你从上一步的两个因式相乘得零,第二个因式由题可知不得零,故第一个因式得零这样得到下一步,在下一步由等差数列定义,可得√Sn为公差为1的等差数列,由等差数列通项公式的√Sn=√S1+(n-1)*1=n,即可
【定义】一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列(arithmetic sequence),这个常数叫做等差数列的公差(common difference),公差通常用字母d表示。【缩写】等差数列可以缩写为A.P.(Arithmetic Progression)。【等差中项】由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmetic mean)。有关系:A=(a+b)/2【通项公式】an=a1+(n-1)dan=Sn-S(n-1) (n≥2)【前n项和】Sn=n(a1+an)/2=n*a1+n(n-1)d/2【性质】且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。 从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项末项=2和÷项数-首项设a1,a2,a3为等差数列。则a2为等差中项,则2倍的a2等于a1+a3,即2a2=a1+a3。等比数列【定义】一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列(geometric sequence)。这个常数叫做等比数列的公比(common ratio),公比通常用字母q表示。【缩写】等比数列可以缩写为G.P.(Geometric Progression)。【等比中项】如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。有关系:G^2=ab;G=±(ab)^(1/2)注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G^2=ab是a,G,b三数成等比数列的必要不充分条件。【通项公式】an=a1q^(n-1)an=Sn-S(n-1) (n≥2)【前n项和】当q≠1时,等比数列的前n项和的公式为Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q) (q≠1)【性质】任意两项am,an的关系为an=am·q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。 性质: ①若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq; ②在等比数列中,依次每 k项之和仍成等比数列. “G是a、b的等比中项”“G^2=ab(G≠0)”.(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。一般数列的通项求法一般有:an=Sn-Sn-1 (n≥2)累和法(an-an-1=... an-1 - an-2=... a2-a1=...将以上各项相加可得an)。逐商全乘法(对于后一项与前一项商中含有未知数的数列)。 化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。特别的:在等差数列中,总有Sn S2n-Sn S3n-S2n2(S2n-Sn)=(S3n-S2n)+Sn即三者是等差数列,同样在等比数列中。三者成等比数列不动点法(常用于分式的通项递推关系)数列前N项和公式的求法(一)1.等差数列: 通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数 an=ak+(n-k)d ak为第k项数 若a,A,b构成等差数列 则 A=(a+b)/2 2.等差数列前n项和: 设等差数列的前n项和为Sn 即 Sn=a1+a2+...+an; 那么 Sn=na1+n(n-1)d/2 =dn^2(即n的2次方) /2+(a1-d/2)n 还有以下的求和方法: 1,不完全归纳法 2 累加法 3 倒序相加法 (二)1.等比数列: 通项公式 an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项 an=a1*q^(n-1),am=a1*q^(m-1)则an/am=q^(n-m) (1)an=am*q^(n-m) (2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0) (3)若m+n=p+q 则 am×an=ap×aq 2.等比数列前n项和 设 a1,a2,a3...an构成等比数列 前n项和Sn=a1+a2+a3...an Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推导的,这时可能要直接从基本公式推导过去,所以希望这个公式也要理解) Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q); 注: q不等于1; Sn=na1 注:q=1 求和一般有以下5个方法: 1,完全归纳法(即数学归纳法) 2 累乘法 3 错位相减法 4 倒序求和法 5 裂项相消法
数学中,数列的教学思想是一座桥梁,能够将复杂的问题巧妙地转化成简单的解题方法,让教师在教学中和学生学习的过程中更清晰、更简洁。下面是我为你整理的高中数学数列论文,一起来看看吧。
【摘要】随着新课标在我国的全面实施,高中数学教学中心课改的理念如何体现,才能适应新课改的要求?成为高中数学教学实践的重点目标。高中数学数列方面的内容,是高中数学的基础内容,很多重要的数学问题通过数列都可得到圆满解决。因此教好数列、学好数列对提高学生未来解决数学问题的能力有重要的实践意义。从教师角度看,优良的数列教学课堂设计对教学目标和教学效果的实现举足轻重。
【关键词】高中数学;数列;课堂教学
高中数学中,数列占有很重要的教学地位,数列在数学领域隶属于离散函数的范畴,是解决现实中很多数学问题的重要工具。数列问题是高二年级数学教学的基础。数列问题学习可以培养学生对数学问题的思考、分析和归纳的能力。并对以后阶段的数学知识有启蒙作用。数学教师必须重视数列教学实践对学生的启发作用。
一、数列部分教学内容概述
数列这一部分主要介绍了数列的概念,并对数列根据其特点进行了分类。接着引出了数列通项的概念。高中二年级主要学习等差、等比数列的概念,通项公式,前n项和。并对数列在现实生活中的意义进行了介绍,主要有分期付款等储蓄问题。本章介绍的数学公式较多,主要涉及数列的通项公式和前n项和公式。教学中,对公式的推导过程和变形种类要重点讲解。以便让学生从数学原理的角度对数列的相关概念做深入理解。如何灵活的运用数列的性质来对综合性题目进行解答是本章的重点教学任务。数列的相关问题的认识,要贯穿函数的思想来向学生传递。
二、数列教学的有效性策略简析
数列的教学应该遵循有效性原则来进行。我们在教学中应该用先进的教学理念来指导教学。数学的思维模式主要是逻辑性思维为主,因此有效的方式方法一旦为学生所领会,那教学的过程会变得相当的容易。
1.对比数学问题,归纳共性特点,培养探究习惯和能力
在认识数列时,应该同时引入函数的动态认识数列的方法,利用对函数的研究方法来类比到数列问题中来。对于数列的表示法的讲解,可通过函数的表示方法引申过来。而对等差数列,等比数列的单调性性质,也可通过以往学过的函数的相关性质来类比讲解;在求和问题的最值研究中,可从抛物线等二次函数中的变量演化过程类比讲解求函数最值。等差数列和等比数列的概念、性质、通项等,我们可通过两个类型数列的异同点来进行研究。如:从数列的特点来说,前一项与后一项的之间的差异对等差数列来说,两项间是加减法的关系,每两项之间都相差一个固定的数值,而对等比数列来说,则是乘除法的关系,每相邻两项之间是倍数的关系。对中项的概念来说,等差中项概念与相邻项的关系同样的加减法的规则,而等比数列的中项则是插入一个固定比例的关系。而两个等差数列,仍然为等差数列。而两个等比数列的对应项的乘积也为等比数列。这种数列之间的项与项的数量关系的实质要为学生开解明白。
2.与其他数学知识相综合,建立数学知识体系的网络化综合化
数学中任何一个概念都不了独立的,在整个的数学知识体系里面,每个知识点都与其他的结点有关联性,因此在数列教学中,要把数列、函数、不等式、解析几何等概念有机的结合起来进行讲解。数列其实是函数的特殊化,研究函数有普遍性的意义,而研究数列是研究函数的特殊化。因此在数列教学中建立函数的概念,有助于改变学生的静态思维。另外还有,数列与不等式,数列与导数,数列与算法等的综合运用,都要在数列教学中对学生加以讲解。
3.通过练习和小测试来巩固课堂教学的效果
传统教学模式中,有一项是“题海战术”,可见习题在数学教学中的作用是不容忽视的。尽管目前的教育模式不支持教师对学生施以题海战术,但选取具有代表性的习题,开拓学生的数学思想和知识点延伸,是有极大好处的。首先通过习题,可以巩固学生的基础知识结构,加强知识点之间的有机结合,从而提高学生对数学问题的分析能力。举个简单的例子,求数列an-n。通过前面的知识的学习,我们可以知道,这道题目,分为两部分数列的综合计算而成。前半部分是一个等比数列,而后半部分,我们可以看成负自然数的数列。等比数列的求和公式是形成的,而自然数的和在初中的高斯定理就已学过,通过这样的拆解,为学生解答综合性的问题提供了行之有效的途径。其次,同样一个题目如果能,应当鼓励学生用更多的方法来进行解答,这样可以培养学生的发散性思维,在考试中碰到的问题即使一时想不出来,至少学生能够想到很多种解题的方案,这其中说不定就有通往正确答案的途径。第三,公式的变形要加强练习,只有这样,学生才能够触类旁通,同一类问题的解决途径往往稍加变形,但其解法本质上是殊途同归的,通过这种锻炼,学生解题的能力得到了很大的提高,学到的知识体系也进一步得到巩固。第四,题目解决了,并不是学习的终结,要培养学生“回头看题”的习惯。这种习惯的养成有助于学生对题目的知识点进行全面把握。
三、高中数学数列部分课堂教学设计要点
课堂教学设计是高中教学中的重中之重,课堂教学设计的水平在某种意义上决定了课堂教学的效果和学生学习的成果。在课堂教学方案的设计中,笔者通过多年的教学经验和实践认为应该包括以下要素:
1.要细致了解学生在数列学习和解决数列问题中的切身体验
应该说,学生之间对数学问题的认知和理解能力确实存在着差异性。到了高中阶段,学生们都经历了近十年的数学学习经历,长期的学习中会对某一类知识点相当的敏感,而对另外的一些知识点却有盲点。有的学生在逻辑思维方面有特长,而另外的一些学生对计算情有独钟,对知识点掌握程度的不同会造成学生解题习惯和解题思路的差异。教师在课堂教学设计中也充分考虑大部分学生的群体差异。
2.要注重数列部分概念本质的强化记忆和理解,对基础知识的传授要夯实,避免短板
数学中,不仅仅是数列,其他的概念也如此,其描述的方式,往往通过文字性的描述来说明。这种方式比较抽象,我们在设计课堂教学时,对概念性的东西要注意辅以实例来讲解。以便激发学生的猎奇心理和探索问题的欲望。
3.重视数学史渗透和用数学工具解决实际问题的能力
数学的发展史源远流长,每种数学问题的提出和最后的解决都有其历史的背景。数列教学中穿插数学史知识的传授,有利于学生对知识的来龙去脉在熟稔中学习。另外数学问题的提出往往有其实践的背景,或者是人民集体智慧的结晶,或者是某一时期特殊问题的解决之道,教师在课堂教学的过程中要努力挖掘现实问题的应用。学以致用,当学生认识到自己学习的数列知识在现实生活中确实能解决很多问题的时候,学习的欲望和学习的效果自然而然就出来了。
4.重视数列学习中组合学习的魅力
人以群分,物以类聚。在数学学习的过程中,教师应该将不同层次的学生进行分组,这种分组的教学行为,可以让学生在相同的起点上进行学习。通过对班级内不同的学生的特点和能力进行分析,对其学习的目标,任务等精心设置,发挥团队学习的效用。
5.教师应该注重自我提高,从别人的课堂教学中汲取营养
老师在教学中不能固步自封,应该走出去,在同事中加强听课和学习。完善自我的课程教学缺陷,在不断的学习中,但课堂教学方案日趋完美。
四、结束语
高中数学中数列的教学内容虽然比较少,但其教学思想却在高中数学中占有很重要的地位,数学教学,应当立足于学生对数学知识的学习特点,以先进的教学理论为指导,对课堂教学方案设计精益求精,才能获得应有的教学效果。
摘要:数列是高中数学教学中重要的内容,其在高中数学中占据着重要的地位,同时在生活中也具有非常大的应用价值。本文介绍了高中数学学习数列的重要性及新时期如何提高高中数学数列教学质量和学习能力。
关键词:高中数学;数列;教学
一、引言
在高中数学的数列教学的过程中,教师不但要让学生懂得数列问题的知识点,还要让学生能够根据掌握的相关知识熟练地解决数学问题。困此教师要以生为本,以学定教,让学生在不同的数学环境巾积极思考,推进能力的提升,并让学生在各种数学数列问题的训练中学会自主学习数学的能力。
二、高中数学数列教学体会
1、以生为本,以学定教
1)以生为本,实时掌握在数学教学过程中学生的基本的数学能力在高中数学数列教学的过程中不但每一个班的综合数学能力不同,而且就是同一个班级中的学生的数学能力也不尽相同。在这种条件下,教师不论是在新接手班级还是在教学的过程中,都要通过各种有效的数学考查方式掌握学生的实际能力,确定学生的数学层次。在这个基础上教师将不同的数学层次的学生组合成组,方便学生进行合作交流的学习。
2)以学定教,采用适合本班同学的数学教学方式进行有效教学
在高中数学数列教学的过程中,教师在选择教学方法以及教学策略的时候,要能根据本班同学的不同数学层次特点进行确定,教师要紧紧把握住学生旧知与新知的链接点,寻找能够激发学生主动思维的教学方式进行教学。同时教师还要善于选择学生喜欢的教学模式,引发学生主动探究、合作交流,并在教学的过程中要巧妙使用课堂生成,使教学能够在师生之间、生生之间的思维碰撞中引领学生对数学知识的掌握。
2、善用多媒体课件辅助教学,促使学生能够更好地理解数学知识
1)多媒体课件辅助教学具有传统的课堂教学所无法比拟的教学优势,在数列教学的过程中,很多数列问题如数列与不等式综合问题中的放缩问题、解决递推数列问题等数学问题,单凭教师一张嘴,一支粉笔并不容易将抽象的数学知识让学生透彻地理解。而在这个过程中随着信息时代的到来,计算机以及互联网络的使用让多媒体课件走入了高中数列教学的课堂。
2)多媒体课件辅助教学可以让学生更加直观地理解数学知识
教师巧妙利用多媒体课件进行教学,使原有的抽象的数学问题变得可观可感,能够最大限度地调动学生多种感官的有效参与,极大地提高了学生学习的积极性,使得学生能够在课堂上跟着教师的引导积极思维、主动探究。如:在人教版高中数学数列教学“等差数列的前n项和”的教学过程中,教师通过多媒体课件出尔:“有一堆钢管,最底下放了15根,上一层是14根,再上一层是13根,……最顶层是3根。这堆钢管共有多少根?”这个问题,同时教师出示钢管的图像,并在和学生讨论思考的过程中将讨论的结果逐步出示,或者将学生解决问题的不同方案通过多媒体课件有效地呈现出来,引发学生的积极思考,让学生能够更直观地看到不同的解题方法的过程,并在这个过程中获得数学能力的不断提升。如果教师只是采用传统的教学方式进行讲解的话,那么学生也许很难理解教师的教学思路。多媒体课件辅助教学大大提高了教师的教学效率,解决了学生对抽象的数学知识无法理解的难题,并促使学生能够在这个过程中,形成数学架构的时间的缩短。
3、高中数学数列教学的创新
数列、一般数列、等差数列、等比数列是高中数学数列教学的主要内容。其中,等差数列和等比数列是数列教学内容中的重点。主要包括对数列的定义、基本特点、通项公式、分类方法、具体应用等知识点的学习。传统的教学观念中,教学设计作为一种系统化过程,是用系统的教学方法将数列教学理论,同学习理论原理进行转换,使之成为教学活动和教学资料的具体计划。创新理念的数列教学设计解决了“教学成果”、“教学方法”、“教学目的”等问题,通过教学设计来解决教学问题,探究总结问题的解决方法和步骤,形成新的教学方案。并在新的教学方案实施以后及时的对教学效果进行分析,规划操作其过程程序,判断其实施的价值。这一过程也是教学优化的的过程,能够提高教学成果,创造出更加合理高效的教学方案。
(一)数列教学应注重问题情境的创设
为调动学生主动、合作、探索学习的积极性,实现师生互动,我们教师营造自主、合作、探索的学习环境显得很重要。在数列的教学中首先要注重数学问题情境的创设。我们创设问题情况可以考虑以下方面:学生的已有知识与生活经验及数学的趣味性、教学内容、新旧知识的衔接点以及自身的教学特色。
(二)创新理念下的“数学概念”
对数学对象本质属性进行反映的思维方式,是数列的数学概念。我们知道数列的概念是按一定次序排列的一列数称为数列。对一个数学概念的学习,应记住其名称、了解其涉及到的范围、简述其本质属性并运用其概念进行判断。数学概念包括等差数列、等比数列、通项公式和数列。
在对这些陈述性概念进行设计时,设计者应对上述概念体现的概念特点进行描述。并且在高中数学数列教学中,为了能够激发学生对数列学习的兴趣,体会数列实际应用的价值,则可以通过将生活中实际的问题引入到课程教学中,从而将抽象的数学知识转变为实际需要解决的问题,使学生学生对所要研究的内容有所认识。并且在数列学习中可以结合其他知识点进行学习。比如数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列,这样不仅能够引导学生通过多方面解决问题,而且对提高学生运用知识的能力也具有重要的意义。我们还以等差数列的定义教学为例,如:增加判断某数列是否成等差数列的题目来促进概念理解。再如:把一次函数和等差数列通项公式相联系,利用函数概念同化等差数列的概念,凸显函数思想;让学生自己列表、画图象,用“形”感受函数与数列之间联系;用方程与等差数列基本量的运算相结合来加深了对概念的理解和巩固。此外我们在教学中还要明理强化,实践探究,注重激励评价,引申探究。
原理:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列(arithmetic sequence),这个常数叫做等差数列的公差(common difference),公差通常用字母d表示。【缩写】等差数列可以缩写为A.P.(Arithmetic Progression)。【等差中项】由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmetic mean)。有关系:A=(a+b)/2【通项公式】an=a1+(n-1)dan=Sn-S(n-1) (n≥2)【前n项和】Sn=n(a1+an)/2=n*a1+n(n-1)d/2【性质】且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。 从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项末项=2和÷项数-首项设a1,a2,a3为等差数列。则a2为等差中项,则2倍的a2等于a1+a3,即2a2=a1+a3。等比数列【定义】一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列(geometric sequence)。这个常数叫做等比数列的公比(common ratio),公比通常用字母q表示。【缩写】等比数列可以缩写为G.P.(Geometric Progression)。【等比中项】如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。有关系:G^2=ab;G=±(ab)^(1/2)注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G^2=ab是a,G,b三数成等比数列的必要不充分条件。【通项公式】an=a1q^(n-1)an=Sn-S(n-1) (n≥2)【前n项和】当q≠1时,等比数列的前n项和的公式为Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q) (q≠1)【性质】任意两项am,an的关系为an=am·q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。 性质: ①若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq; ②在等比数列中,依次每 k项之和仍成等比数列. “G是a、b的等比中项”“G^2=ab(G≠0)”.(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。一般数列的通项求法一般有:an=Sn-Sn-1 (n≥2)累和法(an-an-1=... an-1 - an-2=... a2-a1=...将以上各项相加可得an)。逐商全乘法(对于后一项与前一项商中含有未知数的数列)。 化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。特别的:在等差数列中,总有Sn S2n-Sn S3n-S2n2(S2n-Sn)=(S3n-S2n)+Sn即三者是等差数列,同样在等比数列中。三者成等比数列不动点法(常用于分式的通项递推关系)数列前N项和公式的求法(一)1.等差数列: 通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数 an=ak+(n-k)d ak为第k项数 若a,A,b构成等差数列 则 A=(a+b)/2 2.等差数列前n项和: 设等差数列的前n项和为Sn 即 Sn=a1+a2+...+an; 那么 Sn=na1+n(n-1)d/2 =dn^2(即n的2次方) /2+(a1-d/2)n 还有以下的求和方法: 1,不完全归纳法 2 累加法 3 倒序相加法 (二)1.等比数列: 通项公式 an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项 an=a1*q^(n-1),am=a1*q^(m-1)则an/am=q^(n-m) (1)an=am*q^(n-m) (2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0) (3)若m+n=p+q 则 am×an=ap×aq 2.等比数列前n项和 设 a1,a2,a3...an构成等比数列 前n项和Sn=a1+a2+a3...an Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推导的,这时可能要直接从基本公式推导过去,所以希望这个公式也要理解) Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q); 注: q不等于1; Sn=na1 注:q=1 求和一般有以下5个方法: 1,完全归纳法(即数学归纳法) 2 累乘法 3 错位相减法 4 倒序求和法 5 裂项相消法
用递推公式求通项的六种方法:等差数列和等比数列有通项公式;累加法;累乘法;构造法;错位相减法。
按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子表示出来,称作该数列的通项公式。
累加法:用于递推公式为an+1=an+f(n),且f(n)可以求和。
累乘法:用于递推公式为an+1/an=f(n)且f(n)可求积。
构造法:将非等差数列、等比数列,转换成相关的等差等比数列。
错位相减法:用于形如数列由等差×等比构成:如an=n·2^n。
用迭代法:此题也可用归纳猜想法求之,但要用数学归纳法证明.
公式。递推公式:如果一个数列的第n项an与该数列的其他 一项或多项之间存在对应关系的,这个关 系就称为该数列的递推公式。例如斐波纳 契数列的递推公式为an=a(n-1)+a(n-2 )等差数列递推公式:an=d(n-1)+a(d为公 差 a为首项)等比数列递推公式:bn=q(n-1)*b (q为公 比 b为首项)由递推公式写出数列的方法:1. 根据递推公式写出数列的前几项,依次 代入计算即可2.若知道的是末项,通常将所给公式整理 成用后面的项表示前面的项的形式。
找到通项之间的关系,发现规律,然后推理而出
一阶线性递推数列主要有如下几种形式: 1. 这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和).当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时,则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0. 2. 这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积).当为常数时,用累乘法可求得等比数列的通项公式.3.;这类数列通常可转化为,或消去常数转化为二阶递推式.例1已知数列中,,求的通项公式.解析:解法一:转化为型递推数列.∵∴又,故数列{}是首项为2,公比为2的等比数列.∴,即.解法二:转化为型递推数列.∵=2xn-1+1(n≥2)①∴=2xn+1②②-①,得(n≥2),故{}是首项为x2-x1=2,公比为2的等比数列,即,再用累加法得.解法三:用迭代法.当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.例2已知函数的反函数为求数列的通项公式.解析:由已知得,则.令=,则.比较系数,得.即有.∴数列{}是以为首项,为公比的等比数列,∴,故.评析:此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之.(4)若取倒数,得,令,从而转化为(1)型而求之.(5);这类数列可变换成,令,则转化为(1)型一阶线性递推公式.例3设数列求数列的通项公式.解析:∵,两边同除以,得.令,则有.于是,得,∴数列是以首项为,公比为的等比数列,故,即,从而.例4设求数列的通项公式.解析:设用代入,可解出.∴是以公比为-2,首项为的等比数列.∴,即.(6)这类数列可取对数得,从而转化为等差数列型递推数列.二、可转化为等差、等比数列或一些特殊数列的二阶递推数列例5设数列求数列的通项公式.解析:由可得设故即用累加法得或例6在数列求数列的通项公式.解析:可用换元法将其转化为一阶线性递推数列.令使数列是以 为公比的等比数列(待定).即∴对照已给递推式, 有即的两个实根.从而∴①或②由式①得;由式②得.消去.例7在数列求.解析:由①,得②.式②+式①,得,从而有.∴数列是以6为其周期.故==-1.三、特殊的n阶递推数列例8已知数列满足,求的通项公式.解析:∵ ①∴ ② ②-①,得.∴故有将这几个式子累乘,得又例9数列{}满足,求数列{}的同项公式.解析:由 ①,得 ②.式①-式②,得,或,故有.∴,.将上面几个式子累乘,得,即.∵也满足上式,∴.
不知道你需要哪一篇,你自己能上这个期刊网吗? 序号 篇名 作者 刊名 年/期 1 数列应用题的建模 尚鸿宾 数理化解题研究(高中版) 2008/08 2 等差数列应用3例 牛爱玲 数理天地(高中版) 2008/12 3 三类典型数列应用题的解题策略 慕泽刚 数学爱好者(高一人教大纲) 2008/10 4 数列的应用 王思俭 考试(高考数学版) 2008/Z5 5 丰富多彩的图形数列应用题 赵艺川 高中数学教与学 2008/07 6 高考中常见数列应用问题模型例举 邓红旗 数理化学习 2008/04 7 利用列表法求解数列应用题 宗平芬 高中数学教与学 2008/02 8 新情境下的递推数列应用问题 胡志红 高考(数语英) 2007/11 9 再说斐波那契数列的应用 邹常志 中学生数学 2007/20 10 三类典型数列应用题的解题策略 慕泽刚 数学爱好者(高一版) 2007/11 11 例说函数和数列应用题的数学化 廖东明 数学爱好者(高考版) 2007/04 12 构建数学模型解数列应用性问题 陈路飞 数学爱好者(高考版) 2006/02 13 数列应用题中的递推关系常见类型解析 黄爱民 中学数学月刊 2005/09 14 考点11 递推数列及数列的应用 中学数学 2005/Z1 15 等比数列应用题错解二例 李钟春 中学数学杂志 2005/07 16 建立递推关系 速解数列应用题例析 张照平 数理化学习(高中版) 2005/13 17 数列应用题中的几种常见递推关系 管春鸾 高中数学教与学 2005/07 18 数列应用题 李玉群 中学生数理化(高中版) 2005/04 19 数列应用问题例谈 李坤 第二课堂(高中版) 2005/05 20 新理念 新设计——谈等比数列的应用案例的设计和实践 林风 中学数学月刊 2005/01
MBA考试科目有哪些
MBA考试科目有哪些?想要报考MBA考试的小伙伴,肯定特别想知道MBA是什么,MBA要考哪些科目,怎么考?这些热门问题,众凯小编帮大家详细的梳理一下。
MBA是工商管理类硕士研究生学位,参加MBA考试,首先要满足报考条件,参考(2019MBA报考条件有哪些?)。
MBA考试科目笔试分为英语和综合,总分300分。
1.MBA综合试卷(满分200分,考试时间180分钟) 综合试卷内容包括: 数学(75分):问题求解、条件充分性判断两种题型 (一) 问题求解15题 每题3分 共45分 (二) 条件充分性判断10题 每题3分 共30分 逻辑(60分):单项选择题30题 每题2分 共60分 写作(65分)论证有效性分析(30分)论说文(35分)
2.MBA英语试卷(满分100分,考试时间180分钟)
完形填空(10分)(20题,每题0.5分)
阅读理解(50分)(25题,每题2分)
翻译 (15分)(英文翻译成中文)
英语写作(25分)(小作文10分,大作文15分)
综述所述,我们要报考MBA,备考的科目有数学、逻辑、写作还有英语。基础如果不好的同学要抓紧时间开始备考。参加补习班是最牢靠的,那么苏州MBA培训机构哪家好?怎么选择,就特别重要。
昆山教学点 地址:昆山崂山路9号人才市场2楼 67138889
MBA联考分为全国联考(笔试)和学院面试:笔试科目分别是英语、管理综合(含数学、逻辑、写作)。其中英语100分、综合200分(数学75分、逻辑60分、写作65分),总分300分。每科考试时间是3小时。
国际MBA包括中外合作办学MBA和海外商学院国内独立办学MBA项目,参加主办学校自主组织的考试,笔试和面试,授课时间18个月,6个月的论文期,论文答辩通过后可获得硕士学位证书。
考察目标:
1、具有运用数学基础知识、基本方法分析和解决问题的能力。
2、具有较强的分析、推理、论证等逻辑思维能力。
3、具有较强的文字材料理解能力、分析能力以及书面表达能力。
扩展资料
哈佛商学院首创了案例分析的教学方法--就是利用对真实世界的实例分析,代替对学术理论的过分依赖。这一方法至今仍是MBA课程的基础,因此哈佛商学院MBA教育被看作是世界MBA教育的真正开始。
在美国,MBA学习包含了一个为期两年的课程。在第一学年和第二学年之间的一个月暑假中,学生可以进行实习活动。在第一年中,学生学习核心商业学科,也就是必修课,包括财务、营销学、管理学总论、运营管理学和会计学。
在第二年中,学生可以选修一些自己想学的选修科目。选修课中最受欢迎的专业是:战略管理学、金融学、会计学和营销学,这些都是实用的专业。MBA的学生一般在入学时处于20到30岁之间,已经有了2到4年的工作经验。
欧洲MBA的发展最初受到政府规定的阻碍。在许多欧洲国家,政府不允许社会集资的大学创办“职业化”商务课程。这一情况一直持续到20世纪50年代。法国的一批企业家开始建立私立商学院,提供一种与众不同的欧洲MBA教育。
位于法国枫丹白露的INSEAD商学院就是在1958年成立的。瑞士的IMEDE商学院(即现在的IMD)几年后也在瑞士洛桑成立。这种欧洲式的MBA与美国不同,只有一个学年,候选人的年龄必须是将近30岁,或是30岁出头,因此可以把更多过去的管理经验带进教室,这点也和美国的商学院不同。
参考资料来源:百度百科-MBA联考
一般来说,管理类联考综合能力考试第一部分是数学,但是这个数学和别的考试科目差别很大,考的是初等数学,可能像数值、函数,基本的概念等等,相对而言比大家平时学的高级中学简单很多,而且都是选择题,相对容易一些,不需要太好的基础,但是数学想考满分也不容易。如果想要报考在职研究生,社科赛斯的mba培训课程是一个不错的选择。社科赛斯所有mba面试辅导师资均毕业于清华、北大、南开等国内知名商学院,熟悉国内商学院的面试规律,具有多年的mba面试辅导经验。社科赛斯笔试辅导老师团队,辅导的学生大多考入人大、首经贸、外经贸、厦大、复旦、同财等211/985重点院校。用深厚的知识储备、精湛的教学设计、丰富的应考策略帮助学生快速理清学习思路、找准方法、提高效率。社科赛斯管理类联考培训内容:英语二+管理类综合能力(数学+逻辑+写作)各科目的辅导。从基础阶段循序渐进,提练考点精华、重点、难点、得分点归纳总结,用有限的时间快速提练精华。笔试辅导班型有:词汇提高班、基础梳理班、系统强化班、模考讲评班、串讲点题班、笔试全程联报精品班、线上全程直播精品课、零基础速成班、十一密训营、30天魔鬼密训营、考前6天密训营。
我去论文答辩了,老师就问到这个。我当时回答错了。然后,他告诉我正确答案:灰色预测的数学理论基础应该是,模糊数学。
有九大研究方法,分别是:调查法、实验法、文献研究法、个案研究法、数量研究法、话题发散法、跨学科研究法、观察法。
4、个案研究法。这种研究方法在MBA专业被广泛应用。个案研究法具有基本3个基本的类型:个人调查、团体调查和问题调查。
5、数量研究法。数量研究法又分为 “统计分析法”和“定量分析法”。是通过对研究对象的规模、程度、规模等数量关系进行分析,揭示事物之间的关系,并分析发展趋势,以此来达到对事物的正确认识和预测的一种研究方法。
6、定性分析法。定性分析法其实就是运用归纳、演绎、分析及抽象等的方法来自己收集的材料进行加工,选择适合自己的材料,选择对于文章论点有用的材料,去伪存真、由表及里的进行分析,从而使研究对象可以有“质”的提升。
7、话题发散法。话题发散法就是采用话题扩散的方法就是在观点的基础上,从社会、环境、文化、家庭关系、经济等角度来切入,扩展适合自己观点的话题。
8、跨学科研究法。跨科学研究法是从整体上对于某一课题进行综合研究的一种方法。任何事物都是不可能单独存在的,学科的研究看似是单独的一门学科,其实学科之间都是有统一的一个整体。
9、观察法。观察法就是研究人员通过自己的感官和一些辅助功能根据直接对被研究对象进行分析和观察,获得资料的一种研究方法。这种方法具有一定的目的性、计划性、系统性和可重复性。在一定程度上扩大了人们的感性认识,对于启发人们的思维、发现新的事物有一定的帮助。
论文的研究方法有哪些
论文的研究方法有哪些,研究方法是在一个研究中发现新的现象、新的事物,或者提出新理论、观点,论文研究方法需要大量阅读法,找到不足和创新点,来完善自己的论文,下面一起来学习一下论文的研究方法有哪些。
一、思维方法
思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。
二、内容分析法
内容分析法是一种对于传播内容进行客观,系统和定量的描述的研究方法。其实质是对传播内容所含信息量及其变化的分析,即由表征的有意义的词句推断出准确意义的过程。内容分析的过程是层层推理的`过程。
三、文献分析法
文献分析法主要指搜集、鉴别、整理文献,并通过对文献的研究,形成对事实科学认识的方法。文献分析法是一项经济且有效的信息收集方法,它通过对与工作相关的现有文献进行系统性的分析来获取工作信息。一般用于收集工作的原始信息,编制任务清单初稿。
四、数学方法
数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。
一、规范研究法
会计理论研究的一般方法,它是根据一定的价值观念或经济理论对经济行为人的行为结果及产生这一结果的制度或政策进行评判,回答经济行为人的行为应该是什么的分析方法。
二、实证研究法
实证研究法是认识客观现象,向人们提供实在、有用、确定、精确的知识研究方法,其重点是研究现象本身“是什么”的问题。实证研究法试图超越或排斥价值判断,只揭示客观现象的内在构成因素及因素的普遍联系,归纳概括现象的本质及其运行规律。
三、案例分析法
案例分析法是指把实际工作中出现的问题作为案例,交给受训学员研究分析,培养学员们的分析能力、判断能力、解决问题及执行业务能力的培训方法,具体说来:
四、比较分析法
是通过实际数与基数的对比来提示实际数与基数之间的差异,借以了解经济活动的成绩和问题的一种分析方法。在科学探究活动中常常用到,他与等效替代法相似。