具有较高相关性的股票或者其他证券,通过一定的方法验证股价波动在一段时间内保持这种良好的相关性,那么一旦两者之间出现了背离的走势,而且这种价格的背离在未来预计会得到纠正,从而可以产生套利机会。在统计套利实践中,当两者之间出现背离,那么可以买进表现价格被低估的、卖出价格高估的股票,在未来两者之间的价格背离得到纠正时,进行相反的平仓操作。统计套利原理得以实现的前提是均值回复,即存在均值区间(在实践中一般表现为资产价格的时间序列是平稳的,且其序列图波动在一定的范围之内),价格的背离是短期的,随着实践的推移,资产价格将会回复到它的均值区间。如果时间序列是平稳的,则可以构造统计套利交易的信号发现机制,该信号机制将会显示是否资产价格已经偏离了长期均值从而存在套利的机会 在某种意义上存在着共同点的两个证券(比如同行业的股票), 其市场价格之间存在着良好的相关性,价格往往表现为同向变化,从而价格的差值或价格的比值往往围绕着某一固定值进行波动。
二、统计套利模型交易策略与数据的处理
统计套利具 体操 作策略有很多,一般来说主要有成对/一篮子交易,多因素模型等,目前应用比较广泛的策略主要是成对交易策略。成对策略,通常也叫利差交易,即通过对同一行业的或者股价具有长期稳定均衡关系的股票的一个多头头寸和一个空头头寸进行匹配,使交易者维持对市场的中性头寸。这种策略比较适合主动管理的基金。
成对交易策略的实施主要有两个步骤:一是对股票对的选取。海通证券分析师周健在绝对收益策略研究―统计套利一文中指出,应当结合基本面与行业进行选股,这样才能保证策略收益,有效降低风险。比如银行,房地产,煤电行业等。理论上可以通过统计学中的聚类分析方法进行分类,然后在进行协整检验,这样的成功的几率会大一些。第二是对股票价格序列自身及相互之间的相关性进行检验。目前常用的就是协整理论以及随机游走模型。
运用协整理论判定股票价格序列存在的相关性,需要首先对股票价格序列进行平稳性检验,常用的检验方法是图示法和单位根检验法,图示法即对所选各个时间序列变量及一阶差分作时序图,从图中观察变量的时序图出现一定的趋势册可能是非平稳性序列,而经过一阶差分后的时序图表现出随机性,则序列可能是平稳的。但是图示法判断序列是否存在具有很大的主观性。理论上检验序列平稳性及阶输通过单位根检验来确定,单位根检验的方法很多,一般有DF,ADF检验和Phillips的非参数检验(PP检验)一般用的较多的方法是ADF检验。
检验后如果序列本身或者一阶差分后是平稳的,我们就可以对不同的股票序列进行协整检验,协整检验的方法主要有EG两步法,即首先对需要检验的变量进行普通的线性回归,得到一阶残差,再对残差序列进行单位根检验,如果存在单位根,那么变量是不具有协整关系的,如果不存在单位根,则序列是平稳的。EG检验比较适合两个序列之间的协整检验。除EG检验法之外,还有Johansen检验,Gregory hansan法,自回归滞后模型法等。其中johansen检验比较适合三个以上序列之间协整关系的检验。通过协整检验,可以判定股票价格序列之间的相关性,从而进行成对交易。
Christian L. Dunis和Gianluigi Giorgioni(2010)用高频数据代替日交易数据进行套利,并同时比较了具有协整关系的股票对和没有协整关系股票对进行套利的立即收益率,结果显示,股票间价格协整关系越高,进行统计套利的机会越多,潜在收益率也越高。
根据随机游走模型我们可以检验股票价格波动是否具有“记忆性”,也就是说是否存在可预测的成分。一般可以分为两种情况:短期可预测性分析及长期可预测性分析。在短期可预测性分析中,检验标准主要针对的是随机游走过程的第三种情况,即不相关增量的研究,可以采用的检验工具是自相关检验和方差比检验。在序列自相关检验中,常用到的统计量是自相关系数和鲍克斯-皮尔斯 Q统计量,当这两个统计量在一定的置信度下,显著大于其临界水平时,说明该序列自相关,也就是存在一定的可预测性。方差比检验遵循的事实是:随机游走的股价对数收益的方差随着时期线性增长,这些期间内增量是可以度量的。这样,在k期内计算的收益方差应该近似等于k倍的单期收益的方差,如果股价的波动是随机游走的,则方差比接近于1;当存在正的自相关时,方差比大于1;当存在负的自相关是,方差比小于1。进行长期可预测性分析,由于时间跨度较大的时候,采用方差比进行检验的作用不是很明显,所以可以采用R/S分析,用Hurst指数度量其长期可预测性,Hurst指数是通过下列方程的回归系数估计得到的:
Ln[(R/S)N]=C+H*LnN
R/S 是重标极差,N为观察次数,H为Hurst指数,C为常数。当H>0.5时说,说明这些股票可能具有长期记忆性,但是还不能判定这个序列是随机游走或者是具有持续性的分形时间序列,还需要对其进行显著性检验。
无论是采用协整检验还是通过随机游走判断,其目的都是要找到一种短期或者长期内的一种均衡关系,这样我们的统计套利策略才能够得到有效的实施。
进行统计套利的数据一般是采用交易日收盘价数据,但是最近研究发现,采用高频数据(如5分钟,10分钟,15分钟,20分钟收盘价交易数据)市场中存在更多的统计套利机会。日交易数据我们选择前复权收盘价,而且如果两只股票价格价差比较大,需要先进性对数化处理。Christian L. Dunis和Gianluigi Giorgioni(2010)分别使用15分钟收盘价,20分钟收盘价,30分以及一个小时收盘价为样本进行统计套利分析,结果显示,使用高频数据进行统计套利所取得收益更高。而且海通证券金融分析师在绝对收益策略系列研究中,用沪深300指数为样本作为统计套利 配对 交易的标的股票池,使用高频数据计算累计收益率比使用日交易数据高将近5个百分点。
三、统计套利模型的应用的拓展―检验资本市场的有效性
Fama(1969)提出的有效市场假说,其经济含义是:市场能够对信息作出迅速合理的反应,使得市场价格能够充分反映所有可以获得的信息,从而使资产的价格不可用当前的信息进行预测,以至于任何人都无法持续地获得超额利润.通过检验统计套利机会存在与否就可以验证资本市场是有效的的,弱有效的,或者是无效的市场。徐玉莲(2005)通过运用统计套利对中国资本市场效率进行实证研究,首先得出结论:统计套利机会的存在与资本市场效率是不相容的。以此为理论依据,对中国股票市场中的价格惯性、价格反转及价值反转投资策略是否存在统计套利机会进行检验,结果发现我国股票市场尚未达到弱有效性。吴振翔,陈敏(2007)曾经利用这种方法对我国A股市场的弱有效性加以检验,采用惯性和反转两种投资策略发现我国A股若有效性不成立。另外我国学者吴振翔,魏先华等通过对Hogan的统计套利模型进行修正,提出了基于统计套利模型对开放式基金评级的方法。
四、结论
统计套利模型的应用目前主要表现在两个方面:1.作为一种有效的交易策略,进行套利。2.通过检测统计套利机会的存在,验证资本市场或者某个市场的有效性。由于统计套利策略的实施有赖于做空机制的建立,随着我股指期货和融资融券业务的推出和完善,相信在我国会有比较广泛的应用与发展。
参考文献
[1] A.N. Burgess:A computational Methodolology for Modelling the Dynamics of statistical arbitrage, London business school,PhD Thesis,1999.
[2]方昊.统计套利的理论模式及应用分析―基于中国封闭式基金市场的检验.统计与决策,2005,6月(下).
[3]马理,卢烨婷.沪深 300 股指期货期现套利的可行性研究―基于统计套利模型的实证.财贸研究,2011,1.
[4]吴桥林.基于沪深 300 股指期货的套利策略研究[D].中国优秀硕士学位论文.2009.
[5]吴振翔,陈敏.中国股票市场弱有效性的统计套利检验[J].系统工程理论与实践.2007,2月.
关于半参统计模型的估计研究
【摘要】随着数据模型技术的迅速发展,现有的数据模型已经无法满足实践中遇到的一些测量问题,严重的限制了现代科学技术在数据模型上应用和发展,所以基于这种背景之下,学者们针对数据模型测量实验提出了新的理论和方法,并研制出了半参数模型数据应用。半参数模型数据是基于参数模型和非参数模型之上的一种新的测量数据模型,因此它具备参数模型和非参数模型很多共同点。本文将结合数据模型技术,对半参统计模型进行详细的探究与讨论。
【关键词】半参数模型 完善误差 测量值 纵向数据
本文以半参数模型为例,对参数、非参数分量的估计值和观测值等内容进行讨论,并运用三次样条函数插值法得出非参数分量的推估表达式。另外,为了解决纵向数据下半参数模型的参数部分和非参数部分的估计问题,在误差为鞅差序列情形下,对半参数数据模型、渐近正态性、强相合性进行研究和分析。另外,本文初步讨论了平衡参数的选取问题,并充分说明了泛最小二乘估计方法以及相关结论,同时对半参数模型的迭代法进行了相关讨论和研究。
一、概论
在日常生活当中,人们所采用的参数数据模型构造相对简单,所以操作起来比较容易;但在测量数据的实际使用过程中存在着相关大的误差,例如在测量相对微小的物体,或者是对动态物体进行测量时。而建立半参数数据模型可以很好的解决和缓解这一问题:它不但能够消除或是降低测量中出现的误差,同时也不会将无法实现参数化的系统误差进行勾和。系统误差非常影响观测值的各种信息,如果能改善,就能使其实现更快、更及时、更准确的误差识别和提取过程;这样不仅可以提高参数估计的精确度,也对相关科学研究进行了有效补充。
举例来说,在模拟算例及坐标变换GPS定位重力测量等实际应用方面,体现了这种模型具有一定成功性及实用性;这主要是因为半参数数据模型同当前所使用的数据模型存在着一致性,可以很好的满足现在的实际需要。而新建立的半参数模型以及它的参数部分和非参数部分的估计,也可以解决一些污染数据的估计问题。这种半参数模型,不仅研究了纵向数据下其自身的t型估计,同时对一些含光滑项的半参数数据模型进行了详细的阐述。另外,基于对称和不对称这两种情况,可以在一个线性约束条件下对参数估计以及假设进行检验,这主要是因为对观测值产生影响的因素除了包含这个线性关系以外,还受到某种特定因素的干扰,所以不能将其归入误差行列。另外,基于自变量测量存在一定误差,经常会导致在计算过程汇总,丢失很多重要信息。
二、半参数回归模型及其估计方法
这种模型是由西方著名学者Stone在上世纪70年代所提出的,在80年代逐渐发展并成熟起来。目前,这种参数模型已经在医学以及生物学还有经济学等诸多领域中广泛使用开来。
半参数回归模型介于非参数回归模型和参数回归模型之间,其内容不仅囊括了线性部分,同时包含一些非参数部分,应该说这种模型成功的将两者的优点结合在一起。这种模型所涉及到的参数部分,主要是函数关系,也就是我们常说的对变量所呈现出来的大势走向进行有效把握和解释;而非参数部分则主要是值函数关系中不明确的那一部分,换句话就是对变量进行局部调整。因此,该模型能够很好的利用数据中所呈现出来的信息,这一点是参数回归模型还有非参数归回模型所无法比拟的优势,所以说半参数模型往往拥有更强、更准确的解释能力。
从其用途上来说,这种回归模型是当前经常使用的一种统计模型。其形式为:
三、纵向数据、线性函数和光滑性函数的作用
纵向数据其优点就是可以提供许多条件,从而引起人们的高度重视。当前纵向数据例子也非常多。但从其本质上讲,纵向数据其实是指对同一个个体,在不同时间以及不同地点之上,在重复观察之下所得到一种序列数据。但由于个体间都存在着一定的差别,从而导致在对纵向数据进行求方差时会出现一定偏差。在对纵向数据进行观察时,其观察值是相对独立的,因此其特点就是可以能够将截然不同两种数据和时间序列有效的结合在一起。即可以分析出来在个体上随着时间变化而发生的趋势,同时又能看出总体的变化形势。在当前很多纵向数据的研究中,不仅保留了其优点,并在此基础之上进行发展,实现了纵向数据中的局部线性拟合。这主要是人们希望可以建立输出变量和协变量以及时间效应的关系。可由于时间效应相对比较复杂,所以很难进行参数化的建模。
另外,虽然线性模型的估计已经取得大量的成果,但半参数模型估计至今为止还是空白页。线性模型的估计不仅仅是为了解决秩亏或病态的问题,还能在百病态的矩阵时,提供了处理线性、非线性及半参数模型等方法。首先,对观测条件较为接近的两个观测数据作为对照,可以削弱非参数的影响。从而将半参数模型变成线性模型,然后,按线性模型处理,得到参数的估计。而多数的情况下其线性系数将随着另一个变量而变化,但是这种线性系数随着时间的变化而变化,根本求不出在同一个模型中,所有时间段上的样本,亦很难使用一个或几个实函数来进行相关描述。在对测量数据处理时,如果将它看作为随机变量,往往只能达到估计的作用,要想在经典的线性模型中引入另一个变量的非线性函数,即模型中含有本质的非线性部分,就必须使用半参数线性模型。
另外就是指由各个部分组成的形态,研究对象是非线性系统中产生的不光滑和不可微的几何形体,对应的定量参数是维数,分形上统计模型的研究是当前国际非线性研究的重大前沿课题之一。因此,第一种途径是将非参数分量参数化的估计方法,也称之为参数化估计法,是关于半参数模型的早期工作,就是对函数空间附施加一定的限制,主要指光滑性。一些研究者认为半参数模型中的非参数分量也是非线性的,而且在大多数情形下所表现出来的往往是不光滑和不可微的。所以同样的数据,同样的检验方法,也可以使用立方光滑样条函数来研究半参数模型。
四、线性模型的泛最小二乘法与最小二乘法的抗差
(一)最小二乘法出现于18世纪末期
在当时科学研究中常常提出这样的问题:怎样从多个未知参数观测值集合中求出参数的最佳估值。尽管当时对于整体误差的范数,泛最小二乘法不如最小二乘法,但是当时使用最多的还是最小二乘法,其目的也就是为了估计参数。最小二乘法,在经过一段时间的研究和应用之后,逐步发展成为一整套比较完善的理论体系。现阶段不仅可以清楚地知道数据所服从的模型,同时在纵向数据半参数建模中,辅助以迭代加权法。这对补偿最小二乘法对非参数分量估计是非常有效,而且只要观测值很精确,那么该法对非参数分量估计更为可靠。例如在物理大地测量时,很早就使用用最小二乘配置法,并得到重力异常最佳估计值。不过在使用补偿最小二乘法来研究重力异常时,我们还应在兼顾着整体误差比较小的同时,考虑参数估计量的真实性。并在比较了迭代加权偏样条的基础上,研究最小二乘法在当前使用过程中存在的一些不足。应该说,该方法只强调了整体误差要实现最小,而忽略了对参数分量估计时出现的误差。所以在实际操作过程中,需要特别注意。
(二)半参模型在GPS定位中的应用和差分
半参模型在GPS相位观测中,其系统误差是影响高精度定位的主要因素,由于在解算之前模型存在一定误差,所以需及时观测误差中的粗差。GPS使用中,通过广播卫星来计算目标点在实际地理坐标系中具体坐标。这样就可以在操作过程中,发现并恢复整周未知数,由于观测值在卫星和观测站之间,是通过求双差来削弱或者是减少对卫星和接收机等系统误差的影响,因此难于用参数表达。但是在平差计算中,差分法虽然可以将观测方程的数目明显减少,但由于种种原因,依然无法取得令人满意的结果。但是如果选择使用半参数模型中的参数来表达系统误差,则能得到较好的效果。这主要是因为半参数模型是一种广义的线性回归模型,对于有着光滑项的半参数模型,在既定附加的条件之下,能够提供一个线性函数的估计方法,从而将测值中的粗差消除掉。
另外这种方法除了在GPS测量中使用之外,还可应用于光波测距仪以及变形监测等一些参数模型当中。在重力测量中的应用在很多情形下,尤其是数学界的理论研究,我们总是假定S是随机变量实际上,这种假设是合理的,近几年,我们对这种线性模型的研究取得了一些不错的成果,而且因其形式相对简洁,又有较高适用性,所以这种模型在诸多领域中发挥着重要作用。
通过模拟的算例及坐标变换GPS定位重力测量等实际应用,说明了该法的成功性及实用性,从理论上说明了流行的自然样条估计方法,其实质是补偿最小二乘方法的特例,在今后将会有广阔的发展空间。另外 文章 中提到的分形理论的研究对象应是非线性系统中产生的不光滑和不可微的几何形体,而且分形已经在断裂力学、地震学等中有着广泛的应用,因此应被推广使用到研究半参数模型中来,不仅能够更及时,更加准确的进行误差的识别和提取,同时可以提高参数估计的精确度,是对当前半参数模型研究的有力补充。
五、 总结
文章所讲的半参数模型包括了参数、非参数分量的估计值和观测值等内容,并且用了三次样条函数插值法得到了非参数分量的推估表达式。另外,为了解决纵向数据前提下,半参数模型的参数部分和非参数部分的估计问题,在误差为鞅差序列情形下,对半参数数据模型、渐近正态性、强相合性进行研究和分析。同时介绍了最小二乘估计法。另外初步讨论了平衡参数的选取问题,还充分说明了泛最小二乘估计方法以及有关结论。在对半参数模型的迭代法进行了相关讨论和研究的基础之上,为迭代法提供了详细的理论说明,为实际应用提供了理论依据。
参考文献
[1]胡宏昌.误差为AR(1)情形的半参数回归模型拟极大似然估计的存在性[J].湖北师范学院学报(自然科学版),2009(03).
[2]钱伟民,李静茹.纵向污染数据半参数回归模型中的强相合估计[J].同济大学学报(自然科学版),2009(08).
[3]樊明智,王芬玲,郭辉.纵向数据半参数回归模型的最小二乘局部线性估计[J].数理统计与管理,2009(02).
[4]崔恒建,王强.变系数结构关系EV模型的参数估计[J].北京师范大学学报(自然科学版).2005(06).
[5]钱伟民,柴根象.纵向数据混合效应模型的统计分析[J].数学年刊A辑(中文版).2009(04)
[6]孙孝前,尤进红.纵向数据半参数建模中的迭代加权偏样条最小二乘估计[J].中国科学(A辑:数学),2009(05).
[7]张三国,陈希孺.EV多项式模型的估计[J].中国科学(A辑),2009(10).
[8]任哲,陈明华.污染数据回归分析中参数的最小一乘估计[J].应用概率统计,2009(03).
[9]张三国,陈希孺.有重复观测时EV模型修正极大似然估计的相合性[J].中国科学(A辑).2009(06).
[10]崔恒建,李勇,秦怀振.非线性半参数EV四归模型的估计理论[J].科学通报,2009(23).
[11]罗中明.响应变量随机缺失下变系数模型的统计推断[D].中南大学,2011.
[12]刘超男.两参数指数威布尔分布的参数Bayes估计及可靠性分析[D].中南大学,2008.
[13]郭艳.湖南省税收收入预测模型及其实证检验与经济分析[D].中南大学,2009.
[14]桑红芳.几类分布的参数估计的损失函数和风险函数的Bayes推断[D].中南大学,2009.
[15]朱琳.服从几类可靠性分布的无失效数据的bayes分析[D].中南大学,2009.
[16]黄芙蓉.指数族非线性模型和具有AR(1)误差线性模型的统计分析[D].南京理工大学,2009.
猜你喜欢:
1. 统计学分析论文
2. 统计方面论文优秀范文参考
3. 统计优秀论文范文
4. 统计学的论文参考范例
学术堂最新整理了二十条好写的统计学毕业论文题目:1.MMC排队模型在收费站排队系统中的应用2.财政收入影响因素的研究3.城市发展对二氧化碳排放的影响4.高技术产业产值影响因素的研究5.关于和谐社会统计指标的初步研究6.CCA研究我国产业结构的区域差异对经济的影响7.基于单因素序列相关面板数据的实证分析8.基于空间面板数据的中国FDI统计分析9.基于排队论在杭州公交站点停车位的优化及实证分析10.基于统计方法的股票投资价值分析11.某某市2019年工业发展状况的统计分析12.近30年31省市城镇居民恩格尔系数的统计分析13.近30年31省市农村居民恩格尔系数的统计分析14.近三十年中国经济发展趋势的实证分析15.林业科技对经济的贡献率美联储量化16.宽松政策对中国经济影响的统计17.分析排队论简介及其应用18.我国财政收入总额影响因素分析19.我国城市竞争力的综合评价与实证分析20.我国城乡居民收入差距统计分析一以某某省为例
统计学作为一门综合性很强的学科,其运用范围非常广泛,不少学生在写作统计学论文时,都困在了选题这一步,其实就统计学而言,可供作为论文题目的热词有很多,如:企业管理、实证研究、统计估计、统计分析、计算机应用、支持向量机、数学模型、GIS、多元分析、统计报表等等,学术堂精选了20个优质“统计学毕业论文题目”,供大家参考。1、药品检验中常用的统计学方法及其应用2、应用统计学在现实生活中的应用分析3、浅谈统计学在金融领域的应用4、统计学在实验室质量控制中的应用5、论应用统计学PDTR教学模式的必要性和可行性6、水产生物统计学课程中学生统计思维能力与应用意识的培养研究7、地质统计学在某铜矿床资源量估算中的应用熊8、基于地质统计学的采空区储量估算9、密井网条件下地质统计学岩性反演在河道砂体预测中的应用10、地质统计学在稀土矿储量计算研究应用11、地质统计学在矿床品位估算中的应用研究12、地质统计学在细脉型矿体模拟中的应用:以新疆梅岭-红石铜矿为例13、地质统计学地震反演技术在溱潼南华地区薄砂层的预测应用14、朝阳沟油田扶余油层组深度域地质统计学反演15、基于DMine软件下地质统计学在矿山储量计算中的应用
提供一些经济统计类的学年论文题目,供写作参考。1. 某省各地市经济发展水平的综合评价 2. 工业企业经济效益综合评价的应用研究 3. 某省市经济发展水平分区研究 4. 某省市消费拉动第三产业增长的实证分析 5. 某省市城镇居民消费结构变化趋势研究 6. 某省普通高等教育生源变动趋势与对策研究 7. 某省城镇居民消费结构比较研究 8. 某高校学生的心理健康统计分析 9. 课堂教学评估体系与方法研究 10. 某市各区县经济综合实力评价研究 11. 基于多元统计的某省经济分区研究 12. 因子分析在某省利用外资效果评价中的应用 13. 因子分析在居民消费结构变动分析中的应用 14. 因子分析在企业竞争力评价中的应用 15. 深沪股市收益率分布特征的统计分析 16. 某省市农民收入问题的调查与思考 17. 最优加权组合法在GDP预测中的运用研究 18. 最优加权组合法在粮食产量预测中的运用研究 19. 最优加权组合法在能源消耗预测中的运用研究 20. 我国(某省)实际人均GDP的趋势分析及预测 21. 某省市工业经济效益的综合评价 22. 工业企业科技竞争力的综合评价 23. 某省市城镇居民消费结构的地区差异分析 24. 某省市各地区经济综合实力的评价 25. 基于因子分析法的上市公司财务状况评价研究 26. 某省工业化进程统计测度及实证分析 27. 某省城市化进程统计测度及实证分析 28. 某省城市规模发展水平分析与比较研究 29. 某省市工业行业结构特征的因子分析 30. 城镇居民消费的典型相关分析 31. 我国(某省)各地区人口素质差异的统计分析 32. 我国(某省)三次产业结构变动的统计分析 33. 某省农业产业化发展的实证研究 34. 某省外贸出口与经济发展关系的实证研究 35. 县域经济发展综合评价的实证研究 36. 某省各县市经济发展的聚类分析 37. 某省各县市产业结构的聚类分析 38. 某省(市)信息化实现程度实证评价 39. 某省(市)环境保护综合评价 40. 我国科技进步贡献率的测度 41. 某省(市)居民生活水平与质量实证评价 42. 某省(市)经济外向度实证研究 43. 县级政绩考核指标体系与方法研究 44. 我国城乡居民收入差距实证研究 45. 我国东西部城镇居民收入差距实证研究 46. 某省市城镇居民消费水平与结构变化趋势研究 47. 某省市投资拉动GDP增长的实证研究 48. 耐用品需求预测模型及其应用研究 49. 某省市GDP周期波动实证研究 50. 某省市工业周期波动实证研究 51. 某省市零售市场周期波动实证研究 52. 某省市农民收入周期波动实证研究 53. 某省市人口最优预测模型与应用研究 54. 某省市人口老龄化趋势与对策研究 55. 某省市财政收支变化趋势与对策研究 56. 某省市城镇居收入差距变化趋势与对策研究 57. 某省市农民收入差距变化趋势与对策研究 58. 长江水质的综合评价与预测 59. 多元统计分析方法在股票市场板块中的应用研究 60. ARCH族波动模型研究及其在我国股市中的应用研究
这个建议你 查十篇左右的文献 看看以前发表的毕业论文都是怎么写的 然后还可以跟上一级打听下 或者跟指导你毕业的老师咨询下 找到一个研究样本之后 再想怎么做 论文题目不急
统计学专业是一门处理大量数据的学科,在社会中的重要性越来越不可忽视。下文是我为大家搜集整理的统计学论文的内容,欢迎大家阅读参考!统计学论文篇1 谈农经统计工作在农村经济发展中的作用 摘要:农经统计是农村地区经营管理的基础工作,也是农村社会经济统计的一部分,具有重要的地位,通过收集相关的数据并整理出来,数据可以反映出当地农村经济发展的实际情况,让人们掌握农村经济发展的特点和规律,农经部门就可以针对农村经济发展的特点和规律制定针对性的工作 措施 和思路,对于促进农村经济的发展至关重要。本文就农经统计工作在农村经济发展中的作用进行分析,并提出了提高农经统计工作效率的措施。 关键词:农经统计工作;农村;经济发展 引言 农经统计工作是一类重要的农村经济社会统计工作,收集农村经济发展的相关数据,为农经部门的工作提供正确的思路和方向,政府也可以根据相关的数据依据制定农业政策、农业发展规划,及时发现农村经济运行中存在的问题,并及时提出有效的解决措施。因此,在农村社会经济统计中,一定要做好农经统计工作。 一、农经统计工作在农村经济发展中的作用 (一)为农村经济政策的制定提供有效的依据 近年来,我国的经济得到了快速的发展,农村经济也得到了前所未有的发展,在一个地区,农经统计的主要工作就是收集当地经济发展的相关数据,整理出来,人们通过数据就可以了解农村经济的运行情况,掌握农村经济的发展脉络,而只有掌握历史,才能针对发展中的问题提出有效的解决措施,从而引导农村经济的正确发展。农经统计得出的信息不仅可以反映出农村经济发展脉络,同时还能够为地方政府部门以及单位部门提供数据依据,使其能够正确判断农村经济发展的形势,加强农村经济的研究,提出有效的促进农村经济发展的措施。例如,通过对农民的负担进行统计,政府部门就可以正确分析和了解农村的负担构成、负担水平以及其发展的趋势,从而针对实际情况制定减轻农民负担的政策,真正达到减负的效果。因此,农经统计工作可以为各种惠农政策的制定提供重要的依据[1]。 (二)农经统计工作可以为农业经营体制机制的创新提供有效的途径 近年来,我国的经济体制在不断改革,为了促进我国的农村经济发展,还应该做好农业经营体制机制的改革,才能真正促进农业和其他产业的和谐持续发展。因此,农业经营体制机制的创新对于促进农业经济的发展具有至关重要的作用,而是在创新机制的过程中,就要求充分了解当地农业的经济发展情况。通过农经统计数据,人们可以了解农业发展取得的成效,同时也能够及时发现农业发展过程中的制约因素[2]。例如,针对农村土地流入企业,就可以反映出政策导向的问题。而清楚的了解这些问题之后,相关的部门就可以针对具体的问题提出有效的应对措施,提出针对性的农业经营体制机制的创新途径,以促进我国农业经济的发展。 (三)农经统计是国家统计局工作的有效补充 国家统计局工作对于促进我国经济的发展和社会的发展具有非常重要的作用,但是国家统计局的工作是有效的,在实际工作中也有一些重要的工作没有涉及到,例如农民专业合作组织发展、农村土地承包管理以及农民负担监督管理等工作,都使没有被包含在国家统计局的工作内容中的,但是其对于农村经济的发展来说具有直观重要的作用。而农经统计工作中就会对相关的工作内容和数据信息进行统计,提供能够反映农村集体经济组织发展的重要信息资料。因此,农经统计工作不仅具有独特的业务特点,其也是国家统计局工作的有效补充。 二、加强农经统计工作效率的措施 (一)建立完善的统计制度 农经统计工作对于促进我国农村经济的发展来说具有非常重要的作用,但是从实际的情况来看,在农经统计工作中还存在着各种各样的问题制约着农经统计工作作用的发挥。其中,缺乏完善的统计制度是一个重大的问题。因此,在实际统计工作过程中,一定要建立完善的农经统计工作制度。加强基层统计制度的建设,包括统计台账制度、原始数据统计记录制度以及统计数据的质量检测制度等,从数据统计的最开始、数据统计过程一直到统计数据的检测都能够有一套完善的制度,来指导人们工作。对于数据的采集,应该采用抽样分层调查、重点调查和典型调查等相关的统计调查 方法 。 (二)改善统计方法 农经统计工作中,统计方法的合理性和科学性直接会对统计结果造成影响。因此,在实际的统计环节中,一定要改善统计方法,采用科学的统计方法来确保统计的有效性。在数据的收集过程中,要广泛收集,进入农户家中收集相关数据,询问农作物的生长情况,对于农作物的病虫害防治、农作物的销售等都要采集相关的数据。此外,还应该加强对各个部门的数据收集,深入到邮局、信用社、烟草站等部门了解相关的数据,了解农民的存款增长情况、贷款余额、汇款额等,还应该深入学校了解学校的收费情况,掌握农民的 教育 负担[3]。在广泛收集数据的基础上,还应该采用抽样调查的方式,抽取一定比例的农户进行细致调查,指导农户做好自己的台账,详细记录自己在一段时间内的收支情况。收集数据之后,还可以通过开展农民座谈会来验证数据的真实性和可靠性。 三、结语 农经统计在农村经济发展中具有非常重要的作用,其可以为农村经济政策的制定提供有效的依据,为农业经营体制机制的创新提供有效的途径,也是国家统计局工作的重要补充,在实际的统计工作中,应该制定完善的统计制度,采用科学的统计方法,提高统计工作的有效性和可靠性。 参考文献 [1]车德彬.浅谈农经统计工作在农村经济发展中的作用[J].农民致富之友,2014,14(11):134-135. [2]廖兵.做好农经统计工作促进农村经济大力发展[J].中国农业信息月刊,2014,21(12S):133-134. [3]宋铁.做好农经统计工作,促进农村经济大力发展[J].农民致富之友,2013,12(7):257-258. 统计学论文篇2 浅析中小企业发展中统计的作用 摘要:当前随着我国市场经济的快速发展,我国很多企业单位也正在进行不断的改革,这使得很多中小型企业的经济统计专项目标和要求也发生了改变,逐渐向更高更远的方向发展。对于中小型企业来说,统计工作是非常重要的工作内容,是保障企业未来更好运作的关键内容,因此本文就通过对中小企业发展中统计的作用进行分析,并对中小企业统计工作中初中的问题进行合理分析,在制定合理的解决策略,更好的提升中小企业统计工作效率和质量,为中小企业未来发展奠定坚实基础。 关键词:统计;中小企业;发展;作用 在中小企业发展过程中,统计、会计核算等对象与目标都是相统一的,而其两者的内容与原则以及技术形式是有很大差别的,中小企业中的统计工作是非常重要的,通过运用有效的统计方法、要求以及原则等来完成统计工作,从而保证企业生产经营以及管理等工作能够顺利开展,统计在中小企业发展中的作用是非常大的,因此企业必须要重视统计工作,并制定合理的统计工作策略,发挥其重要价值,为企业未来发展奠定建设有利的基础。 一、中小企业发展中统计的具体应用 1.有效的统计工作能够客观的强化企业预测 中小企业在运用统计分析开展相关工作时,是需要运用动静结合的形式开展统计工作,在这一过程当中要发挥预测的重要作用,并且要与企业发展要求保持一致,通过对季度统计与年度统计等内容进行预测分析,进而有效的完成中小企业的最终目标,从而更好的促进企业未来发展。要与企业发展计划保持一致,对往年的销售数据进行合理分析,提升其合理性,之后对企业自身行业的特殊性进行研究,合理运用科学和专业的技术来优化企业服务形式、发展目标等,提升企业竞争力。 2.良好的统计工作能够确保企业决策的科学性 当前随着我国科学技术的快速发展,很多先进的技术和设备被广泛的运用在不同的企业当中,尤其是计算机技术以及 网络技术 等,这使得外部环境对企业的发展也带来较大的影响。而在这样的情况下,中小企业一定要拥有分析和处理相关信息的技能,这样才能更好的保障企业良好发展。企业必须要拥有良好的统计能力,并且要结合当前的市场需求以及各方面因素,对其进行合理分析,之后在对市场经济情况进行合理研究,从而合理制定长远发展战略,这样才能把总企业决策更加具有科学性特点,更好的保障中小企业在竞争激烈的市场氛围下更好发展。 3.完善的统计工作能够提升 企业管理 的实效性 企业管理工作中统计的作用是非常大的,借助统计分析的相关知识对管理模式进行优化和完善,这样比较能够提升企业管理工作的整体水平,还能更好的提升管理工作的实效性,发挥其重要作用;并且还能对中小企业的管理思想进行创新,全面完善企业管理形式,并为企业量身定制符合相关需求的统计形式,对企业管理成本进行合理控制,提升企业管理实效性,为中小企业未来稳定发展奠定坚实基础。 二、统计在中小企业发展中发挥有利作用的有效策略 1.对中小企业统计管理工作形式进行创新 通过对统计工作在中小企业中的应用进行分析明确,对于不同的部门来说,其统计工作的形式是不同的,通过将相关数据已经报表上交到管理部门。而对于传统的统计形式来说,相对比较单一化,过于传统,无法良好的发挥统计工作的作用,企业内部如果无法构建一个相对独立、专业的统计部门的话,那么就不能更好的以企业未来良好发展为方向,会导致统计工作出现很多弊端,不利用中小企业更好发展,因此中小企业必须要对统计管理工作形式进行创新,从而保证统计信息的完整性和全面性,更好的保障中小企业良好发展。对于近几年刚刚起步的中小企业来说,有些企业并没有认识到统计工作的作用,使得企业内部欠缺相对完整的统计制度和规定,而且还要一些企业是由财务会计来兼职统计职务,使得统计工作并不全面和完善,出现很多严重的问题。因此中小企业必须要制定合理的统计工作策略,对统计管理形式进行创新,首先,企业要在内部创建相对专业且独立的统计部门,并要明确各岗位的主要职责,建立完整的统计结构,进而保障企业统计工作能够良好完成。而对于规模较小的企业来说,要制定比较精简统计机构,虽然并不用制定独立的统计机构,但是还是要保障企业统计岗位的综合性,在各个环节良好的发挥统计作用,从而保障企业更好发展。另外,企业要全面落实不同部门的权力与职能,并且要将统计工作贯彻到各个环节当中,更好的发挥统计工作的作用,进而为中小企业未来发展奠定坚实有利的基础。 2.有效借助专业的统计模型工具 企业可以根据自身管理形式与企业决策等需求,对企业各种数据与信息进行统计、排列和组合,进而有效满足企业统计信息的综合分析。通过对某种简单信息进行分析与研究,例如生产进度或者销售状况,在对相对比较复杂、多层次的信息进行综合分析,包括结合盈利或亏损数据等信息,在运用统计分析信息,在结合企业的发展方向和最终目标开制定合理的统计形式,主要由具体的研究内容来选择最终方案,之后在上交到上级部门,为企业后期相关工作提供一定的信息参考。企业的统计人员也要不断提升自身整体能力,要明确自身职责,正确认识到统计工作的重要性,进而严格按照相应的标准来开展统计工作,更好的保障统计工作顺利完成,推动中小企业稳定发展。 3.建立信息化统计分析体系 随着信息技术在不同企业中的广泛运用,中小企业也要有效的利用信息化技术来开展相关工作,企业统计工作也要有效利用信息化技术,结合该技术制定一个完善的统计系统,为企业统计工作奠定建设有利的基础。企业要有效的利用现代化信息技术的优势,借助其先进功能制定一个良好的统计报表指标,将企业不同部门通过网络系统进行连接,从而借助统计系统,将不同的部门中信息进行整合,进而完成统计工作,在通过网络技术上交到领导部门,为上级领导开展决策工作奠定良好基础,更好的推动企业未来发展,发挥统计在中小企业发展在的有利作用。 三、结束语 通过对中小企业发展中统计工作的作用进行分析,明确发现统计在中小企业发展中的重要是非常重要的,统计工作时贯穿到企业各个环节当中的重要环节,也是促进企业未来发展的重要部分,因此企业必须要重视统计工作,并明确其重要性,之后在制定一系列合理的统计工作策略,发挥其重要意义与价值,进而更好的推动中小企业未来发展。 参考文献 [1]杨莉.怎样发挥统计在中小企业改革中的作用[J].四川省情,2010,(8):40-41. [2]王发山.试析统计分析在中小企业中的应用[J]. 财经 界(学术版),2013,(6):76,78. 统计学论文篇3 论文摘要:统计分析是运用统计方法与分析对象有关的知识,从定量与定性的结合上进行的研究活动,是整个统计工作中的重要组成部分,在企业中发挥着巨大的作用,也是企业制定生产计划、发展战略与规划的主要依据。 论文关键词:统计分析 企业 发展 一、统计分析的概述及其特点 1.统计分析的概述 统计分析是指运用统计方法及与分析对象有关的知识,从定量与定性的结合上进行的研究活动。它是继统计设计、统计调查、统计整理之后的一项十分重要的工作,是在前几个阶段工作的基础上通过分析从而达到对研究对象更为深刻的认识。它又是在一定的选题下,集分析方案的设计、资料的搜集和整理而展开的研究活动。系统、完善的资料是统计分析的必要条件。 2.统计分析的特点 运用统计方法、定量与定性的结合是统计分析的重要特点。随着统计方法的普及,不仅统计工作者可以进行统计分析,各行各业的工作者都可以运用统计方法进行统计分析。只将统计工作者参与的分析活动称为统计分析的说法严格说来是不正确的。提供高质量、准确而又及时的统计数据和高层次、有一定深度、广度的统计分析 报告 是统计分析的产品。从一定意义上讲,提供高水平的统计分析报告是统计数据经过深加工的最终产品。 (1)运用统计方法:统计方法是以总体现象的数量关系为对象的一类特殊科学研究方法的总称,从运用的角度可分为 经验 方法和数学方法。经验方法是指人们长期的统计实践经验相关的方法。在统计分析中常用的数量比较法、分组分析法、指数及因素分析法等就属于这一类。对于这一类方法如能正确运用,可以提高统计分析的科学性。 (2) 定量与定性的结合:统计分析面对的不是抽象的数字,而是在定性分析的前提下。通过其数量表现对研究对象进行认识。因此,熟悉和掌握与研究对象有关的知识是十分必要的。 二、统计分析在企业中的运用 统计分析在一个企业的运转中发挥着举足轻重的作用。从统计认识的全过程来看,通过统计设计、调查和初步整理所取得的统计资料,可以对客观现象总体的数量特点取得一定的认识。但是这些认识却只是初步的、表面的,只有对这些资料进行由表及里的分析和研究,才能把握事物的本质特点、内在联系和发展变化规律,使统计认识得到进一步的深化。由于统计分析具有深化认识的作用,使得统计分析在企业当中得到广泛的应用。 统计具有数量性的特点,统计分析所起的作用,主要是通过定量的分析来实现的。统计分析在人们的认识过程中主要有三个方面的作用:一是对客观事物量化,包括反映客观事物规律的数量表现;二是根据量变程度确认事物的质,即确定区别事物质量的数量界限;三是揭示新的规律,即通过分析数量关系,发现尚未被认识的事物的规律。统计分析工作是一个从感性到理性的认识客观世界的过程。 在企业正确处理好统计分析工作,可以从整体上更为全面地看清现状,可以更好地促进企业的发展和发挥统计分析工作的作用和意义。就社会经济领域而言,统计分析还是发挥统计整体功能,提高统计工作地位的重要手段。随着我国改革开放的实施,社会经济领域发生了深刻的变化,各级领导部门和决策者仅凭个人能力和经验已经很难把握瞬息万变的局面,更难以正确做出科学的决策。在这种情况下,统计分析的优势随之显现。它可以把数据、情况、问题、建议等融为一体,既有定量分析,又有定性分析。比一般统计数据更集中、更系统、更清楚地反映客观实际,又便于阅读、理解和利用。因而是发挥统计的信息、咨询、监督功能的主要手段。与此同时,也提高了统计工作的社会地位。 统计分析在企业发展中应用广泛,主要体现在三个方面: 第一,统计分析在企业预测中的应用。 在统计预测中,一般强调静态分析预测和动态分析预测相结合,以静态分析预测为主。首先,企业应根据自身特点,重点进行年度、季度统计预测分析,确保企业目标管理和考核的有效性。其次,要根据企业的计划目标和历史销售数据确定各项数据指标,找出经济运行波动的共性和差异性。再次,要根据企业的总体规划和行业的特殊性,综合运用一定的预测模型来提高分析的科学性,公司的市场份额取决于该公司的产品、服务、价格、沟通等与竞争者的关系。如其他因素相同,则公司的市场份额取决于它的市场费用在规模和效益上与竞争者的关系。 第二,统计分析在企业决策中的应用。 随着企业信息化建设的推进,企业受外部环境的影响逐步加深,这就要求企业及时对相关信息进行处理和分析。一是对市场需求和供给能力的分析。主要包括居民的购买力、商品的潜在和实际市场需求量、品牌成熟度、订单满足率、消费偏好等。通过分析,可以判断企业的赢利空间、供需缺口等,为领导层确定商品销售规模、制定阶段性营销策略等提供依据。二是对社会经济环境的分析和影响。主要包括国内、国际的宏观环境对我国行业发展的影响和对地方法规、民风民俗对企业的发展的影响。三是对企业竞争力的分析。通过分析本行业其他企业的经营情况,在对比中认识自身发展的差距和潜力,从而为制定正确的发展战略提供参考。 第三,统计分析在企业过程分析和阶段分析控制中的应用。 在计划方案的落实过程中,往往会出现一些不可预知的状况。需要及时的进行过程分析和阶段分析。企业利用统计数据定期分析计划完成情况、进度情况等,可以及时的发现执行过程中所存在的问题。通过对完成阶段的结果进行对比分析,有利于确定指标完成率。便于衡量市场潜力相同的不同市场之间的业绩。也作为销售目标制定的依据。 在企业当中,统计分析工作是了解现状、预测未来,为了更好的促进企业发展进步的重要方法。做好统计分析工作具有重要的作用和意义。因此,我们要提高对统计分析的研究,使统计分析工作更好地成为企业发展的有力推动力量。 参考文献: [1]百度 百科 .统计分析[EB/OL]. [2]赵井霞.试谈如何进行统计分析[J].商业经济.2004.4. [3]宋安. 统计分析在企业管理与经营决策中的应用[J].经济师.2003.6 猜你喜欢: 1. 统计学论文范文 2. 统计学专业论文范文 3. 浅谈统计学论文论文 4. 浅谈统计学专业相关论文 5. 统计学分析论文
统计数据质量作为衡量统计工作绩效水平的重要依据,社会各界对其给予了更多的关注,也提出了更高的要求。下文是我为大家搜集整理的关于统计方面论文范文的内容,欢迎大家阅读参考!统计方面论文范文篇1 论我国统计方法制度改革 统计方法制度是我国统计工作的基础与规范,关系到什么是统计、怎样统计的问题,关系到统计质量的问题,关系到服务于决策者和社会等问题。随着市场经济体制建设的深入发展,统计工作进入到一个由旧体制向新体制转变的关键时期,统计方法制度伴随着生产经济方式的转变,进行了一系列改革。但是还存在着一些问题没有解决,提出相应的解决措施已经成为一个重要的课题,本文就此详细的进行了论述。 一、统计方法制度基本特点 统计方法制度是统计管理工作的一个重要的对象,是统计工作的一个基础与规范,贯彻与执行以及实施统计方法的相关制度就包括:我国基层中的统计工作者其统计工作、政府部门中统计工作者的统计工作、以及政府综合性的统计工作者其统计工作。 其主要的特点就包括以下几点: 首先,全面性。统计方法相关制度就是包括了各个领域,包括资源、流通、生产、以及分配等等,涉及到了三次产业以及国民经济的相关部门。从社会经济的各个方面来看,它就全面的反映了政治文明、社会文明、物质文明、以及科技文明、以及环境文明等等。 其次,可比性。从纵向上来说,我国的一些统计制度就在很大程度上保证了一定的可比性以及稳定性。统计制度就在很大程度上反映了长期的稳定与发展,这也是能够成为一个长期制度的原因,也是因为这种原因,才能够在经济运行的过程中发现一些存在的问题以及规律,从计算的方法来看,在我国的统计方法制度中,也在很大程度上保证了可比性以及稳定性。 此外,系统性。从管理的角度来说,统计方法制度就包括了部门、地方、以及国家的统计方法的制度。在时间上来说,这就包括了年报以及定报。从标准来说,这已经形成了一套标准。从其管理的方面来看,已经本文由论文联盟http://收集整理基本上形成了一种固定的模式。 二、我国的统计方法改革存在的问题 近年来,社会各界对统计信息的需求量剧增,无论是宏观管理还是微观经济活动,对统计信息的依赖程度愈来愈大,要求愈来愈高,与统计力量薄弱,统计法制不健全,协调监督不力,技术手段滞后,形成的反差很大。现行的统计体制的弊端越来越显示出来,主要表现在以下几方面: 第一,常规统计的内容以及范围还存在着一些缺口。在我国的一些常规性统计中,其调查制度的一些内容以及范围还存在着缺口,其覆盖面不是很全,这就意味着对我国的国民核算体系还缺乏一定的支撑作用。主要体现在以下几点:价格的统计制度不是很健全、常规服务业的缺口也比较大、以及一些专业的统计范围不是很健全。 第二,专业性统计制度之间的协调性较差。这就往往体现在年报以及普查之间的矛盾;抽样调查与全面报表的矛盾;核算统计相关制度与专业性统计制度的矛盾;我国的统计制度还没有形成一个完整的、协调的、有机的整体。 第三,统计的标准化程度还没有对现在的需要完全相适应,目前来说,很多的统计标准其在制定以及修订的过程中,往往是以国际的标准以及与国际标准相联系的标准予以展开的,而没有与实际相联系起来,没有结合着自身的发展以及相关的制度改革相联系,这类的标准是较少的。尤其是目前的一些在一定程度上制约了改革的调查单位,与城乡一体化相互配合的一些支出分类,以及反映出我国的一些企业登记与注册的标准等等都需要做到对其研究、制定、以及改革。 第四,重复性调查比较多,对基层来说起负担较重。统计信息的浪费比较严重。因为缺乏一种对制度的平衡以及整体性设计,这就造成了专业制度其内部、各个专业之间、部门统计以及综合统计之间的一种重复性调查,这就在很大程度上加大了工作量。首先,基层的统计数据其质量不是很高。其次,造成了数出多门以及一门多数或者是数据打架的一种情况。在这个过程中很多的统计信息就会被湮没,使得可以运用的信息较少,造成了不必要的浪费。 三、制度方法改革的思路及策略 综上所述,随着形势的发展,统计工作的现行体制、制度、方法等弊端就越加暴露出来,只有加大改革的力度,加快统计方法、制度的改革步伐,转变职能,统计工作才有生气,才有希望,才能不断地向前发展。 (一)完善统计指标体系 在不断的改革以及对社会经济发展的规律不但的认识基础上,要做到不断的去发现并要捕捉到经济发展中的一些难点以及热点问题,要对当前的一些适用的统计指标要保留,对一些过时的、陈旧的、不适用社会发展的一些指标予以去除,对指标体系做到不断的改进以及完善,使得整个的指标体系在真实的基础上反映出实际情况,做到对社会各个方面的统计与要求能够适应。 (二)改进统计的方法 统计工作应该要在实际的情况以及新环境的基础上,根据实际的调查对象其不同的特征来对统计方法进行改革,在实行普查的基础上,依靠着抽样调查以及全面报表体系,并且要利用一些非全面的调查方法,加强利用行政记录。对调查方法进行改革中,首先要保证数据的质量,早保证质量的基础上再对成本加以考虑,用比较少的花费以及比较小的一种力量,来实现一种统计的目的。目前来说,在调查方法体系中,存在的一个主要的问题就是推进行政管理体系以及调查方法之间的一种考核还存在的一些矛盾,怎样去协调以及管理,这就需要我们运用智慧去研究以及解决。 此外,还要对统计的标准化水平予以提升,还要不断的对国民经济的核算体系进行完善等。 四、结束语 总之,对我国的统计方法进行改革有着极为现实的意义,鉴于在统计方法制度中存在的一些问题,就应该不断的采取相应的措施,促进我国的统计方法制度的不断发展与完善。 统计方面论文范文篇2 浅析中等职业学校统计教学方法 1 《统计学》课程教学面临的挑战 1.1 《统计学》的课程特点——概念多而且概念之间的关系十分复杂、公式多且计算有一定难度等。如果学生不做必要的课外阅读、练习和实践活动,是很难理解和掌握的。特别是指数、抽样调查这部分概念抽象难以理解,公式复杂不易计算,这些对于学生学好这一课程面临的困难是可想而知的。 1.2 现在中等职业学生的特点: 中职学校的学生是一个特殊的群体,由于当前严峻的升学和就业形势,导致多数人认为上中职学校没有发展前途,基础好的学生都上了高中,中职学校的生源都是被挑选后剩余的学生。他们在初中时期,大部分成绩不是很好,甚至有的学生是个别教师“遗忘的角落”。因此,在很大程度上,这一批学生心理上存在着一定的缺陷,对自己不自信、甚至破罐破摔,缺乏学习兴趣、甚至厌学。大部分学生理论学习热情不高,缺乏钻研精神,缺乏积极的学习动机,学习目标不明确,学习上得过且过、效率低下。并且,他们的信息来源非常广泛,外界诱惑非常大,因此课程学习远远不能满足他们的心理需要。他们热衷于网络、游戏、追星、享乐等,根本无心学习。因此,采用传统的教学方法不能适应当代中职教育的要求。另外,中职生源知识基础比较差,但智力素质并不差。他们的思维敏捷,动手能力较强,对新事物、新观念容易接受,适应性强,且追求时尚,追求财富,出人头地的梦想非常强烈。所以,我们必须注重发掘他们的潜力,努力实施“因材施教”。加强实践教学环节,改变“填鸭式”的传统教学方法,培养学生的操作能力,让学生在实践中学习、在实践中进步。 2 统计学教学设想 2.1 在教学内容上,依据excel的函数功能、电子表格功能、数据分析功能,结合统计学原理的基本理论和方法,整合教学内容。 传统方式上的数据整理是使用纸上表格,填入数据、文字,再利用计算器计算所需的结果,如求和、分类汇总、求平均值、数列分析等数学运算,但往往因为数据过于庞大复杂,不仅计算起来十分辛苦,而且容易出错。现在计算机已非常普及,无论是高校、高职和中专,培养出来的学生不会用统计软件分析数据,不管哪一个层次,都已说不过去。统计学是一门应用的方法型学科,统计学应从数据技巧教学转向数据分析的训练。统计学应与计算机教学有机地合为一体,让学生掌握一些常用统计软件的使用。这样既培养了学生搜集数据、分析数据的能力,还培养学生处理大量数据的能力,即数据挖掘的能力。 excel电子表格软件是大家生活工作上常用的一款软件,其提供的统计分析功能虽然比不上专业统计软件,但它比专业统计软件易学易用,便于掌握,已能满足常用的统计方面的要求。excel可以进行数据运算,绘制图表、统计运算等,应用于数据整理、数据描述、抽样分析与参数估计、时间数列分析,不仅可以减少繁琐的重复计算,而且一旦编制好一个工作底稿,以后只要更改其中任一数据,就可以轻松地重新自动计算结果。这样,一方面可以减轻数据整理工作量,学习统计不再意味着整天埋头于一堆枯燥无味的数据中,另一方面可以提高学生的学习兴趣。 2.2 通过统计实践学习统计。 统计的教学不能只停留在课本上,我们应以学生为中心,案例教学与情景教学应成为统计课程的重要内容。在统计教学过程中,我们应增加统计实际案例,通过计算机对大量实际数据进行处理,可以在试验室进行,亦可在课堂上进行讨论,这样学生不仅理解了统计思想和方法,而且锻炼和培养了研究和解决问题的能力。还可以通过课堂现场教学、引导学生先读后写再议、模拟实验、利用课余时间完成项目,通过参加学校组织的某些团队、小组或自己组织去开展一些与专业有关的活动,如社会调查、专题研究、提供咨询、参与企业管理等方法。全方位地激发学生的学习兴趣、培养学生的专业能力、方法能力和社会能力。 比如同学们在设计调查问卷和调查方案的基础上,让他们组成若干调查小组(如以寝室为单位),在校园内真正进行一次统计调查活动,从具体调查对象和单位的确定,样本的抽取(不一定要很大),问卷的发放、回收与审核,数据输入与资料整理,估计与分析,一直到调查报告的编写,调查总结或体会的形成,全部由同学自己来完成。这样,同学们就亲身参与了统计调查、统计整理和统计分析(含统计推断)的整个过程,效果很好。 2.3 统计教学与日常生活相结合。 统计是一种社会调查活动,不论是宏观社会的整体调查研究,还是微观事物的观察分析,都需要统计。从微观上说,在日常生活中无处不存在着“统计”。例如,开学时,辅导员要统计一下到校的学生人数;篮球比赛中教练员要统计每个队员的投篮命中率、犯规的次数;农户在农作物收获后统计其产量等。再例如,家庭中的商品选购,买房买车,储蓄炒股,节水省电,参与彩票等等。在统计教学过程中,尽量把生活中的例子融入到统计课堂教学中。比如讲到正态分布,我们可以联系到我们的日常生活,你会发现许多现象呈现常态,虽有差异,偏离正常,但表现过高或过低的情况总是比较少,而且越不正常的可能性越少。比如人生目标,现实中“总统”只有一个,真正的发明家也不太多,而普通人随处可见。明确了这一规律,我们就不必为我们不是“总统”或“发明家”而气馁,我们应该像大多数普通人一样根据自己的实际情况树立一个通过努力就可以达到的目标。再说身边的朋友,最要好、最贴心的不会很多,明争暗斗、勾心斗角的也是少数,而不冷不热、不疏不亲的“点头朋友”却随处可见。“点头朋友”约占95%,也就说你在大街上随便碰到的100 个朋友中,大约只有五个是好朋友或坏朋友,其余都是“点头朋友”。明白了这一点,我们就应好好珍惜那少数几个难能可贵的好朋友们,对那95%的“点头朋友”要少些期待和要求,对那些无可救药的坏朋友则应该敬而远之,避免不必要的麻烦。这样书本上的知识也讲了,与实际生活相联系又增加了趣味性。 从宏观上说,一个国家一个社会更是离不开统计。在当代社会,统计学的应用越来越普及,人口学中的统计学应用(进行优生优育)、社会发展与评价、持续发展与环境保护、资源保护与利用、宏观经济监测与预测、政府统计数据收集与质量保证等都依赖于各类科学的统计方法。统计学在企业生产、经济生活中的应用也十分广泛,其中包括了保险精算、金融业数据库建设与风险管理、宏观经济监测与预测等一系列经济研究应用问题。 既然是处处离不开统计,那么我们就可以定期带领着同学们阅读各大新闻报纸及浏览各大统计官方网站,学习统计知识的同时又了解了国家大事。 2.4 改革考试方式和内容,合理评定学生成绩。 考试是教学过程中的一个重要环节,是检验学生学习情况,评估教学质量的手段。对于《统计学原理》的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷,离考试内容和方式应更加适应素质教育、特别是应有利于学生的创造能力的培养之目的相差较远。在过去的《统计学》教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算,各类辅导书中充斥着五花八门的计算技巧。从而导致了学生在学习《统计学》课程的过程中,为应付考试搞题海战术,把精力过多的花在了概念、公式的死记硬背上。这与财经类专业培养高素质的经济管理人才是格格不入的。为此,需要对《统计学》考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出《统计学》的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不拘一格,除了普遍采用的闭卷考试外,还在教学中用讨论、答辩和小论文的方式进行考核,采取灵活多样的考试组织形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中提交的读书报告、上机操作和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力培养。 3 结束语 教师在教学过程中要时刻明确学生是课堂的主体,教师要结合学生状况,灵活设计课堂模式,激发学生学习兴趣,了解和贯彻课程内容对学生能力和学生个性发展的要求,把学生放在教学的主导地位,引导学生发挥其主观能动性,培养学生信息学习的积极性、创造性和主观能动性,建立起能促进学生全面发展的教育教学模式。 猜你喜欢: 1. 统计方面论文优秀范文参考 2. 统计方面的论文范文 3. 统计学术论文范文 4. 统计优秀论文范文 5. 统计学论文范文
全国大学生数学建模竞赛论文格式规范 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。 论文第一页为承诺书,具体内容和格式见本规范第二页。 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。 论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。 本规范的解释权属于全国大学生数学建模竞赛组委会。[注]赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。全国大学生数学建模竞赛组委会2009年3月16日修订数学建模论文一般结构1摘要 (单独成页)主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3。2、问题重述和分析3、问题假设假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。作假设的两个原则:① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。② 贴近原则:贴近实际。以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。4、符号说明 (3.4可以合并)5、模型建立与求解(重要程度 :60%以上)6、模型检验(误差一般指均方误差)7、结果分析 (6.7可以合并)8、模型的进一步讨论 或 模型的推广9、模型优缺点10、参考文件11、附件(结果千万不能放在附件中)论文最佳页面数:15-21页 论文结构一题目摘要1.问题的重述2.合理假设3.符号约定4.问题的分析5.模型的建立与求解6.模型的评价与推广1、误差分析2、模型的改进与推广对XXXX切实可行的建议和意见:1.……2.…………7.参考文献8.附录 数学建模论文一般格式 摘要(主要理解、主要方法、主要结果、主要特点)或(背景、目标、方法、结果、结论、建议) 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模型优缺点优秀论文要点:1. 语言精练、有逻辑性、书写有条理2. 文字与图形相结合,使内容直观、清晰、明了、容易理解3. 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章4. 对论文中所引用或用到的知识、软件要清晰地予以说明。5. 在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去各步骤解释摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3问题重述与分析: 一向导、对题意的理解、 建模的创造性创造性是灵魂,文章要有闪光点。好创意、好想法应当既在人意料之外,又在人意料之中。新颖性(独特性)与合理性皆备。误区之一:数学用得越高深,越有创造性。解决问题是第一原则,最合适的方法是最好的方法。误区之二:创造性主要体现在建模与求解上。创造性可以体现在建模的各个环节上,并且可以有多种表现形式。误区之三:好创意来自于灵感,可遇不可求。好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。 表达的清晰性好的文章 = 好的内容 + 好的表达 替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。 写好摘要,包括:建模主要方法、主要结果,模型主要优点。 专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。 适当采用图表,增加可读性。
无忧在线有很多数学建模论文,你去搜一下就行
数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。
数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。